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Abstract—Accurately retrieving surface meteorological states
at arbitrary locations is of great application significance in
weather forecasting and climate modeling. Since meteorological
variables are typically provided as coarse-resolution gridded
fields, common methods obtain the states at a specific location
directly through spatial interpolation can lead to significant
accuracy deviations compared to actual observations. Tradi-
tional downscaling, the process of obtaining fixed-scale high-
resolution meteorological fields from low-resolution inputs, has
been proposed as a way to indirectly improve the accuracy of
retrieving states at arbitrary locations by providing more detailed
subgrid-scale information. However, for arbitrary locations at the
station scale, their states are influenced by sub-grid information,
resulting in systematic biases between the downscaled results
after interpolation and the actual observations at specific station
locations. To address this issue, in this paper, we propose a new
task called Station-Scale Downscaling, which aims to directly
derive accurate meteorological states at any given station location
from a coarse-resolution meteorological field. To achieve this,
we propose a new downscaling model based on hypernetwork
architecture, namely HyperDS, which efficiently integrates the
multi-scale observational information to guide the continuous
neural field modeling of the meteorological variables, enabling
accurate sampling of the states at any target location. Through
extensive experiments, our proposed method outperforms other
specially designed baseline models on multiple surface variables.
Notably, the mean squared error (MSE) for wind speed and
surface pressure improved by 67% and 19.5% compared to other
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I. INTRODUCTION

IN recent years, the application of artificial intelligence
technologies such as deep learning in weather forecasting

has garnered significant attention [1]–[3]. These efforts utilize
large-scale gridded historical meteorological field data, com-
bined with advanced models from computer vision, and have
demonstrated powerful performance in many forecasting tasks
[4]–[7], even surpassing the long-developed numerical weather
prediction systems [8]. In addition to weather forecasting,
these advanced models have also begun to be extensively
studied in other important meteorological tasks such as down-
scaling [9], data assimilation [10], and satellite data retrieval
[11]. These methods have achieved remarkable research results
and have started to be applied in practice. Nevertheless, the
reliance on methodologies from the field of computer vision
has led to the acquisition of image-like meteorological field
data in the form of fixed and relatively coarse resolution. This
approach is at odds with the intrinsically multi-scale nature
of meteorological variables. Furthermore, in practical applica-
tions, we typically aim to obtain the meteorological state at any
given scattered location rather than over a broad regional area.
Therefore, common methods usually use spatial interpolation
methods (bilinear, etc.) to obtain the meteorological state of
the target location from the grid meteorological field data.
This process leads to significant systematic bias, and since
the entire process is unlearnable, it is difficult to model the
recovery of complex subgrid information. Consequently, as an
indirect solution, downscaling has become an indispensable
post-processing task within operational forecasting to obtain
meteorological variables at finer scales and resolutions [3],
[12].

The objective of downscaling in weather forecasting is
typically to map coarse-resolution global-scale meteorological
fields to high-resolution regional-scale fields [9]. This setup
appears to be highly analogous to the task of image super-
resolution in computer vision [13]. The traditional dynamic
downscaling methods [14] are akin to numerical weather
prediction techniques, involving the numerical solution of
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atmospheric differential equations at a regional scale. This pro-
cess is highly computationally demanding, particularly when
the grid resolution is very high. As a result, statistic down-
scaling methods, primarily deep learning-based ones, have
recently received increased attention as a parallel approach
[3], [9], [12], [15]–[32]. Most previous deep learning-based
downscaling works directly employ models and methods from
image super-resolution tasks due to the similarity between the
two tasks. Meteorological field data is treated as an image
to achieve super-resolution at a fixed resolution and fixed
upscaling factor, which is direct and efficient.

Unlike natural images that are directly captured through
camera sensors, gridded meteorological field data are typically
obtained by fusing and assimilating multi-source, multi-scale,
and multi-modal observational and forecast data, commonly
known as analysis data or reanalysis data. The observational
information employed generally includes satellite remote sens-
ing images, ground observation stations, radiosondes, and so
on. A specific meteorological variable at a particular pixel can
be considered as the average of all observed and predicted
values within that pixel area. For instance, the widely used
ERA-5 reanalysis data [33] have a temporal resolution of 1
hour and a spatial resolution of 0.25�. The state value of any
given pixel can be regarded as the average of all observations
and forecast results within the 0.25�⇥0.25� grid over 1 hour.
The same applies to forecast fields derived from analysis and
reanalysis data. As a result, for meteorological fields with
fixed resolution, although each grid can be considered as the
average of all observations, many sub-grid observations cannot
be effectively represented.

However, in practical applications, we aim to obtain the
meteorological state at a specific precise location through
the given gridded meteorological field, rather than merely
obtaining the high-resolution gridded meteorological fields.
The absence of sub-grid information results in a significant
deviation between the state values of the meteorological field
and the scattered stations, when interpolating directly from the
grid meteorological field to the stations [34]. Therefore, for
the downscaling of meteorological variables, it is crucial to
recover information at the sub-grid scale. A straightforward
method of recovering sub-grid information is to use high-
resolution real-time observational data with multi-scale res-
olution to guide the downscaling task. Most of the existing
downscaling frameworks based on deep learning are inspired
by super-resolution tasks. They achieve downscaling solely by
learning the mapping from low-resolution to high-resolution
images, which does not allow for the integration of multi-
scale observations into the model’s training and inference
processes. With its fixed super-resolution factor, the resulting
downscaled output is also gridded. Therefore, to obtain the
meteorological state at an arbitrary station location, further
non-learnable interpolation is required, which can result in
a significant loss of precision (as shown in Fig 1(a)). Thus,
establishing a reasonable downscaling task specifically tailored
to the meteorological field is of critical importance, especially
with the ability to obtain accurate meteorological conditions
at any location.

