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Abstract— Infrared small target detection (IRSTD) has been
widely applied and developed in military and civilian fields,
playing a vital role. Despite the extensive research foundation
of traditional manual feature-based methods, they are still
constrained by the inherent problem of infrared small targets
lacking prior features. In recent years, the advancement of deep
learning methods has enriched the research landscape in this
field, yet they are still constrained by the imbalance of positive
and negative samples between the target and the background.
To address these issues, we propose a novel prior guided
dense nested network (PGDN-Net), which ingeniously integrates
traditional manual features with a deep learning network model.
First, three prior features are extracted, including the high-
order Riesz transform feature, the compactness and heterogeneity
feature (CH), and the corner feature of the structure tensor (ST).
Then, these features are input into a dense nested network for
guidance, supported by a two-orientation attention aggregation
module and a channel and spatial attention module. Different
features play their respective guiding roles in different depths of
the network. Through multiple attention mechanisms and feature
fusion operations on the interested target area, the extraction
and preservation of target features can be improved, while
easily removing irrelevant backgrounds. Experiments on public
datasets demonstrate the effectiveness and progressiveness of
our PGDN-Net. Compared with other state-of-the-art methods,
it achieves better performance in background suppression, target
enhancement, probability of detection, and false alarm rate.
In addition, the PGDN-Net model can effectively maintain
and restore the original shape of the target while performing
robust detection, which is beneficial for subsequent fine-grained
recognition tasks.
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I. INTRODUCTION

NFRARED small target detection (IRSTD) is currently

widely used in military early warning [1], search and
tracking [2], guidance and anti-missile [3], remote sensing,
surveillance, and reconnaissance [4], among others. It also
plays an important role in the civilian field [5], such as search
and rescue of maritime personnel, warning of forest fires, and
so on. Due to the long distance of detection, small targets
in infrared images usually occupy a few pixels and exhibit
minimal shape or texture characteristics [6]. Furthermore,
various factors like hardware system errors and disturbances
from atmospheric turbulence lead to a reduced signal-to-noise
ratio (SNR) in the infrared image, potentially causing the
target to be obscured by background clutter. In the early years,
the Society of Photo-Optical Instrumentation Engineers (SPIE)
defined small targets as those with image sizes smaller than
81 pixels (9 x 9) [7]. This type of target typically exhibits
strong central infrared characteristics and radiates attenuation
in all directions [8].

The current challenges faced by IRSTD can be summarized
into the following three points.

1) Lack of prior features of the target: The Ilong
transmission distances result in smaller target sizes, with
a lack of texture and shape features, making traditional
target detection methods unsuitable for detecting such
point targets [9].

High background complexity: The background in

infrared images is complex and varied. In strong
noise or high brightness backgrounds, targets are
easily submerged or disturbed, and sometimes even
become invisible, which poses a great challenge to the
detection performance and multiscene adaptability of the
detectors [10].
Imbalance of positive and negative sample information:
Background information occupies the vast majority of
pixels in infrared images, and the proportion of pixels
for infrared small targets is extremely low. Therefore,
there is an extreme imbalance of information between
the positive and negative samples of the target and
background, which can easily lead to false alarms in
detection [11].

2)

3)
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The field of IRSTD has evolved over several decades,
with experts and scholars consistently proposing and refining
solutions to address the aforementioned challenges, aiming to
improve detection performance. The IRSTD methods can be
divided into two categories [12]: sequence-frame detection
method and single-frame detection method. The sequence-
frame detection method can obtain satisfactory detection
results by extracting inter-frame feature, while existing
methods have richer and more diverse extraction of inter-frame
features. The triple-domain strategy (Tridos) method [13]
extracts infrared target feature learning comprehensively in
spatiotemporal-frequency domains, while a sliced spatio-
temporal network (SSTNet) method [14] explores the
cross-slice spatio-temporal motion modeling for infrared dim-
small targets. However, due to the advantages of low data
demand, high computational efficiency, and strong algorithm
flexibility in single-frame detection technologies, the single-
frame detection method has received much attention in
recent years. By using nonlinear filtering [15], morphological
operations [16], and other techniques to focus on background
information, the infrared background can be predicted, and
small targets can be detected and extracted through difference
calculation. There are also many methods from the perspective
of the human visual system (HVS) that enhance the local
salient features of the target based on measures such
as contrast measurement [17], saliency enhancement [18],
and image information entropy [19], while suppressing the
interference from clutter and noise in the background to
achieve robust IRSTD. In addition, some methods utilize
the structural information of images and transform the
detection task into an optimization problem of matrix
decomposition [20], [21]. On the one hand, it can restore the
low-rank background matrix, and on the other hand, it can
also restore the sparse target matrix, ultimately achieving the
separation of both matrices and facilitating target detection.
These methods are all traditional model-driven methods,
and although they have lower computational complexity,
most of them rely heavily on manual feature settings.
In recent years, data-driven deep learning methods have
been widely applied in the field of image processing owing
to the powerful feature extraction ability of convolutional
neural networks. Several studies on IRSTD, based on Nash
equilibrium [22], [23], task transformation [24], [25], attention
and semantic features [26], [27], multiscale information [28],
[29], dense nested structures [30], [31], and multisupervision
mechanisms [32], [33], have achieved satisfactory results.
However, the problem of imbalanced positive and negative
sample information in infrared images remains a significant
challenge for deep learning methods. The loss of target
features in deep networks and the false detection of interfering
elements in the background significantly degrade detection
performance.

To address the current challenges in IRSTD and alleviate
the shortcomings of traditional and deep learning methods,
we propose a prior guided dense nested network (PGDN-Net)
model, which combines traditional prior feature information
with a deep learning model to achieve robust and accurate
IRSTD. Fig. 1 shows the comparison of the different
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Fig. 1. Scheme comparison diagram of the traditional model-driven method,
the data-driven deep learning method, and the proposed method for IRSTD.

typical methods and the proposed method. On the one hand,
traditional prior features can guide the focus of the network,
effectively preserving target feature information within deep
networks. On the other hand, dense nested network structures
can achieve feature extraction of targets at multiple scales,
enabling progressive feature interaction and enhancement. The
proposed PGDN-Net model can combine the advantages of
traditional and deep learning methods to improve detection
performance. Specifically, we introduce the high-order Riesz
transform features, compactness and heterogeneity features
(CHs), and corner features of the structure tensor (ST) of
the target into a dense nested network, and combine two-
orientation attention aggregation module and channel and
spatial hybrid attention module to complete feature extraction
and segmentation detection of the target.

