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Abstract—Semantic change detection is an important task
in geoscience and earth observation. By producing a semantic
change map for each temporal phase, both the land use land
cover categories and change information can be interpreted. Re-
cently some multi-task learning based semantic change detection
methods have been proposed to decompose the task into semantic
segmentation and binary change detection subtasks. However,
previous works comprise triple branches in an entangled manner,
which may not be optimal and hard to adopt foundation models.
Besides, lacking explicit refinement of bitemporal features during
fusion may cause low accuracy. In this letter, we propose a
novel late-stage bitemporal feature fusion network to address
the issue. Specifically, we propose local global attentional aggre-
gation module to strengthen feature fusion, and propose local
global context enhancement module to highlight pivotal seman-
tics. Comprehensive experiments are conducted on two public
datasets, including SECOND and Landsat-SCD. Quantitative and
qualitative results show that our proposed model achieves new
state-of-the-art performance on both datasets.

Index Terms—Change detection, remote sensing, multi-task
learning, feature fusion, semantic change detection.

I. INTRODUCTION

REMOTE sensing imagery interpretation plays an im-
portant role in geoscience and earth observation. As a

fundamental task, semantic segmentation (SS) aims to clas-
sify pixels in remote sensing images into distinct land use
land cover (LULC) categories for surface mapping. To better
understand urbanization and its impact on environmental evo-
lution, binary change detection (BCD) have been developed to
monitor the changed regions among different temporal phases
by predicting a binary mask [1, 2]. To further elevate the
coarse-grained change occurrence mapping into fine-grained
“from-to” semantic transition correspondence [3], semantic
change detection (SCD) techniques are receiving increasing
attention in recent literature. By generating a semantic mask
for each temporal phase containing not only the change/no
change information but also the detailed LULC semantics
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Fig. 1. Architecture comparison between previous works and our proposed
model. (a) Previous works merge bitemporal SS branches from encoders. (b)
Our proposed network fuse SS decoded features to achieve BCD.

within this particular temporal phase, richer change context
can be demonstrated.

Before the prevalence of deep learning, traditional change
detection methods adopt handcrafted features with the help
of algebra, statistics and transformation [4]. With the in-
trinsic modeling ability of deep learning based algorithm,
considerable improvements have been made mainly in the
scope of bitemporal input SCD. By regarding SCD as a SS
task for each temporal phase with additional “no-change”
category, some CNN based and Transformer based siamese
networks are implemented in an end-to-end manner [5–7].
However, without explicit constraint to regulate the change
region mapping within each temporal branch, these methods
struggle to suppress the changed regions discrepancy. To align
together changed regions of different temporal phases, recently
some multi-task learning based networks with triple branches
are proposed to separately learning the LULC semantics within
each temporal phase and the change location across time
interval [3, 8–10]. In this scenario, two SS branches are
developed to model the LULC semantics for bitemporal inputs,
whilst a BCD branch is specificly designed to capture the
change context. The predicted binary change mask is then
utilized to filter out all the unchanged regions in predicted
bitemporal semantic maps through dot product, resulting in
the final predicted bitemporal semantic change maps.

According to where these triple branches communicate with
each other, the aforementioned methods can be classified into
two types, i.e. early-stage fusion models and middle-stage
fusion models [11]. Early-stage fusion models like HRSCD [8]
implement three encoders to extract features for each branch.
The feature map inside BCD branch is obtained from scratch,
hence fails to make good use of the semantics within dual SS
branches. To better utilize the semantics, middle-stage fusion
networks like [3, 9, 10] capture change context on dual SS
encoded features without specific BCD encoder. To construct
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Fig. 2. Architectures of our proposed LSAFNet and its components. (a) Flowchart of LSAFNet. (b) Architecture of CD Decoder. (c) Architecture of SFM
and detailed structure of LGAA. (d) Architecture of SS Decoder and detailed structure of LGCE, respectively.

dependencies between bitemporal images, these methods start
correlating their triple branches from encoders. They either
establish parallel BCD branch after SS encoders or jointly
model semantic tokens for triple branches.

Though promising results have been achieved, we argue that
their entangled design of triple branches may not be necessary
and may not be optimal. For one thing, BCD can be interpreted
as the “exclusive or” result of bitemporal semantic maps, thus
it’s possible to capture change context directly from late-stage
bitemporal semantics while achieving satisfying accuracy.
From another perspective, entangled design makes it harder
to adapt pretrained foundation models into downstream SCD
task to transfer their modeling capability in a plug-and-play
paradigm due to intermediate feature entanglement [12]. In this
way, we propose a novel late-stage bitemporal feature fusion
network with a shallow decoder interpreting change regions
from SS decoded features. Fig. 1 shows the main difference
between our proposed model and previous triple branches
methods. Furthermore, [3, 5, 10] only apply naive fusion
strategies like difference and concatenation when capturing
change information without explicit change feature refinement.
We argue that this is not sufficient for accurate change region
localization and is vulnerable to irrelevant change semantics.
To this end, we re-weight the primeval change features based
on local and global context to boost representative ability.