To address the aforementioned issues, our paper first con-
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Fig. 1. The difference between the previous SR (super-resolution)-based
downscaling pipeline with fixed grid-level scale [9] (a), and the proposed
observation-guided downscaling pipeline with arbitrary scattered station-level
scale (b). �(·) is the downscale model, and ⇥(·) is the observational operator
that maps the remote sensing images into the meteorological state domain. To
obtain the meteorological status at target stations, the former method requires
interpolation of the downscaled meteorological field, which is non-learnable.
The latter, on the other hand, directly learns a continuous neural representation
of the meteorological field, thereby directly obtaining the meteorological states
of the target stations through sampling.

structs a new task for downscaling meteorological fields at
station scale, guided by multi-source, multi-scale, and multi-
modal observational data. Our goal is to downscale low-
resolution meteorological fields to the scale of arbitrary scat-
tered points. Specifically, the paper selects ERA5 reanalysis
data [33] as the meteorological field data to be downscaled.
For observational data, we utilize remote sensing images
from the new generation geostationary meteorological satellite
Himawari-8 (H8) [35] at L1-level as high-resolution gridded-
scale indirect observational data. Additionally, we employ
meteorological observation station data obtained from the
Weather2K dataset [36] as direct observational data at the
scattered station scale. This task setting is crucial for the
downscaling of meteorological variables because it allows for
the utilization of multi-scale observational information, and it
can yield downscaling results that are adaptable to any given
location by sampling from the learned continuous neural field
(as shown in Fig. 1(b)).

In response to the established novel task, inspired by the
ability of implicit neural representation and neural field meth-
ods [37], [38] in computer vision to continuously model two-
dimensional and three-dimensional data, and combined with
a data-conditioned hypernetworks structure [39], we propose
a novel model for the continuous resolution downscaling of
meteorological fields, named HyperDS. HyperDS uses H8
observations as the additional conditional input and takes
Weather2K station data as supervision at the scattered station
scale. The overall architecture of HyperDS can be divided
into a dual-branch hypernetwork and a target network. The
former consists of two encoders based on convolutional neural
networks that are used to extract semantic features from the
low-resolution meteorological field and the relatively high-
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resolution H8 data, respectively. Following these, an implicit
retrieval model employs a cross-attention mechanism to im-
plicitly learn the retrieval process from satellite imagery to
meteorological fields, thereby efficiently integrating H8 data
into the downscaling process. This results in the generation of
high-level feature vectors that contain fused information. The
target network is based on a multilayer perceptron (MLP),
whose weights are generated from the fused features output
by the hypernetwork. It achieves downscaling at arbitrary
locations by sampling from the learned continuous neural
field which inputs the coordinate values of the target location
and obtains the corresponding meteorological state variables.
We have also devised a training technique utilizing sub-grid
sampling, and in combination with supervisory data from
observational stations, it effectively reconstructs accurate state
values for meteorological variables at the sub-grid level.

We established several baseline methods and compared
them with the proposed method under the condition of identi-
cal input and supervision data. HyperDS shows superior down-
scaling performance at the scattered station scale. Additionally,
through more extensive analysis and ablation experiments, we
also verified the importance of incorporating observational
data for the task of station-scale downscaling. We hope that
more researchers in the field will engage in further studies on
this new task, aiming to achieve more efficient continuous-
resolution modeling of meteorological fields and more effec-
tive integration of observational data. To summarize, the main
innovative contributions of this paper include the following
three points:

• Given the systematic biases between surface gridded me-
teorological fields and the actual observed meteorological
states at station locations, we propose a new task called
Station-scale Downscaling, which aims to directly derive
accurate meteorological states at arbitrary locations from
coarse-resolution meteorological fields.

• Based on this new task, we propose a novel model
structure called HyperDS, based on a data-conditioned
hypernetwork model. We designed a dual-branch feature
encoder and an implicit retrieval network tailored to the
task characteristics and developed a multi-scale loss func-
tion, which achieves continuous modeling and station-
scale downscaling of meteorological fields by efficiently
integrating the multi-scale observational information from
remote sensing images and in-situ observations.

• Through the design of fair baseline models and extensive
experiments, we have validated the effectiveness of the
proposed new model, which significantly outperforms
comparative methods at the scale of scattered stations.

II. RELATED WORK

In this section, we will briefly introduce and review the
work related to the proposed task and model in this paper.

A. Meteorological Field Downscaling

The objective of downscaling meteorological fields is to
obtain accurate weather forecast results with fine granularity

and high resolution as required [3], [9]. Typically, meteorolog-
ical forecast data generated by operational global forecasting
systems are produced on a relatively coarse-resolution grid.
Currently, the highest resolution global forecast and reanalysis
data are provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF), with their operational Integrated
Forecasting System (IFS) and ERA-5 analysis [33] with a
spatial resolution of 0.25� and temporal resolution of 1 hour.
To obtain higher-resolution regional-scale weather states, there
have been numerous downscaling efforts in the past. Here, we
focus our research on methods based on deep learning.