In this article, we propose a novel PGDN-Net to achieve
IRSTD. The main contributions of the proposed method can
be summarized as follows.

1) To explore the potential features of infrared small
targets, we propose a method for extracting high-
order Riesz features (HRs). This method is based on
the Riesz transform theory and effectively extracts the
target’s local feature information using corresponding
convolutional templates.

To address the challenges of limited prior features, high
background complexity, and imbalanced positive and
negative samples, we propose the PGDN-Net, which
combines traditional and deep learning methods and
guides the dense nested network using prior features.
This method has demonstrated superior performance in
various indicators.

To effectively integrate manually extracted features
with the deep learning network, multiple attention
mechanisms are introduced to preserve and focus on the
features of the target area at each layer of the PGDN-
Net. This approach ensures that the output not only
detects the target but also accurately reflects its original
shape.

The remainder of this article is organized as follows.
Section II gives a brief review of related work on IRSTD
methods. In Section III, we introduce the architecture of our
PGDN-Net model. In Section IV, we conduct experiments
on comparison with state-of-the-art methods, as well as
experiments on the ablation of our method. At last, the
conclusion of this article is presented in Section V.

2)

3)
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II. RELATED WORK

Based on the feature information used in IRSTD, the
detection method can be classified into four categories:
1) background feature-based method; 2) target feature-based
method; 3) low-rank and sparse matrix decomposition-based
method; and 4) deep learning-based methods. This section
provides a concise overview of the relevant research on these
four types of detection methods.

A. Background Feature-Based Method

Background feature-based methods primarily utilize the
continuity and similarity features of the background as
the main basis for the design of the detection method.
These methods typically begin by filtering or smoothing out
target information unrelated to the background to predict
the background information. Then, they use the difference
operation between the original image and the predicted
background image to achieve rough detection of infrared
small targets. Subsequently, threshold suppression is used to
suppress the background of the infrared image, achieving the
purpose of detecting and extracting targets. Representative
techniques include Max Mean and Max Median nonlinear
filtering [15], 2-D least-mean-square (TDLMS) filtering [34],
Top Hat morphological filtering [16], bilateral filtering [35],
etc. While these methods perform well in flat backgrounds,
they exhibit poor robustness in complex backgrounds and
are highly susceptible to strong edges and noise interference,
resulting in false alarms and missed detections.

B. Target Feature-Based Method

Target feature-based methods primarily utilize the local
saliency features of the target as the prior information for
detection. Although this prior information is relatively scarce,
potential feature information can still be mined based on
this prior knowledge to enhance the target’s saliency while
suppressing background clutter and noise. After the classic
local contrast measurement (LCM) method [17] was first
proposed, a large number of optimized and variant versions
have been derived, such as improved LCM (ILCM) [7], relative
LCM (RLCM) [36], tri-layer LCM (TLLCM) [37], and local
energy factor (LEF) [38]. The saliency filtering enhancement
strategy uses the pixel value distribution characteristics of
infrared small targets with high brightness at the center and
attenuated radiation in all directions. By considering pixel
intensity and gradient within the target area, local window
filters have been designed to enhance the target and suppress
the background, including methods like fast saliency [18],
novel local contrast descriptor (NLCD) [39], fast adaptive
masking and scaling with iterative segmentation (FAMSIS)
[40], and variance difference (VARD) [41]. The grayscale
difference between small target areas and their surrounding
background areas in infrared images makes image entropy
an effective information for IRSTD, such as multiscale local
gray dynamic range (MLGDR) [42], derivative entropy-based
contrast measure (DECM) [43], and multidirectional local
difference measure weighted by entropy (MDLDE) [19].
In this type of method, effective detectors can be designed
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based on the local salient features of the target, leading to good
generalization ability. However, due to limited prior feature
information of the target, some false alarms may be detected
in the background.

C. Low-Rank and Sparse Matrix Decomposition-Based
Method

The method based on low-rank and sparse matrix
decomposition transforms the detection task into an opti-
mization problem involving the decomposition of a low-rank
background matrix and a sparse target matrix. Based on
constraints on background components, various effective
strategies have emerged, such as infrared patch-image (IPI)
model [20], non-negative infrared patch-image model based
on partial sum minimization of singular values (NIPPS) [44],
non-convex rank approximation minimization (NRAM) [45],
and the edge and corner awareness-based spatial-temporal
tensor (ECA-STT) [46]. Similarly, constraints on the target
component have also been introduced into some innovative
methods, such as low-rank and sparse representation (LRSR)
[47], reweighted infrared patch-tensor model (RIPT) [21],
tensor creation, and Tucker decomposition (TCTD) [48].
While this method effectively decomposes the background
and target autonomously, it sometimes inaccurately categorizes
background clutter and corners as sparse target components.
In addition, the construction of tensor blocks and the iterative
optimization of matrix decomposition decreases computational
efficiency, leading to longer execution periods and hindering
the achievement of real-time demands.