The contribution of our work can be summarized as follows:

• A novel SCD method LSAFNet is proposed with more
decoupled architecture of two branches of SS and one
BCD branch. With dual SS branches only interact in
late-stage, our network achieve satisfying accuracy while
being friendly to foundation model implantation.

• We propose LGAA module and LGCE module to refine
features based on local and global context for better

representative ability.
• Comprehensive experiments are conducted on two public

datasets, quantitative and qualitative studies show that our
proposed LSAFNet outperforms state-of-the-art methods.

II. METHODS

A. Overall Architecture

As depicted in Fig. 2(a), the whole architecture of our
proposed LSAFNet follows a multitask learning paradigm,
where the SCD is decoupled into two SS branches and a BCD
branch. Given two input remote sensing images T1 and T2

carrying different temporal information, in the early stage of
LSAFNet, we first model the intra-temporal LULC semantics
through encoder-decoder architecture separately without any
cross-temporal interaction. By applying a visual backbone
network, we extract a series of feature maps denoted as
FL, FM , F1, F2, and F3, with channel dimension of 64,
64, 128, 256, and 512, respectively. Then, FH with more
pivotal semantic information is obtained from F1, F2 and
F3 through semantic fusion module(SFM). FL, FM and FH

are further up-sampled and decoded layer by layer in the
following SS decoder, and the corresponding semantic mask is
predicted through its classifier. By now the semantic features
from both temporal phases haven’t meet each other, until the
intermediate feature maps from SS decoders are aggregated
inside BCD decoder. We utilize local-global attentional ag-
gregation module to highlight the semantic differences across
time interval while suppressing the irrelevant changes, and
adopt cascaded convolution blocks to connect varied stages.
Ultimately, a change region binary mask is obtained through
change detection classifier, and we take it as guidance to mask
out unchanged areas in both semantic masks to achieve the
final semantic change predictions.
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B. Semantic Fusion Module

The key to achieve satisfying SCD result lies in identifying
and matching every pixel’s semantic category between the
given two input images from different temporal phases. Due
to the intrinsic nature of remote sensing images having rich
background context and varied object scales, the raw features
extracted by backbone network suffers from the perplexity of
inter-class similarity and intra-class variability. The different
imaging periods of multi-temporal image series further bring
in interference factors such as irrelevant seasonal and illumi-
nating changes [13]. Therefore, it’s crucial to construct more
representative features to facilitate downstream SS and BCD
subtasks. To this end, motivated by [10], we propose semantic
fusion module(SFM) to aggregate features F1, F2 and F3 into
a more representative feature map FH layer by layer. After
channel reduction through pointwise convolution, the lower-
level feature map is aggregated with its next level counterpart
in LGAA module. The process can be expressed as follows:

F
′

2 = LGAA(F2,ReLU(BN(Conv1×1(F3)))) (1)

FH = LGAA(F1,ReLU(BN(Conv1×1(F
′

2)))) (2)

where BN represents the BatchNorm operation.
The proposed SFM distinguish from previous meth-

ods mainly on local-global attentional aggregation mod-
ule(LGAA). Inspired by [14], we fuse adjacent levels of
features with explicit per-channel re-weighting. By GAP, a
global representative vector is obtained from the summation
of two input feature maps. We further utilize two layers of
Conv-BN-ReLU as the local channel context aggregator, and
combine the local and global channel context through addition.
The re-weighting vectors are subsequently applied to their
corresponding feature maps and the results are added as the
output of LGAA. Take Fi and Fj as the LGAA’s inputs, the
output F

′

i can be expressed as follows:

w1 = Conv(BN(ReLU(Conv(BN(GAP(Fi + Fj)))))) (3)

w2 = Conv(BN(ReLU(Conv(BN(Fi + Fj))))) (4)

F
′

i == FiSigmoid(w1+w2)+Fj(1−Sigmoid(w1+w2)) (5)

where GAP represents the global average pooling operation.

C. Semantic Segmentation Decoder

As shown in Fig. 2(d), we use two parallel weight-sharing
decoders for SS branches. The SS Decoder mainly comprises
a local-global context enhancement module(LGCE) and two
convolution blocks, gradually upsamples and aggregates adja-
cent levels of input feature maps for the final semantic map
prediction and cross-temporal interaction.