Due to the similarity between the task of downscaling
and the task of super-resolution in the field of computer
vision, the vast majority of previous work has been in-
spired by related efforts in the field of super-resolution. One
of the most mainstream approaches is the use of super-
resolution networks, such as UNet [40], with an encoder-
decoder structure based on CNN [15], [18]–[27] and Trans-
former [28]. Furthermore, due to the successful application
of generative modeling techniques in the field of super-
resolution, many previous studies have also applied Generative
Adversarial Networks (GANs) and Diffusion models to the
task of downscaling meteorological fields, to obtain results
with richer texture information [16], [29]–[31]. These studies
solely utilize high-resolution meteorological field data for
supervision, learning the mapping process from low-resolution
meteorological fields to high-resolution ones [12]. However,
the aforementioned methods are all direct applications of
super-resolution models and do not incorporate special designs
tailored to the characteristics of meteorological variables. They
merely achieve downscaling results at specific magnifications
following high-resolution supervisory data. Some recent works
on simulating fluid field data [41] have attempted to achieve
grid-independent continuous-resolution downscaling and have
integrated physical information as prior [42]. However, the
relevant physical information and data are difficult to apply in
the context of real-world data. Our recent work DeepPhysiNet
[43] bridges physical laws and deep learning for continuous
weather modeling on real-world weather data. However, the
aforementioned methods do not use sub-grid observational
data as an auxiliary, which intuitively could be a very direct
way to enhance downscaling information [44]. Incorporating
observational information at multiple scales during the training
process will also enhance the model’s adaptability to various
scales, allowing for more accurate recovery of sub-grid mete-
orological states [45]. Moreover, most studies focus solely on
downscaling a single type of meteorological variable, such as
temperature or precipitation, and are unable to simultaneously
process multiple meteorological variables.

Addressing the issues present in previous downscaling ef-
forts, we have specifically designed a station-scale down-
scaling task, combined with multi-scale observational data,
tailored to the characteristics of meteorological variables.
Our new model effectively reconstructs sub-grid states within
coarse-resolution meteorological fields. Moreover, we have
performed downscaling on five surface variables, which helps
in obtaining more comprehensive meteorological state infor-
mation at the scale of scattered stations.
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B. Image Super Resolution
The widespread application of deep learning in meteorolog-

ical downscaling is inseparable from the rapid development of
image super-resolution tasks in the field of computer vision.
The following is a brief introduction to the related work in
image super-resolution (SR).

The field of image super-resolution (SR) has witnessed a
significant transformation with the advent of deep learning
techniques [13]. Pioneering work, Super-Resolution Convolu-
tional Neural Network (SRCNN) [46], demonstrated the effec-
tiveness of deep learning for this task. Building on this foun-
dation, many studies have proposed various super-resolution
networks based on CNN-based encoder-decoder structures,
enhancing the performance of super-resolution tasks [47]–
[49]. With the development of foundational models in vision,
several super-resolution models based on GANs [50], [51] and
Transformers [52], [53] have also been proposed. However, the
aforementioned super-resolution models are only capable of
achieving super-resolution at fixed magnifications. Inspired by
implicit neural representations [37], recent works have begun
to explore super-resolution tasks with continuous resolutions
[54], [55]. The aim is to achieve super-resolution at any
arbitrary position by learning the mapping from coordinates
to RGB values. However, super-resolution methods based on
implicit neural representations suffer from a lack of sub-grid
supervision, resulting in what is called continuous-resolution
being merely a more sophisticated form of smoothing.

Besides enhancing the resolution of natural images, there is
also an urgent need to improve resolution in the field of remote
sensing imagery [56]. Due to their overhead perspective and
broader geographic coverage, remote sensing images bear a
closer resemblance to meteorological downscaling tasks. In-
fluenced by the super-resolution techniques applied to natural
images, the development of remote sensing imagery has also
incorporated unique features such as geographic information.
Related approaches include methods CNN-based [57], GAN-
based [58], and recent implicit representation-based [38], [59],
[60] methods.

However, there is scarcely any existing work that has
introduced super-resolution methods based on implicit neural
representations into the realm of meteorological downscaling.
Furthermore, unlike image super-resolution, meteorological
variables often include a wealth of sub-grid station observa-
tional information, which can better assist models in learning
information at continuous locations. Therefore, we incorporate
scattered grid observations as auxiliary information into our
task, combined with high-resolution remote sensing obser-
vations, in the hope of effectively integrating multi-scale
observational data to recover sub-grid meteorological states
and achieve meteorological downscaling at scattered station
scale.

C. Hypernetworks
Hypernetworks [61] are the type of model architecture that

utilizes one network (commonly referred to as the hypernet-
work) to predict the weights of another network (typically
called the target network). Compared to traditional network

architectures, hypernetworks offer more flexibility in their
structure and input/output modalities. They have been widely
applied across various fields such as computer vision, solv-
ing differential equations, and uncertainty quantification [39].
Leveraging the hypernetwork structure, the traditional per-
sample optimization approach of implicit neural representa-
tions can be transformed into a data-conditioned hypernetwork
learning architecture. This structure allows for the learning
of the target network’s parameters based on different input
samples, and the design of the target network’s input and
output according to the requirements of the task. Regarding the
application of hypernetworks to downscaling in meteorological
fields, to the best of our knowledge, there are currently
no similar efforts. Given the characteristics of hypernetwork
structures, they are particularly suitable for meteorological
data, which often comprises multi-modal data types. There-
fore, the HyperDS we propose utilizes the hypernetwork model
structure and has been specifically designed to cater to the
characteristics of the downscaling task.

III. PROBLEM SETTING

In this section, we will introduce the proposed novel Station-
Scale Downscaling task guided by observations specifically
designed based on our understanding of meteorological down-
scaling tasks. This includes a description of the task, the
datasets we used, and the evaluation metrics.