D. Deep Learning-Based Method

Data-driven deep learning methods place significant
demands on the quantity, quality, and richness of the datasets.
However, IRSTD datasets are limited, with the amount
and variety of publicly available samples far inferior to
those of other image types. Despite these challenges, deep
learning methods have achieved remarkable progress in the
field of IRSTD, leveraging their formidable capabilities in
automatic feature extraction and representation. To tackle the
Nash equilibrium problem between false alarms and missed
alarms in detection tasks, two models have emerged: miss
detection versus false alarm (MDFA) model [22] based on
conditional GAN and the PixelGame model [23] based on
fully dilated convolution network (FDCN) [49]. Both models
have devised distinct adversarial strategies to optimize the
equilibrium issue. Given the extremely low pixel ratio of
infrared small targets and the potential issue of target loss
in the network model after multiple layers of convolution,
some methods have approached the problem by treating the
target as noise, thereby converting the detection task into
a denoising task, such as denoising autoencoder network
(DAE) [24], dilated residual U-Net (DRUNet) [25], and
mask-aware dynamic filtering (MADF) [50]. Some network
models, such as asymmetric contextual modulation (ACM)
[51], attentional local contrast network (ALCNet) [28], and
enhanced asymmetric attention U-Net (EAAU-Net) [29],
further emphasize the attention to the target area by combining
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semantic features with contextual information. Furthermore,
to address uncertainty in target sizes, multiscale feature
analysis and fusion methods have been introduced. Models
like infrared small-target detection U-Net (ISTDU-Net) [32],
multiscale local contrast learning network (MLCL-Net)
[11], and one-stage cascade refinement network (OSCAR)
[33] have all employed multiscale feature extraction and
propagation to improve the detection robustness. Dense nested
networks [30], [31], [52] are similar to multiscale feature
methods, which utilize a progressive feature interaction and
fusion strategy to effectively integrate low-level detailed
features with high-level semantic features. This approach is
one of the effective methods for IRSTD. Nowadays, with the
deepening exploration of deep learning, remote sensing image
captioning [53], [54] is constantly developing. In the field
of target detection, incorporating object counts into remote
sensing image captioning [55] is beneficial for improving
the intuitiveness of detection results and is one of the
future development directions. Deep learning methods heavily
depend on the quantity and diversity of training datasets, which
remains a significant limitation in the field. Additionally, the
lack of shape features and prominent textures in infrared small
targets poses difficulties in feature learning and extraction,
which may sometimes hinder their practical application in
engineering.

III. PRIOR GUIDED DENSE NESTED NETWORK
A. Overall Architecture

The overall architecture of the PGDN-Net model is shown in
Fig. 2. It consists of a prior feature extraction module, a dense
nested network module, a feature pyramid fusion module, and

a target prediction module.
1) The prior feature extraction module extracts three

different traditional handcrafted features, including the
HR, the CH, and the corner feature of the ST.

2) The dense nested network module is composed of
multiple U-shape sub-networks stacked on top of each
other. Multiple nodes are applied on the path between the
sub-networks, which consist of encoders and decoders,
to receive feature information from the current layer and
the adjacent upper and lower layers.

The feature pyramid fusion module is used to aggregate
multilayer features at different depths within the
network. It upsamples the multilayer features to a unified
size, and then fuses the shallow-layer features rich in
spatial and contour information with the deep-layer
features rich in semantic information to obtain a hybrid
feature map.

The target prediction module inputs mixed feature maps
into a 1 x 1 convolutional kernel module to achieve
feature extraction and information exchange across
different channels, ultimately achieving the detection of
infrared small targets.

3)

4)

B. Prior Feature Extraction

The dense nested network structure was initially designed
to accommodate targets of different scales. The feature fusion
process between the upper, lower, and current layers is
primarily implemented to avoid the loss of small infrared
targets in the deeper layers. However, due to the small size and
limited features of the targets, there is an extreme imbalance
in the data volume compared to the background information.
The target in the network is easily affected by background
clutter, which makes feature extraction difficult and leads to
bias in the learning of the network model. Introducing prior
features aims to guide the dense nested network in learning,
extracting, and retaining feature information of the target area
more accurately. In this method, three main types of target
prior features are extracted, such as the HR, the CH of the
target, and the corner feature of the ST.
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Fig. 3. From left to right: constant signal with intrinsic dimension O,
linear signal with intrinsic dimension 1, and other signal with intrinsic
dimension 2.

1) High-Order Riesz Feature: Two-dimensional image
signals can be divided according to different intrinsic
dimensions to express the number of degrees of freedom
required to describe the local structure [56]. The intrinsic
dimension of a constant signal that remains constant is 0, the
intrinsic dimension of lines and edges is 1, and the intrinsic
dimension of other patterns is 2, as shown in Fig. 3 [56]. The
features of the local signal with intrinsic dimension 2 have
geometric and structural information, which determines the
quality of the interpretation of the image and the analysis of
the processing.

The Riesz transform is a complex transformation commonly
used to analyze the phase and amplitude of the 2-D signal.
It is a natural multidimensional extension of the Hilbert
transform [57] and can obtain orthogonal pairs R; and
R, of non-directional images, which is 90° phase-shifted with
respect to the predominant orientation at each point in the
original image [58]. Under 2-D condition, the frequency-
domain representation of the Riesz transform is as follows:

T
wi . W3
J,—J) Ir (1)

Iwl Iwll

(Ri(W), Ra(w))" = <—

where w = [w;, wy] is a 2-D vector, Iy is the Fourier
transform of image [, and R;, R, represent the two
components of the Riesz transform, respectively. The product
in the frequency domain corresponds to the convolution
operation in the spatial domain, so the 2-D Riesz transform in
the spatial domain can be expressed as

T
X .y
(R1(x), Ry(x))" = <—J s = ) xI (2
[[6.9] Il
where x = [x,y], and “x” represents the convolution
operation.

The first-order Riesz transform is used to extract the
local linear features of the image [59], but it cannot fully
characterize its features. Therefore, the second-order Riesz
transform is utilized to extract the intrinsic 2-D structure
of local regions in the image to provide a more detailed
expression of the image features in this method. The second-
order Riesz transform is obtained by performing the Riesz
transform again based on the results of the first-order Riesz
transform

Rii = Ri{Ri(I)}
Rz = Ry{R:(I)} 3)
Ry = Ry{R>(I)}.
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Fig. 4. Ry, result of high-order Riesz transform for infrared small target.
The target regions are marked with red boxes.
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Fig. 5. Schematic of target region and feature extraction operator for
high-order Riesz transform.