Following the practice in [10], the ConvBlock consists of
upsampling, concatenation and two cascaded ResBlocks to
combine the two input features, and apply depthwise convolu-
tion to further fuse the spatial context. The high level feature
containing pivotal semantics, denoted as FH , is first processed
in LGCE to distinguish interested semantics from interference

factors through channel attention. Similar to the calculation of
LGAA, the output F

′

H of LGCE can be formulated as follows:

w1 = Conv(BN(ReLU(Conv(BN(GAP(FH)))))) (6)

w2 = Conv(BN(ReLU(Conv(BN(FH))))) (7)

F
′

H == FHSigmoid(w1 + w2) (8)

D. Change Detection Decoder

The above SS encoder-decoder branch only captures intra-
temporal LULC categories within each temporal phase. To
identify the changed region across two temporal phases and
project intra-temporal LULC categories into cross-temporal
change region semantics, we propose a simple yet efficient
bridging decoder between two temporal branches in the late-
stage of our network to achieve bitemporal interaction. The
proposed CD Decoder, as depicted in Fig. 2(b), receives three
levels of decoded features from both SS Decoders and generate
feature map FC related to change regions. We first implement
the same LGAA module in Sec. II-B to merge high-level
feature maps from both temporal branches. Then, we apply
pointwise convolution to reduce its channel dimension and ag-
gregates its semantic information with the spatial information
from two subsequent lower-level feature maps layer by layer.
For simplicity, we subtract one SS Decoder’s output feature
map from its counterpart of another SS Decoder and keep
the absolute value as the lower-level features being processed
in ConvBlocks. Given F

′

H1, F
′

M1, F
′

L1 from T1 SS Decoder,
and F

′

H2, F
′

M2, F
′

L2 from T2 SS Decoder, the FC can be
calculated as follows:

F̃H = LGAA(F
′

H1 + F
′

H2) (9)

F̃
′

H = ReLU(BN(Conv1×1(F̃H))) (10)

F̃
′

M =
∣∣∣F ′

M1 − F
′

M2

∣∣∣ (11)

F̃
′

L =
∣∣∣F ′

L1 − F
′

L2

∣∣∣ (12)

F
′

C = f(F̃
′

H , F̃
′

M ) (13)

FC = f(F
′

C , F̃
′

L) (14)

where f (·) represents ConvBlock described in Sec. II-C, |·|
represents the absolute value operator.

E. Loss Function

Our multitask schemed network produces three prediction
maps in total, namely X1, X2, and XC . The X1 and X2

serves as the LULC semantic maps correspond to each tem-
poral phase, while XC is a binary change mask, denoting
the changed regions across time. In this work we supervise
over X1, X2 and XC instead of semantic change maps. We
choose the multi-class cross-entropy loss for semantic maps
optimization and the binary cross-entropy loss for change
region supervision. The formulation of LSS and LBCD can
be expressed as

LSS = − 1

N

N∑
i=1

yilog(pi) (15)
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LBCD = −yclog(pc)− (1− yc) log(1− pc) (16)

where N represents the number of categories in the semantic
maps, yi and pi represents the groundtruth label index and
the predicted probability of each category respectively, and
yc and pc represents the groundtruth label index and the
corresponding predicted probability of change region in the
binary change map. We ignore the no-change class in the
semantic change labels to maintain the semantic category
consistency between semantic change labels and predicted
masks. To better align the bitemporal SS subtask and BCD
subtask, a semantic consistency loss LSC is proposed in [3]
as

LSC =

{
1− cos(x1, x2), yc = 1
cos(x1, x2), yc = 0

(17)

where x1 and x2 signify the feature vectors of a pixel in X1

and X2 respectively. The total loss L implemented through
this paper is defined as follows:

L = LBCD + 0.5× (LSS1 + LSS2) + LSC (18)

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

To verify the effectiveness of our model, we conduct ex-
periments on two publicly available SCD dataset, including
SECOND [15] and Landsat-SCD [7]. SECOND dataset con-
sists of 2968 pairs of bitemporal images of size 512 × 512,
with resolution ranging from 0.5m to 3.0m, including building,
water, tree, low vegetation, ground and playground. Landsat-
SCD dataset comprises 8468 pairs of bitemporal images of
size 416 × 416, with a consistent resolution of 30m, including
water, farmland, building and desert.

For fair comparison, we keep the same scaling and partition
strategy as previous work [3, 9, 10] throughout the whole ex-
periment. To quantitatively measure the similarity between the
predicted bitemporal semantic change probability maps and
their corresponding labels, we introduce four well-established
indicators, including mIoU and Avg evaluate the overall seg-
mentation performance, as well as SeK and Fscd specifically
focus on the semantic discrimination within changed regions.

B. Implementation Details

Experiments are conducted with PyTorch on two NVIDIA
RTX4090 GPUs. We deploy ResNet-34 as backbone, initialize
our network with Kaiming Initialization [16] and train it for
50 epochs with batch size of 8. SGD with weight decay
of 5e-4 and momentum factor of 0.9 is selected as the
optimizer, with initial learning rate set to 0.07. Common
data augmentation including random flipping and rotation is
carried out during training. Code are publicly available at
https://github.com/STORMTROOPERRR/RSISCD.