A. Observation-Guided Station-Scale Downscaling
1) Task Description: Unlike the objectives of previous

downscaling or super-resolution tasks to obtain high-resolution
grid data, we focus on capturing the meteorological state at
any given scattered station location, which has significant
practical value [34]. The results produced by most current
meteorological tasks are structured gridded data, which need
to be further processed through methods such as interpolation
to obtain the state values at the scattered point locations of
interest. As a result, simple interpolation without any learnable
process creates an inherent bias between the gridded data and
the scattered stations (as shown in Fig.1(a)). Therefore, it is
crucial to design specialized methods to effectively downscale
gridded meteorological fields to scattered points and minimize
the inherent bias between them.

To address this issue, inspired by data assimilation [10],
[62]–[64], we realize that gridded meteorological field data
are obtained through the integration of multi-source, multi-
scale observational data, and gridded model forecast result.
Therefore, using observational data to guide the downscal-
ing of meteorological fields is a very direct and reasonable
approach. This allows us to recover sub-grid information of
low-resolution gridded meteorological fields through multi-
scale, multi-resolution observational data, thereby achieving
the purpose of downscaling at scattered station scale.

Specifically, we classify the observational data into two
categories: one is the gridded high-resolution indirect observa-
tional data (such as satellite observations), and the other is the
scattered sub-grid direct observational data (such as weather
observation stations). This also conforms to the observation
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TABLE I
METEOROLOGICAL VARIABLES USED FOR STATION-SCALE DOWNSCALING.

Long Name Short Name Description Unit

10m u-component of wind u10
Eastward component of the wind speed, at the height of 10 meters
above the surface of the Earth. m/s

10m v-component of wind v10
Northward component of the wind speed, at the height of 10 meters
above the surface of the Earth. m/s

2m temperature t2m
Temperature of air at 2m above the surface of the land, sea, or inland
waters. K

surface pressure sp
Pressure of the atmosphere at the surface of land, sea, and inland
water. hPa

total precipitation in 1 hour tp1h
Accumulated liquid and frozen water, comprising rain and snow, that
falls to the Earth’s surface in 1 hour. mm

TABLE II
DATASET USED IN THIS PAPER, PERIOD: 2017-01-01 TO 2021-08-31.

Data Name Data Type Resolution Descriptions

ERA-5 Reanalysis Meteorological Field 0.25�, 1 hour Meteorological fields of 5 surface variables in Tab. I.
[33]

Himawari-8 L1 Gridded data High-resolution Gridded Observations 5km, 10 min
Rreflectance of channel ’albedo 03’, ’albedo 05’,

[35] ’tbb 08’ and ’tbb 15’

Weather2K Scattered Station Observations sub-grid, 1 hour
Observation state of air pressure, temperature, wind speed,

[36] and total precipitation in 1 hour.

type settings used in the operational assimilation forecasting in
actual meteorological services [10]. Given multiple low spatial
resolution meteorological fields data Finput 2 R1⇥V⇥LH⇥LH

at a certain time step, gridded high-resolution indirect obser-
vational data sequence O 2 RT⇥C⇥TH⇥TW and scattered
sub-grid direct observational data S 2 R1⇥V⇥ N , where V
is the number of meteorological variables, T and C is the
number of gridded observation frames and channels, N is the
number of scattered observations. our goal is to obtain the
meteorological state values Foutput 2 R1⇥V⇥ M at any M
scatter point locations by:

Foutput = �(Finput|⇥(O),S) (1)

where ⇥(·) is a function that maps the indirect observational
data into the meteorological variable domain. �(·) is a down-
scaling model that is used for downscaling to the scattered
station scale. It should be noted that, in order to verify the
generalization ability of the downscaling process for different
scattered point locations, we require that the N points in S

and M points in Foutput are disjoint. Under such a setting,
downscaling to multiple grid scales or random scattered point
scales can be achieved by altering the positions of the target
points.

2) Meteorological Variables Selection: In order to select
significant meteorological variables to verify the effectiveness
of the downscaling method, we analyzed the characteristics
of the observational data and specially selected five surface
variables as the focus of our task: u-component wind (u10),
v-component wind (v10), 2-meters temperature t2m, surface

pressure (sp) and total precipitation in 1 hour (tp1h). For
details please refer to Tab. I. We chose these five variables
primarily because the observational data includes the afore-
mentioned variables, or the values of related variables can be
roughly inferred through indirect observations, or there is an
implicit correlation between the observational information and
the variables.

B. Dataset
This subsection will introduce the actual data used for the

proposed task, with the main data information available in
Table II. Based on the observational data and meteorological
field data we used, we selected the research area with a
boundary of 80

�E to 136
�E and 18

�N to 54
�N, as shown

in Fig. 2. This area is an intersection of all the regions
covered by all kinds of data we used. The selected study area
covers most of mainland China in East Asia. It is important
to note that since the Himawari-8 satellite cannot cover parts
of western China, we excluded the corresponding regions and
the observational station information contained therein.

1) Meteorological Field Data: We select the widely recog-
nized ERA5 reanalysis data [33] as the meteorological field
data. Its original resolution is 0.25�, covering the globe, with a
temporal resolution of 1 hour. The ERA5 reanalysis data has
been widely used in the field of meteorological forecasting
based on deep learning [65], [66], and it is employed as both
the initial field and supervision data for models [4]–[7]. For
our task, we have extracted data for the study area and, through
the operation of average pooling, downsampled the data to a
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Fig. 2. The study area and scattered stations used in our paper. The red dots
represent the training stations, the blue dots represent the validation stations
and the yellow dots represent the test stations.

spatial resolution of 1
� to serve as input for the model. This

setup enables us to provide high-resolution grid supervision.
It should be noted that previous downscaling work was

mostly based on forecasting tasks, which primarily involved
downscaling coarse-resolution forecast fields and utilizing
high-resolution analysis data for supervision [3], [28]. This
setting is typically taken from the perspective of practical
operational applications. Different from its starting point, our
task aims to study more effective downscaling methods at the
scale of scattered stations based on deep learning. Hence, we
hope to utilize readily available public data to provide as many
complete samples as possible for model training. However,
most model forecast fields and high-resolution analysis data
are often difficult to obtain, or they have a low temporal
resolution [67], making it challenging to meet the requirements
for a large sample size. Therefore, we have chosen the most
commonly used ERA5 reanalysis data, which ensures the
fulfillment of our task requirements. The methods developed
on it can also be well extended to situations where the forecast
fields are used as inputs.