The second-order Riesz transform further emphasizes the
features of the edge and the line through R;; and Ry,
while using Rj, to characterize the feature information of the
intersection area of edges and lines. This is because Rj; of the
second-order Riesz transform is used for feature extraction
on both the x- and y-axes, which can effectively perceive
prominent point signals in multiple directions in the image,
perfectly matching the features of infrared small target areas.
Therefore, the target area in Rj, exhibits significant features
of local symmetry, as shown in Fig. 4.

A simple detection operator Fygr is designed to extract
locally symmetric salient target regions in R;,, and generate
prior information about the high-order Riesz transform
features HR. The grid-shaped symmetric detection operator
Fyr is constructed by a 2-D Gaussian function. Its shape
structure and intensity distribution are similar to the target area
in Ry, both symmetrical about the diagonal axis, as shown
in Fig. 5. The detection operator Fyr is used to enhance
the saliency of the target area, providing effective prior
feature information HR. Subsequently, the two-orientation
attention aggregation module is used to characterize the shape
information of the target, guiding the subsequent training
and learning of the network model to achieve precise target
detection.

2) Compactness and Heterogeneity Feature: The com-
pactness feature is reflected in the similarity and high
intensity of the pixel values within the target area, while the
heterogeneity feature is manifested in the significant difference
in pixel intensity between the target and its surrounding
background [39]. In this method, these two types of potential
features are introduced into the network to guide the model
to learn the features of the potential target regions while
preserving the target features in deep layers.

Specifically, we use a three-layer detection window
designed in our previous IRSTD research work [60], consisting
of an inner layer L;, a middle layer L,,, and an outer layer L,.
These three layers correspond to the center area of the target,
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the transition area between the target and the surrounding
background, and the surrounding background area of the
target, as shown in Fig. 6.

Here, the average pixel value (P;) of the inner layer L;
and the maximum pixel value (IA’(,) of the outer layer L,
are calculated separately. Based on the prior characteristics
of compactness and heterogeneity, the binary CHs can be
obtained, which is the potential region of the target

I, Pi(x,y) > Py(x,y)
0’ ﬁi(an)<Po(xa)’)

where (x,y) represents the pixel coordinates of the center
point of the three-layer local detection window.

The characteristics of compactness and heterogeneity
provide important reference information to guide the model
in subsequent target extraction.

3) Corner Feature of the ST: The ST of the image
can effectively estimate the local structure information [21],
providing a rational basis for distinguishing the flat, edge,
and corner areas. Small targets in the infrared image exhibit
significant geometric properties in the corners. The ST is
defined as follows:

Ja(vﬂt) = Gy * (V,U«r ® V,U«r)
[ Gyx P Gy,
T\ Gu*x LI, Gy*l7?

where u, represents Gaussian smoothed image w© with
variance T > 0, G, indicates a Gaussian function with
standard deviation o, ® represents the Kronecker product,
V represents the gradient, /. and I, represent the gradient
of p, along the x- and y-axes, respectively. J, is a
symmetric positive semi-definite matrix, therefore there are
two orthogonal eigenvectors and corresponding eigenvalues \;
and A\,. We define \; as the larger of the two eigenvalues.
Corresponding to the image, each pixel has two feature values
A1 and ). By comparing their relationships, the local structure
information of the image can be reflected as follows.

1) The flat area: \; = Xy =~ 0.

2) The edge area: A\ > My =~ 0.

3) The corner area: A\ > X\ > 0.

In this method, the corner feature of the ST ST in
infrared image is derived based on the corner strength
function [61], [62]

CH(x, y) = { 4)

®)

AL A2

ST= ———-
AL+

Ar (6)
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The corner feature prior information ST is input to various
shallow nodes in the network through the channel and spatial
hybrid attention module to emphasize the importance of the
target area and suppress the simple background.

C. Dense Nested Network Structure

The dense nested network forms the main structure of the
PGDN-Net model, which is composed of multiple subnets of
U-Net stacked together. By adding multiple nodes along the
path composed of the encoder and decoder, a dense nested
structure is constructed, as illustrated in Fig. 7. The progressive
feature interaction strategy in the dense nested structure allows
each node in the intermediate layers of the network to receive
feature maps from both the current depths and adjacent
depths, effectively overcoming the limitations of vanilla
U-Net where feature information is transmitted only within
the same network depth. This enables the network to adapt
to targets of different sizes. Moreover, feature information
can also be transmitted between non-neighboring nodes of the
same network depth to preserve the target’s feature information
as much as possible and prevent the loss of target features.

Specifically, the number of layers in a dense nested network
is defined as i (i = 0,1,2,...), and the number of nodes in
each layer is defined as j (j =0, 1,2,...). L; ; represents the
output feature map of the jth node in the ith layer. The input
of each initial node (i.e., j = 0) is only the downsampling
feature map of the previous initial node, where L; g is

Lio = Pmax[C(Li—10)], i>0 (7
where Ppa[-] represents the max pooling operation and C[-]
represents the cascaded convolution operation.

The input to the nodes in the intermediate layers of the dense
nested network consists of feature maps from three different
depth levels. Considering the existence of non-neighboring
skip connections at the same depth, the calculation formula
for intermediate layer node L; ; is as follows:

Li; = {C[(Li,k)],{;g, Panax [C(Li1})]. U[c(L,-H,,_l)}}

®)

where i > 1, j > 0, U[] represents the upsampling
operation, and C [(L,-,k)]i;é represents the convolution result
of connecting the feature maps of all nodes before the node
in the current layer.
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Fig. 8. Schematic of two-orientation attention aggregation module.
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D. Attention Mechanism

1) Two-Orientation Attention Aggregation Module: The
two-orientation attention aggregation module is used to
refine the high-order Riesz transform features HR at various
scales. Here, the high-order Riesz transform feature HR
corresponding to the size of the ith layer is defined as HR;, and
the output result of the two-orientation attention aggregation
module is TOAA;. As shown in Fig. 8, the two-orientation
attention aggregation module consists of two parallel attention
modules, each of which generates attention feature maps along
one direction (column or row) to extract information about
the target in two directions in the high-order Riesz transform
features. Finally, summarize the attention feature maps into
the output of the entire module.