C. Comparison and Analysis

We compare our proposed model with other state-of-the-
art methods for performance evaluation. Quantitative results
are listed in Table I and Table II for each dataset, with best
results marked in bold. Statistics show that our proposed

Fig. 3. Qualitative comparisons of the results on SECOND dataset. First two
rows and last two rows contain different bitemporal image pairs, respectively.

model achieve new SOTA results on both dataset, especially on
changed regions across time. For more intuitive demonstration,
we select two pairs of bitemporal images from both datasets
to qualitatively evaluate different models’ performance in Fig.
3 and Fig. 4. Note that for simplicity, we only display the best
six of all competing methods. We further highlight key areas
where different models perform most diversely with red box.
Fig. 3 shows that our model can achieve high intra-category
consistency with strong semantic capture ability. Fig. 4 reveals
our model’s promising capability of modeling changed regions
with various scales and delicate contour. Though being more
decoupled, our proposed BCD branch succeeds in capture
the change context between bitemporal images, while two SS
branches maintain high accuracy in modeling each temporal
phase’s LULC semantics. The local global context aggregation
guides SS encoders to extract representative features, ensuring
the satisfying performance for both SS and BCD subtasks.

Fig. 4. Qualitative comparisons of the results on Landsat dataset. First two
rows and last two rows contain different bitemporal image pairs, respectively.

D. Ablation Study

To quantitatively measure the improvements brought by
each core component of our proposed model, we further
conduct a series of ablation study on two datasets. We define
our base model as the proposed LSAFNet without LGAA
module and LGCE module. To deactivate LGAA module,
we first concatenate two input features and apply a MLP to
perform channel reduction. We replace LGCE module with
identity when needed. Experimental results in Table III suggest

https://github.com/STORMTROOPERRR/RSISCD
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TABLE I
NUMERICAL RESULTS OF DIFFERENT MODELS ON SECOND

Method mIoU(%) Avg(%) SeK(%) Fscd(%)

FC-Siam-conv 68.86 86.92 16.61 56.45
FC-Siam-diff 68.96 86.86 16.50 56.23

HRSCD 71.15 86.62 18.80 58.21
SCDNet 70.95 87.29 19.75 59.77
SSCD-l 72.60 87.19 21.86 61.22

Bi-SRNet 73.38 87.48 22.43 61.62
TED 73.05 87.20 22.37 61.23

SCanNet 73.20 87.46 23.34 62.59
DEFO-MLTSCD 73.76 87.80 23.73 62.73
LSAFNet (Ours) 74.01 87.66 24.32 63.20

that our proposed LGAA module and LGCE module both
have its own contribution to the overall performance of our
proposed LSAFNet. LGAA module is utilized both in SS
encoders and BCD decoder, thus having a major impact on
elevating our proposed model’s capability.

TABLE II
NUMERICAL RESULTS OF DIFFERENT MODELS ON LANDSAT-SCD

Method mIoU(%) Avg(%) SeK(%) Fscd(%)

FC-Siam-conv 79.31 90.79 36.11 76.04
FC-Siam-diff 77.68 88.53 32.75 73.89

HRSCD 78.51 91.47 32.90 73.20
SCDNet 80.14 93.62 40.05 75.17
SSCD-l 79.33 92.36 41.43 75.84

Bi-SRNet 82.19 93.16 40.09 76.01
TED 84.22 93.98 45.60 78.47

SCanNet 85.19 94.07 49.33 80.52
DEFO-MLTSCD 87.49 94.32 49.26 81.39
LSAFNet (Ours) 87.60 94.46 49.94 81.66

TABLE III
ABLATION STUDY ON TWO DATASETS

Method
SECOND Landsat-SCD

mIoU(%) SeK(%) mIoU(%) SeK(%)

Base 73.59 23.37 86.09 48.67
Base + LGAA 73.82 23.90 87.45 49.57
Base + LGCE 73.69 23.69 87.44 49.29

LSAFNet (Ours) 74.01 24.32 87.60 49.94

IV. CONCLUSION

In this letter, to design a multi-task learning based SCD
network in a more disentangled manner, we propose a novel
late-stage bitemporal feature fusion network LSAFNet that
only bridge bitemporal features in decoder stage. To extract
more representative features in dual SS encoders, we proposed
LGAA module to refine feature maps through aggregated
local and global context re-weighting, and further utilize it
to highlight change context across time while suppressing
irrelevant changes. We further propose LGCE module to
enhance the high-level features in SS decoders to boost LULC
semantics modeling. Experiments on two public datasets ver-
ify our model’s effectiveness, and ablation study confirms
each component’s contribution. We will harness our proposed
architecture’s disentanglement strengths to adapt pretrained
foundation models into SCD field in our future work.
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