2) Observation Data: Various observation data are crucial
to forming a structured grid of meteorological fields. In the
field of meteorology, data assimilation tasks [10], [62]–[64]
specifically study how to integrate different observation data
into forecast fields, improving the performance of forecast
models based on real-time observations. Integrating obser-
vational data effectively into meteorological fields to obtain
more accurate meteorological states at different locations is an
important research direction. We hope to enhance the accuracy
of downscaling by incorporating observational information
into downscaling tasks. On the one hand, using observational
information to improve the accuracy of downscaling, and on
the other hand, treating downscaling as a fundamental task
to explore effective methods for integrating observational data

into meteorological fields.
Based on the task description provided earlier, we selected

the L1 gridded data from the next-generation geostationary
meteorological satellite Himawari-8 [35] as the gridded high-
resolution indirect observational data, and we chose the station
dataset provided by the Weather2K [36] as the scattered sub-
grid direct observational data. Below is a brief introduction to
the two types of observational data:
Himiwari-8 L1 Gridded Data [35] is generated by
JAXA/EORC from the Himawari Standard Data with re-
sampling to equal latitude-longitude grids. It includes 16
spectral bands, with a spatial resolution of up to 2 km
and a temporal resolution of 10 minutes, obtained from the
Advanced Himawari Imager (AHI) onboard the Himawari-8
satellite. Due to storage constraints, we primarily downloaded
the version with a 5 km spatial resolution and cropped the data
to the research area of our interest. Furthermore, to reduce the
memory footprint of the input data, we empirically selected
four representative bands from the visible, near-infrared, and
far-infrared spectral ranges. It should be noted that, as we
are using Level 1 observational data rather than the results of
the satellite retrieval of meteorological variables, the designed
model is required to learn the state values of meteorological
variables from the indirect satellite radiance values. This also
implies that the retrieval process is inherently included in our
task.
Weather2K dataset [36] was originally designed for
mesoscale weather forecasting tasks. It comprises hourly ob-
servations of 20 meteorological variables from 1866 ground
observation stations across China, spanning from January 2017
to August 2021. We have selected four surface meteorological
variables as the focus of our research, which are: air tempera-
ture, air pressure, wind speed, and precipitation in 1 hour. For
the downscaling task at the scattered station scale, the primary
objective is to verify the model’s generalization performance at
various scattered locations. Therefore, as shown in Fig. 2, we
randomly split the 1866 stations into three non-overlapping
parts, with 1266 stations used for training, 200 stations for
validation, and the remaining 400 stations used for testing.

C. Evaluation Metrics
To evaluate the downscaling effects of different methods at

the scale of scattered observation stations, referencing prior
work [34], we have chosen the mean squared error (MSE)
and mean absolute error (MAE) averaged over both stations
and time as our assessment metrics. The calculation methods
are as follows:

MSE =
1

M ⇤ T
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i=1

TX
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(Y t

i
� Ŷ t
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2

MAE =
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where M is the total number of test observations, Y t

i
is the

ground truth value for a given variable state at i-th station and
t-th time point, Ŷ t

i
is the predicted downscaled value. Both

metrics are commonly used in regression tasks to measure the
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Fig. 3. The proposed HyperDS architecture. It mainly consists of three parts: a dual-branch feature encoder is used to extract semantic features from the input
low-resolution meteorological field and high-resolution remote sensing images respectively; subsequently, the implicit retrieval network utilizes a cross-attention
mechanism to implicitly fuse different feature information and align the remote sensing image features with meteorological field variables; and finally, the FC
(fully connected)-based weight generator predicts the weight vector for the target network. The MLP (Multi-Layer Perceptron) decoder, the target network,
learns the mapping from the sampled subgrid coordinates to the corresponding location state values. It is supervised at both the observation station scale and
the high-resolution grid scale, allowing for the continuous modeling of the meteorological fields.

accuracy of the predicted values. Lower values of MSE and
MAE indicate better model performance, with the MAE being
particularly useful for understanding the error magnitude on
an average per-observation basis.

IV. METHOD

In response to the Station-Scale Downscaling task described
above, we developed a novel method, namely HyperDS,
that effectively integrates high-resolution Himawari-8 satellite
observations and scattered station observations to recover
subgrid-scale meteorological states from low-resolution atmo-
spheric fields, achieving continuous-resolution modeling of
the meteorological field. This section will provide a detailed
introduction to the structure and training strategy of our
proposed method.

A. Overall Structure

The overall structure of HyperDS can be viewed as a data-
conditional hypernetwork architecture [39]. Considering the
type of observational data, we use the indirectly observed high-
resolution Himawari-8 satellite images as auxiliary input to the

model, and the direct scattered observation station data as the
model’s station-scale supervision. The reason for this setup
is to enable the model to learn the implicit meteorological
field information from indirect remote sensing observations
through operations such as encoding and feature extraction of
the former. At the same time, supervision from the observation
stations is used to correct the inherent biases that occur when
downscaling from grid scale to station scale.