The output of the two-orientation attention aggregation
module can be expressed as

TOAA(HR;) = Fy{F.[F,(HR;)]}HR;
+ Fi{F:[F,(HR)}HR; + HR;  (9)

where F; denotes the sigmoid function, Fj is a bottleneck
architecture to restrict high-frequency noise in images, F;,
and F, represent the deformable convolution in the row and
column directions, respectively.

The two-orientation attention aggregation module promotes
the PGDN-Net model to extract shape information of
significant regions of high-order Riesz prior features of the
target from two directions. It inserts the integrated output
into the initial nodes of each layer to guide the network in
preserving target features and extracting target shapes.

2) Channel and Spatial Attention Module: As shown in
Fig. 9, the channel and spatial attention module is composed of
two cascaded units of channel attention and spatial attention,
which are connected in series to adaptively enhance the region
of interest in the image.

a) Channel attention module: Channel attention focuses
more on “what useful information is” in the image. Therefore,
each channel of the feature map is used as a feature detector.
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As shown in Fig. 10, the module first compresses the
spatial dimension of the input feature map, aggregates spatial
information through max pooling and average pooling, and
then uses a shared network to learn the feature information on
the channel dimension, assigning different weight information
to each channel. Finally, the two feature vectors produced by
the shared network are merged, and the weight matrix of the
channel dimension, namely, the channel attention information,
is obtained through activation function mapping processing.

The channel attention operation can be represented by the
following formula:

M (F) = Fs{MLP[Prax(F)] + MLP[ Py (F)]} (10)

where M, denotes the weight matrix of channel attention, F is
the input feature information to the channel attention module,
MLP represents the shared multilayer perceptron, P, and
P,y represent the max-pooling and average-pooling operation,
respectively.

b) Spatial attention module: Spatial attention focuses on
“where the effective information is” in the image, and it works
in conjunction with channel attention to achieve functional
complementarity. As shown in Fig. 11, the module first
compresses the number of channels, performs max-pooling
and average-pooling operations in the channel dimension, and
then connects to obtain a feature map with two channels.
Following convolution, the spatial attention feature is derived
by applying an activation function.

The spatial attention operation can be represented by the
following formula:

MS(F) = FS{COHV[Pmax(F); Pavg(F)]} (11)

where Mg denotes the weight matrix of spatial attention and
Conv is the convolution operation.

E. Prior Feature Guidance

In the proposed PGDN-Net model, three traditional manual
features are extracted: high-order Riesz transform features,
CHs, and corner features derived from ST of the target.
As shown in Fig. 12, these three types of prior targets act at
different depths of the network, thus exerting different guiding
functions.

First, the corner features of the ST are input into the bottom
layer of the network for simple background filtering and
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Fig. 12.  Schematic of three prior feature guidance strategies. The blue area
represents the guidance section of the corner feature of the ST, the green area
represents the guidance section of the HR, and the red area represents the
guidance section of the compact and heterogeneity feature CH.
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elimination, in order to focus on the strong corner regions
in the image and avoid information in the continuous flat
irrelevant regions. Second, the HR is inputted in the initial
nodes of each layer in the network to enhance the feature
strength of the target in each layer. Under the action of the
two-orientation attention aggregation module, the extraction of
target shape information can be achieved. Finally, the compact
and heterogeneity features CH are inputted into the top level
of the network to preserve the deep target features. Due to
the fact that compactness and heterogeneity are the most
fundamental features of the target, any possible target area
can be effectively preserved, thereby avoiding the occurrence
of missed alarms.

F. Loss Function

In the proposed PGDN-Net model, we use the binary
cross-entropy loss (BCELoss) function for network parameter
optimization. BCELoss is commonly used for loss calculation
in binary classification problems. In this method, the introduc-
tion of BCELoss can effectively evaluate the performance of
IRSTD models in predicting targets. The calculation formula
for BCELoss is as follows:

Losspcg (Pre,GT) = —[Pre - log(GT) + (1 — Pre)

-log(1 — GT)] (12)

where Pre and GT represent the predicted result of the network
and the ground truth of the training sample, respectively, and
“.” indicates the multiplication.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To analyze the detection performance of the PGDN-Net
model, we utilize some commonly objective evaluation metrics
and compare them with other effective methods through rich
experiments. Initially, we present the utilized public datasets,
followed by an in-depth explanation of the definitions and
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Fig.

Examples of dataset image. The first line is the images from
NUDT SIRST for training. The second and third lines are the images from the
single-frame and sequence-frame datasets for testing. The targets are marked
with a red box.

p

computational methods for the objective evaluation metrics
employed. Then, the implementation details of the experiments
are listed, and qualitative and quantitative experiments with
other state-of-the-art methods are conducted. Finally, the
ablation experiment is conducted on the PGDN-Net model to
verify the effectiveness and functionality of each module.

A. Dataset

In this article, we train various deep learning models
on the NUDT-SIRST dataset [31], which recognizes the
background through a scene-aware model and adds appropriate
and reasonable targets. The background includes clouds, cities,
oceans, fields, and strong light. The target sizes and clutter
types are diverse, and the targets have rich situations and high-
precision ground truth. The test data consists of an infrared
single-frame dataset [51] and six groups of sequence-frame
datasets [63], [64], [65]. Fig. 13 shows some examples of
training data and test data, with targets marked in red boxes.

B. Evaluation Metrics

Despite the multitude of objective metrics for evaluating
IRSTD methods, they can generally be categorized into several
aspects, including but not limited to: the effect of background
suppression, the effect of target enhancement, and detection
performance (such as detection rate and false alarm rate).

In this article, we use background suppression factor (BSF)
and contrast gain (CG) to evaluate the ability of background
suppression and target enhancement, respectively. We also
introduce the receiver operating characteristic (ROC) curve,
the area under the ROC curve (AUC), and the intersection
over union (IoU) to analyze the overall detection performance
of the IRSTD methods.

BSF is calculated in the following manner [46]:

Oin

BSF =

(13)
Oout

where o represents the gray standard deviations of the whole
background in the image, and “in” and “out” indicate the input
image and the predicted result, respectively. The background
suppression ability is directly proportional to the value of BSE.

There are two calculation approaches for CG [39], [66],
which are used to reflect the enhancement effect of detection
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methods on the overall target and the center point of the target

7 -]
CG — _Oul
’ |f_b|in
7 =Dl
CGC - ﬁ (14)

where 7 and 7 indicate the average and maximum pixel value
of the target region, respectively. b is the average pixel value
of the background area surrounding the target. |-| is the symbol
for solving absolute values. An increased CG value leads to
an improved target enhancement effect.

The ROC curve is one of the effective statistical analysis
tools used in IRSTD to evaluate the performance of binary
classification models between the target and the background.
The ROC curve presents the relationship between the detection
probability P; and the false alarm rate F, in an intuitive
graphical form, reflecting the performance of the IRSTD
model. They are defined as follows [67]:

(15)
(16)

Py =ng/na
Fo = py/pan

where n; and ny represent the number of detected true
targets and all true targets, respectively. Similarly, p; and p.y
represent the number of detected false pixels and all pixels in
the image, respectively.

AUC is defined as the area under the ROC curve, typically
ranging between 0.5 and 1. The AUC index further reports the
classifier with better performance based on the ROC curve.
The classifier with a larger AUC value performs better. The
method of calculating AUC is to sum the areas of each part
under the ROC curve. And IoU is used to calculate the
intersection-to-union ratio between the predicted results and
the ground truth labels, enabling a more nuanced assessment of
a model’s capability to differentiate targets from backgrounds
and to detect targets of varying sizes.

C. Implementation Details

All the deep learning models are implemented in Python
3.9.7 and PyTorch 2.0.1 on a computer with an Intel Xeon
6252 @ 2.10 GHz CPU and an Nvidia A100 GPU. The other
traditional methods are implemented in MATLAB 2019b on an
Intel Core i5-9400 at 2.90 GHz CPU. The number of dense
nested downsampling layers in the PGDN-Net model is set
to 4, and ResNet’s U-Net paradigm is used as the segmentation
backbone. The network model is trained using the Adagrad
optimizer with a learning rate of 0.05, a batch size of 10, and
500 iterations. This method uses the BCE loss function for
training.

D. Comparison to the State-of-the-Art Methods

To verify the superiority of our PGDN-Net model,
we conduct quantitative and qualitative experiments with
several typical state-of-the-art methods on single-frame and
sequential-frame datasets. The compared methods comprehen-
sively cover the four main types of IRSTD algorithms cur-
rently available, including background feature-based methods
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like TopHat [16], target feature-based methods like NLCD [39]
and LEF [38], low-rank and sparse matrix decomposition-
based methods like PSTNN [62] and NTFRA [63], as well as
deep learning-based methods like MDFA [22], ISTDU [32],
DNANet [31], HCFNet [68], and SCTNet [69]. All of
the above methods use the public code provided and the
reproduced code, and carry out relevant experiments according
to the default parameter settings in the original paper.

1) Qualitative Analysis: Fig. 14 shows some example
results achieved by different methods based on a single-frame
dataset. These example images contain various complex detec-
tion scenarios, such as strong light interference, multitarget
coexistence, complex background clutter, and target tailing.

In Imagel, the strong background interference greatly
reduces the saliency of the target, leading to the failure of
LEF, ISTDU, and HCFnet. Meanwhile, the rapidly changing
background signal causes confusion in NTFRA, resulting in
a large number of background false alarms in the result.
In Image2, there are two targets with similar sizes but
different intensities. NLCD, LEF, ISTDU, and HCFnet cannot
fully detect all targets, resulting in poor detection robustness.
In addition, it also indicates that these methods have poor
enhancement effects on weak targets and can only enhance
the more significant targets. There are many easily confused
pseudo target points in Image3, leading to a large number
of false alarms in TopHat, LEF, and MDFA. There is also
a problem of inconsistent enhancement effects on targets
of different intensities. In Image4, there is obvious trailing
interference on the right side of the target, which causes
some methods to fail to recognize the target or mistakenly
detect the trailing area as the target. The proposed PGDN-
Net model can effectively cope with the complex detection
scenarios mentioned above, with strong resistance to strong
light interference, and can achieve high detection rates while
preserving and restoring the true shape of the target as much
as possible, which is beneficial for practical detection tasks.

Fig. 15, respectively, shows the results achieved by different
methods based on sequential-frame datasets. It indicates that
the proposed PGDN-Net model can accurately capture the
target, and with the guidance of prior feature information and
the role of the attention mechanism, the extracted target is
more in line with the true form and feature distribution of the
target. For example, in Seq.1, the target is an aircraft flying
from left to right with a narrow tail on the left side. The output
of our PGDN-Net displays an approximately trapezoidal target
with a narrow left side and a wider right side, which is similar
to the actual shape feature of the target. Similarly, in Seq.3
and Seq.4, the targets have certain shape features rather than
a simple dot. Our PGDN-Net model can output the results
that fit the actual shape and size of the target. TopHat and
NLCD have poor enhancement effects on weak targets, and
the target detection results are incomplete. In addition, NLCD
is prone to the influence of high-brightness noise points in
the background, leading to an increase in false alarms. The
background suppression ability of LEF is poor, especially in
low SNR scenarios such as Seq.4 to Seq.6, and this method has
a significant bias in determining target size. PSTNN has a good
inhibitory effect on the background. NTFRA is easily affected
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Fig. 14. Examples of the original image and the corresponding results by each method for the single-frame dataset. The red box indicates that the real target

is detected, the green box indicates that the real target is lost, and the yellow

bottom-left corner of each subplot shows a close-up display of the target area.

circle marks the clutter and false target points present in the background. The

d----------

e
|

Fig. 15.