As illustrated in Fig. 3, our model is composed of three
sub-network structures: a dual-branch feature encoder based
on CNN and an implicit inversion network based on a Trans-
former with cross-attention from the hypernetwork, which
generates the fused features used to determine the weights of
the target network; the target network, in turn, comprises an
MLP-based decoder that learns the mapping from specific co-
ordinates to meteorological states, using the weight parameters
generated by the hypernetwork.

Additionally, in the input portion of the MLP decoder,
we design a coordinate selection method based on subgrid
sampling that more naturally and reasonably adapts to the
capability of implicit neural representation for continuous state
modeling. In such a case, by averaging the subgrid samples
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pixel by pixel, we can utilize high-resolution grid scale data for
supervision and learn the deviation loss between the predicted
values and the site-scale observations by sampling specific
scattered station locations. Averaging and sampling of this
form are also better aligned with the processing methods used
to integrate multiscale observational data in meteorological
fields.

B. Dual-Branched Feature Encoder

For processing meteorological field data and satellite im-
agery simultaneously, we implemented a simple dual-branch
encoding structure based on ResNet-18 [68] as the backbone
for both the meteorological field encoder and the satellite
image encoder. For the satellite image encoding branch specif-
ically, we chose to input two adjacent Himawari-8 images in
a Siamese configuration into the encoder, which strikes a bal-
ance between memory consumption and the amount of input
information. To balance the semantic information and spatial
information of the features, we selected the features from the
intermediate layers of the two encoders as the outputs of the
model. Specifically: given the low-resolution meteorological
Finput 2 R1⇥5⇥LH⇥LH and two frames high-resolution
Himawari-8 remote sensing images O 2 R2⇥4⇥TH⇥TW , the
extracted features from each encoder can be computed by:

Ffield = Conv2dfield(MeteoEncoder(Finput))

Ffield = Conv2dfield(Ffield)

Fh8 = Concat(ImgEncoder(O0), ImgEncoder(O1)

Fh8 = Conv2dfield(Fh8)

(3)

The two features are extracted from the same stage in ResNet-
18 and aligned across all dimensions into C ⇥ h⇥w through
upsampling and convolution operations.

C. Implicit Retrieval Network

To further integrate the two types of extracted features, we
adopted a Transformer encoder-decoder network based on a
cross-attention mechanism. This network implicitly retrieves
indirect observation information into the meteorological field
domain and effectively integrates it. We first flatten Ffield and
Fh8 into shape C ⇥ hw, and add the learnable positional
encoding vector. Then, the features from high-resolution re-
mote sensing images are fed to the self-attention Transformer
encoder to further learn the relationships between different
tokens. Following a cross-attention Transformer decoder re-
ceives features from both remote sensing images and mete-
orological fields to implicitly learn the relationships between
different feature domains. Therefore, the fused features gen-
erated by the implicit retrieval network can be computed by:

Fh8 = SelfAttnEncoder(Fh8)

Ffused = CrossAttnDecoder(Fh8, Ffield)
(4)

Through the above calculations, the generated fusion features
contain high semantic features of both low-resolution meteoro-
logical fields and high-resolution satellite observations, laying
the foundation for subsequent continuous-resolution modeling.

D. MLP Decoder with Subgrid-sampling

Based on the fusion features generated by the hypernetwork
structure and combined with the latent neural representation
method [37], we designed a decoder module based on the
Multilayer Perceptron (MLP). By learning the mapping from
coordinate positions to meteorological states, we realized
continuous modeling of the meteorological field.

Unlike previous modeling methods based on latent neural
representations that directly use the coordinates of the grid
center to represent grid values [42], [43], [54], we designed
a specialized sub-grid sampling method specifically for me-
teorological fields. This allows us to construct a continuous
representation of the meteorological field more naturally and
reasonably. Specifically, for a given pixel p in a high-resolution
grid Grid(TH,TW), we randomly sample multiple inner
points Ip = {(xi, yi) | i = 1, 2, · · · , P} within this pixel as
the coordinate values to be input in this pixel. Then, we can
obtain the state value for the corresponding resolution grid
by calculating the average of the meteorological state values
associated with all the inner points under that pixel, which can
then be supervised using the corresponding high-resolution
grid labels. Specifically, when a pixel includes the location
of observation stations, we will also sample the positions
of these observation stations. By using proposed the subgrid
sampling method described above, we can average the data
from observation stations into the mean value of the grid,
thereby mitigating the conflict between the scattered point
stations and the grid values. It should be noted additionally
that, apart from the coordinate values, we also input the
grid interpolation results of the state values corresponding to
the coordinate points as auxiliary information into the MLP.
For the sake of simplifying the expression, this part of the
information will not be explicitly reflected in the following
text.

As for the MLP modeling method used to represent the
meteorological field, as shown in Fig. 4, we referenced pre-
vious work [43], [69] and designed two different modeling
structures. The first type, the multi-block-based MLP decoder,
divides the target meteorological field into several blocks, each
of which is continuously modeled by a separate MLP that
takes input coordinates and simultaneously outputs the state
values of all target variables. The weights of the network
are obtained entirely through the linear mapping of fused
features. Different from the first one, the second type is a
multivariate MLP decoder that uses different MLPs to model
the entire meteorological field of specific variables separately.
The shallow parameters of each MLP are obtained through
linear mapping of the fused features, whereas the deeper
parameters are randomly initialized and constitute learnable
weights. The reason for this setup is that the former, multi-
block-based modeling approach, although more conducive
to modeling high-frequency information, is more memory-
intensive and increases model complexity with the number
of sub-blocks. The latter has a relatively fixed computational
complexity and memory usage, but it makes the modeling task
more challenging for a single MLP. Therefore, each method
has its advantages and disadvantages, and we hope to provide
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more flexible options for our approach.