Examples of the original image and the corresponding results by each method for six groups sequence-frame datasets. The red box indicates that

the real target is detected, the green box indicates that the real target is lost, the blue box indicates that the detected target is incomplete, and the yellow circle
marks the clutter and false target points present in the background. The bottom-left corner of each subplot shows a close-up display of the target area.

by strong edge signal and clutter in the background, resulting
in a large number of false alarms, such as Seq.2 and Seq.3.
MDFA and ISTDU have excellent performance on salient
targets, but their enhancement effects on weak targets are poor,
sometimes even lost them, resulting in a decrease in detection
rate. DNANet has good performance, but its perception ability
for target edge detail is poor, resulting in jagged target edges
or misidentification of the background, such as Seq.3 and
Seq.6. Since the model lacks prior information on features,
it struggles to precisely distinguish between the target edge
and the adjacent background region. Although HCFNet and
SCTNet can capture the target, their inhibitory effect on the
background is average. In contrast, our PGDN-Net model has
an outstanding detection performance, good generalization in
various scenarios, and higher detection robustness.

2) Quantitative Analysis: We quantitatively evaluate the
detection performance of our PGDN-Net model and other
compared methods on multiple datasets using the metrics
mentioned earlier.

First, we calculated the performance metrics of various
methods on the single-frame dataset. Table I lists the average
BSF, CG, AUC, and IoU of the methods on the single-frame
dataset, and Fig. 16 shows the ROC curves of the methods
on the single-frame dataset. As can be seen, the PGDN-Net
model has outstanding comprehensive detection performance
in the single-frame dataset, with strong generalization ability.
Thanks to the guidance of prior features of the target, the
model can more effectively extract target features and enhance
them. Concurrently, under the action of the attention module,
the network can more accurately focus on the interested target
area, suppress irrelevant background signals, and ultimately
achieve outstanding comprehensive indicators.

Next, we quantitatively evaluate the detection performance
of each method on six groups of sequence-frame datasets.
Table I lists the average BSF, CG, AUC, and IoU of the
methods on the sequence-frame dataset, and Fig. 16 shows
the results of the ROC curve of the methods on the sequence-
frame dataset.
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TABLE I

AVERAGE BSF, CG, AUC, AND IoU OBTAINED ON THE SINGLE-FRAME DATASET AND SEQUENTIAL-FRAMES THROUGH DIFFERENT METHODS.
THE FIRST TWO BEST RESULTS ARE REPRESENTED IN BOLD AND UNDERLINED, RESPECTIVELY
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Dataset Metrics  TopHat NLCD LEF PSTNN NTFRA MDFA ISTDU DNANet HCFNet SCTNet  Proposed
BSF Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
CG, 2.9657 2.0595 3.0820 2.3320 2.6940 4.4438 4.6387 4.7660 4.4545 4.1043 4.8489
Single CG. 3.5703 3.4234 2.2739 2.9669 2.8439 3.0695 3.6206 4.0531 3.6705 3.3098 4.0773
AUC 0.8552 0.7027 0.7952 0.6812 0.7288 0.9551 0.9949 0.9750 0.9417 0.9806 0.9927
ToU 0.4248 0.2694 0.2671 0.3697 0.2744 0.5331 0.7266 0.7006 0.6646 0.6151 0.7059
BSF  66.4624 109.939 —_— 55.455 2.8577 41.5505 40.5359 50.4214 51.0605 48.5757  37.0280
CG, 0.8687 0.8055 o 1.9210 2.0718 0.0009 2.0385 2.1735 2.1797 2.1119 2.0521
Seq.1 CG. 1.3827 1.4760 — 1.8686 1.8703 0.0007 1.6810 1.9769 1.9690 1.8092 1.8807
AUC 0.6985 0.6234 e 0.7807 0.8632 0.5029 1.0000 0.9999 0.9970 1.0000 1.0000
IoU 0.0113 0.0210 e 0.2657 0.0072 0.0000 0.7412 0.4379 0.5333 0.5369 0.5447
BSF 228628 102.1924 2.4220 9.3379 2.3198 6.0345 29.5026 Inf 3537.7742  37.6209 Inf
CG, 1.3842 1.7539 5.7978 1.3517 1.2680 4.8347 2.1905 2.2066 1.8763 3.6400 2.4051
Seq.2 CG. 1.5539 1.4642 1.5248 1.5547 1.5543 1.5546 1.5516 1.5512 1.4384 1.5215 1.5518
AUC 0.9837 0.9140 0.9981 0.8007 0.7827 0.9999 0.9949 0.9689 0.9950 1.0000 1.0000
ToU 0.5496 0.3643 0.0326 0.1863 0.0040 0.2165 0.4001 0.7953 0.5540 0.5722 0.8440
BSF  20.2974 Inf Inf Inf 1.2720 94.5509 417.3249  271.4807  978.4830 Inf 264.0487
CG, 1.2944 1.4915 3.4086  2.7304 3.1571 3.0898 3.3648 3.2945 3.1786 3.2367 34111
Seq.3 CG. 2.3009 2.4523 2.5206 2.5225 2.5065 2.3883 2.4913 2.6086 2.5917 2.4837 2.6024
AUC 0.6921 0.6192 0.9538 0.7373 0.8888 0.9718 0.9915 0.9694 0.9663 0.9925 0.9896
IoU 0.0831 0.0753 0.7326 0.3964 0.0837 0.6309 0.8348 0.7222 0.6728 0.6930 0.8390
BSF 1.8916 6.9962 0.1709 3.9527 2.4130 2.9762 1.0888 2.1456 2.1284 0.4849 2.0054
CG, 0.3675 0.1790 4.7120 1.0364 2.9545 0.2183 3.3971 4.5003 3.3872 0.9927 4.1343
Seq.4 CG. 0.3323 0.5774 1.8563  2.0740  2.0555 0.2765 1.8658 2.0438 2.2172 0.4876 1.9978
AUC 0.5421 0.5625 0.8850 0.6640 0.7947 0.5591 0.9549 0.9850 0.8836 0.9940 0.9989
ToU 0.0134 0.0255 0.0545 0.2711 0.5645 0.0030 0.4410 0.6426 0.3699 0.3278 0.7055
BSF  28.9230 74.5219 43014 Inf Inf 1218.8020  926.1254 Inf Inf Inf Inf
CG, 7.7758 6.2637 13.6871  7.2673 4.6038 9.9574 11.7116 11.9295 10.5487 5.5790 11.9654
Seq.5 CG. 9.3278 9.3286 9.2640 9.3288 9.3264 7.7938 8.9515 9.4816 10.5487 5.5699 9.7214
AUC 0.9717 0.8324 0.9922 0.7214 0.6390 0.9999 1.0000 0.9806 0.9534 0.9523 1.0000
IoU 0.4016 0.4313 0.1382 0.4994 0.2701 0.4502 0.5895 0.6605 0.5818 0.5098 0.7214
BSF  27.6528 7409.4240 Inf Inf Inf 45.6079 Inf Inf Inf Inf Inf
CG, 1.7673 1.8860 4.7348 0.7184 0.7077 4.4590 1.0445 2.4431 2.6445 3.4452 3.6552
Seq.6 CG. 22324 2.2359 2.2505 2.0995 2.0548 2.2063 0.9784 24575 2.3469 2.1039 2.5113
AUC 0.9302 0.8946 0.9894 0.5884 0.5867 0.9972 0.8859 0.9806 0.9381 0.9989 1.0000
ToU 0.2580 0.2944 0.5410 0.1920 0.1938 0.7050 0.1475 0.5907 0.4373 0.6380 0.7064

Due to the failure of LEF in Seq.l, its output result is
a black background, so no calculation is performed on the
objective indicators of Seq.1. As shown in Table I, the PGDN-
Net model can almost achieve the optimal AUC and IoU on
all groups of sequence-frame datasets, indicating that PGDN-
Net obtains the best detection performance and can detect
more accurately. Although the target enhancement of NLCD
is poor, its background suppression ability is prominent, due
to the random walk algorithm in this method, which can
better distinguish background information. LEF focuses more
on enhancing the overall target, therefore its CG; value is
relatively high. In contrast, PSTNN has a better enhancement
effect on the target center with higher CG,. Although the
detection performance of MDFA, ISTDU, and DNANet is
good, their detection performance on different datasets varied
widely. Compared to SCTNet, HCFNet has a better target
enhancement effect, but SCTNet has better detection ability.
Since these deep learning methods are based solely on network

parameters acquired during training and do not incorporate
objective prior features of the input image, their ability to
generalize is inadequate.

Fig. 16 shows the ROC curves of the methods on the six
groups of sequence-frame datasets. The ROC curves further
demonstrate the superiority of PGDN-Net. Specifically, at the
same detection rate, PGDN-Net achieves the lowest false alarm
rate, and at the same false alarm rate, it can obtain the highest
detection rate.

The comparative experimental result in this section indicates
that the proposed PGDN-Net model has better detection
performance than traditional methods, stronger generalization
ability than other deep learning methods, and combines the
advantages of traditional and deep learning methods.

E. Ablation Study

In this section, we conduct the ablation experiment on three
prior feature modules in our PGDN-Net model, such as the
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Fig. 16.

TABLE I
DETAILED SETUP OF ABLATION EXPERIMENT

Method HR CH ST AUC

DNA-Net X X X 0.9750
PGDN-Netl X v v 0.9743
PGDN-Net2 v X v 0.9728
PGDN-Net3 v v X 0.9768
PGDN-Net4 v v v 0.9927

HR, the CH, and the corner feature of the ST, to investigate
the potential benefits and choice of design. The baseline
method for comparison is the original DNA-Net model, which
does not introduce any prior target feature information as
a guide. The ablation experiments are uniformly trained on
the NUDT-SIRST dataset and tested on the single-frame
dataset.

Table II lists the control group settings and the correspond-
ing AUC results in the ablation experiment. It can be seen
that the detection performance of the model has been greatly
improved after introducing three prior target features to guide
the dense nested network. On the one hand, when HRs are not
considered, it may lead the network to focus on some potential
clutter information in the background, leading to an increase in
false alarms, as shown in Fig. 17. Therefore, it is necessary to
introduce HRs to improve the model’s ability to distinguish
targets. On the other hand, when CHs are not considered,
the model will be interested in strong edge corners under the
influence of high-order Riesz and ST corner features, resulting
in pseudo-targets appearing at some edge corners, and it is
difficult to extract features of weak target areas, as shown
in Fig. 18.

In summary, the ablation experiment first proves the effec-
tiveness of our PGDN-Net model, and second, compared to

ROC curves achieved by different methods on single-frame dataset and

sequence-frame dataset.

Original image

Output image

Fig. 17.  Output results of PGDN-Netl. The red box indicates that the real
target is detected and the yellow circle marks the clutter and false target points
present in the background.

El

Original image

Output image

Output results of PGDN-Net2. The red box indicates that the
real target is detected, the green box indicates that the real target is lost,
and the yellow circle marks the clutter and false target points present in the
background.

Fig. 18.

the original DNA-Net model, PGDN-Net model demonstrates
more significant advantages.

V. CONCLUSION

This article proposes a PGDN-Net model, aiming to solve
the inherent problem of lack of prior features in IRSTD
tasks and the practical problem of imbalanced positive and
negative sample information in deep learning networks. The
PGDN-Net model achieves effective integration of low-level
detail features and high-level semantic features in the network
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through a dense nested structure. It introduces HRs, CHs,
and corner features of ST features to guide the network
model to learn target features at different depths and ensure
the preservation and recovery of target features, thereby
alleviating the problem of few characteristics, hard to extract,
and difficult to learn features for infrared small targets. At the
same time, under the action of the attention mechanism
module, the attention of the entire network is focused on
the interested target area, effectively solving the problem
of unbalanced positive and negative sample information and
avoiding erroneous learning of background features in the
network. The key point of PGDN-Net is to combine traditional
methods with deep learning methods to achieve robust IRSTD.
Experiments on multiple datasets have shown that it achieves
more outstanding comprehensive detection performance, with
excellent target enhancement and background suppression
effects. Moreover, the detection results in various scenarios
effectively demonstrate the generalization and robustness of
the proposed PGDN-Net model.
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