E. Loss Function
The supervision label data proposed for HyperDS includes

two scales: grid-scale and station-scale. By inputting different
sampling coordinates into the MLP decoder, predictions for the
corresponding scales can be generated. Detailed introductions
follow.

1) Grid-scale Loss: Referencing previous downscaling
work based on Super-Resolution (SR), we use high-resolution
meteorological fields as supervision at the grid scale. However,
unlike previous work, we obtain the prediction result for
a target pixel by calculating the average of the sub-grid
inner points within that pixel. To be specific, given the high-
resolution grid label field F

grid

label
2 R1⇥5⇥TH⇥TW , we sample

P inner points Ip = {(xi, yi) | i = 1, 2, · · · , P} at each pixel
p in Grid(TH,TW) and the predicted field can be computed
by:

F
grid

output
=

1

P

PX

i=1

MLPDecoder(I, Ffused) (5)

then, the grid-scale loss can be computed by:

Lgrid = kF
grid

label
� F

grid

output
k
2 (6)

However, while high-resolution supervision can provide ac-
curate mean supervision on fine grids, in actual applications,
high-resolution grid supervision is often difficult to obtain. To
account for station-scale downscaling in such situations, we
referenced previous work on modeling dynamic systems [70]
and designed a grid loss function for when high-resolution
gridded supervision is not available. In such cases, still ben-
efiting from the sub-grid sampling coordinate input form, we
could also compute the mean values covered by the low-
resolution pixel in Grid(LH,LW), at the same time interpolate
the input low-resolution fields into a fine-grained one. Thereby
simultaneously obtaining the interpolated high-resolution su-
pervision as well as the low-resolution mean supervision:

LHR = kInterp(Finput)� F
grid

output
k
2

LLR = kFinput �Avgpool(F
grid

output
)k

2

Lgrid = LHR + LLR

(7)

Through such an approach, in the absence of high-resolution
grid supervision information, it is possible to provide as much
grid supervision information as possible to the maximum
extent.

2) Station-scale Loss: To integrate the observational infor-
mation from scattered stations into the downscaling process
and mitigate the inherent bias between the meteorological
field and grid observations, the training process incorporates
station-scale supervision to learn the cross-scale mapping from
the meteorological field to the stations. To be specific, given
the station-scale label F

station

label
2 R1⇥5⇥M , where M is

the number of stations, we could sample the corresponding
coordinates and computed the station scale output by:

F
station

output
= MLPDecoder(I 0, Ffused) (8)

and the station-scale loss is

Lstn = kF
station

label
� F

station

output
k
2 (9)

It should be noted that since only the wind speed (ws) variable,
rather than its components, is provided in the Weather2K
data [36], we base our calculation of wind speed loss on the
following formula:

ws =
q
u2

10
+ v2

10
. (10)

Combining the above loss functions, we can derive the final
loss function as:

L = Lgrid + �Lstn (11)

where � are the loss coefficients that need to be manually set.

V. RESULTS

In this section, we design experiments and baseline methods
tailored to the station-scale downscaling task we have con-
structed, which will be compared with our proposed HyperDS
model.

A. Experiment Details
To validate the downscaling performance from low-

resolution meteorological fields to arbitrarily scattered stations,
we downsampled the original ERA5 reanalysis data [33] to a
spatial resolution of 1

� using the method of average pooling,
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which served as the input meteorological field data. Moreover,
we used the original ERA5 data at 0.25� resolution as high-
resolution grid supervision. Additionally, we conducted exper-
iments without high-resolution grid supervision by setting the
loss according to Eq. 7. The dataset was divided into three
parts in chronological order: data from January 1, 2017, to
August 31, 2020, was used for training; data from September
1, 2020, to December 31, 2020, was used for validation; and
data from January 1, 2021, to August 31, 2021, was utilized
for testing. It should be noted that for the observational station
data from Weather2K [36], we partitioned the dataset based
on both time and station locations. This division requires
that the model exhibit strong generalization performance both
temporally and spatially when validated at the observational
station scale, which presents a significant challenge. Therefore,
the experiments we set up aim to recover the meteorological
state variables at a scattered scale from a 1

� spatial resolution
meteorological field and to validate the performance at 400
randomly sampled test stations (as shown in Fig. 2) within the
testing period. The hyperparameter number of samples in the
MLP decoder is set to 10, and the loss coefficient � = 0.05.

To ensure a fair comparison of different methods, we have
established the same training procedures and hyperparameters
for all. We optimized the model using the Adam optimization
method [71], employing a cyclical learning rate with cosine
annealing [72], starting with an initial learning rate of 0.0001,
for a total of 50 epochs of training. We choose the checkpoint
with the lowest station-level loss in the validation sets for
testing. We trained our proposed model using 4x NVIDIA
A100 GPUs, setting the batch size to 4 per GPU.

B. Baselines
For the task we proposed, we designed two basic baseline

methods for comparison to validate the effectiveness of our
method. The following subsections provide a detailed intro-
duction to these methods.

1) Interpolation of Weather Field into Station Scale: One
of the simplest and most direct methods to obtain meteoro-
logical state variables at the scale of scattered stations from
a meteorological field is through interpolation. We use the
DataArray.interp function with the default setting from the
open-source xarray library to perform interpolation on the
meteorological field, based directly on the absolute positions
of latitude and longitude, with each grid cell’s state value
corresponding to its center point coordinates. We mainly per-
formed interpolation on meteorological fields with resolutions
of 1� and 0.25�, corresponding to the interpolated results from
the input low-resolution meteorological fields and the high-
resolution supervision. Since the interpolation process does
not incorporate any available observational information, this
method can serve as our most basic baseline result. Moreover,
it can reflect to some extent the inherent bias that exists
between the meteorological fields and observations.

2) Super-Resolution-based Downscaling with Observa-
tions: Given the widespread application of super-resolution
models in downscaling tasks, we specifically modified tra-
ditional super-resolution models for our proposed task, inte-
grating multi-scale observational information into them. As

shown in Fig. 1(a), traditional SR-based downscaling methods
mainly learn the mapping between low-resolution input fields
and the target high-resolution fields within an encoder-decoder
architecture. We adopted a straightforward approach to in-
corporate high-resolution Himawari-8 (H8) satellite imagery
observations and Weather2K station observations into the
model. Specifically, given the high-resolution H8 images we
encode them with a single convolutional layer, then align the
dimension with the input meteorological fields by average
pooling operation and concatenated them on top of the input
low-resolution meteorological field before feeding them into
the super-resolution model. After obtaining the meteorological
field at the target resolution, the meteorological state of
the scattered stations can be acquired through interpolation.
Subsequently, both the grid supervision and the corresponding
station supervision data are utilized to compute the loss
function, which is then used for backpropagation. In terms of
the choice of super-resolution models, we selected the classic
UNet-based super-resolution model with ResNet-18 backbone
[73] and the EDSR [48] and made modifications to their
structures and implementations.

C. Comparison with Baselines
We compared the performance of our proposed HyperDS

method with other baseline methods for station-scale down-
scaling with high-resolution grid supervision. Due to the trade-
off between grid-scale supervision and station-scale supervi-
sion in the model optimization process, but as our current
task mainly focuses on the performance at the station scale,
we chose the checkpoint with the smallest station-scale loss
on the validation set during the training process as the model
for testing. The loss coefficients can also greatly affect site
performance, so considering the need to balance the losses
at both scales, we empirically set the loss coefficients in Eq.
11 as � = 0.05. Subsequent sections will further discuss the
trade-off problem between the losses at the two scales. Since
the Weather2K dataset [36] used as labels do not include the
wind speed component, we compared the downscaling results
of 4 surface variables, which are: wind speed (ws), surface
pressure (sp), 2m temperature (t2m) and total precipitation in
1 hour (tp1h).

1) Test Results by Variables: Tab. III displays the test
metrics for different variables using different methods at the
400 testing observation stations. From the results, it can be
seen that our proposed HyperDS method outperforms the
compared baseline methods on all variables. Particularly for
wind speed and surface pressure, our method significantly
exceeds the others, with the MSE for wind speed improving
by 67% and for surface pressure by 19.5% compared to the
best baseline results.

It should be noted that in the results of direct interpolation
of meteorological fields, the ERA5 1

� interpolation results are
superior to the 0.25� interpolation results in metrics such as
wind speed and precipitation, which seems counterintuitive.
However, similar results have been reported in recent related
work [34]. We believe this is due to the limited assimilation
of observational station data in the ECMWF reanalysis data
for the China region.
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TABLE III
STATION-LEVEL DOWNSCALING RESULTS FOR WIND SPEED (ws), SURFACE PRESSURE (sp), 2M TEMPERATURE (t2m) AND TOTAL PRECIPITATION IN 1

HOUR (tp1h) OF VARIOUS METHODS.

Method
ws sp t2m tp1h

MSE MAE MSE MAE MSE MAE MSE MAE

ERA5 1� 5.5642 1.7842 1048.3886 21.1125 7.7483 1.9235 1.1396 0.1896

ERA5 0.25� 6.2164 1.9118 801.3915 17.2155 6.7855 1.7770 1.2018 0.1893

UNet [73] 5.4575 1.7757 967.8221 20.1538 7.3537 1.8806 1.1426 0.1955

EDSR [48] 6.1547 1.8905 896.9313 19.2898 7.1336 1.8386 1.1572 0.1982

HyperDS (Ours, multi-var) 1.7995 0.9568 716.0126 15.4001 6.3588 1.7656 1.1278 0.1887

HyperDS (Ours, multi-block) 1.9671 1.0126 645.0722 14.6524 6.5747 1.8400 1.1260 0.1859

Upon further analysis of the test results for different vari-
ables, it is evident that our method shows the most significant
improvement in wind speed. This is primarily because wind
speed exhibits the most notable sub-grid variability, with local
wind speeds often being influenced by a variety of small-scale
meteorological processes such as turbulence, making it diffi-
cult to capture at the relatively coarse resolution of grid scales.
On the contrary, for variables such as 2m temperature and
precipitation, the improvement from our method is relatively
small. This is because the variability of local temperature is
relatively gradual, and as for precipitation, due to its sparse and
long-tailed distribution [74], acceptable downscaling results
can be obtained by simply interpolating the grid data.

For the two super-resolution-based comparison methods,
we can see that although observational information has been
incorporated, the improvement in overall station downscaling
performance is quite limited. We believe that this is be-
cause traditional super-resolution methods, which are based
on fixed-resolution grid supervision, place more emphasis
on the regression task for each grid pixel, and the learning
process remains a discrete mapping from coarse grid scales
to fine grid scales. In contrast, the optimization goal of our
proposed HyperDS method, which is based on hypernetworks
and implicit neural representations, is to learn a mapping from
arbitrary coordinates to meteorological states, constructing a
continuous representation of the meteorological field. This
endows the model with stronger capabilities for expressing
sub-grid-scale information. This also explains why the EDSR
model, which has stronger grid super-resolution capabilities,
performs worse in station downscaling than the simpler UNet
model. The reason is that EDSR has a stronger ability to fuse
and extract features at the grid scale, which makes it difficult
for the model to generalize well to the station scale, even
with the inclusion of station-scale observations as supervisory
labels.

For the two different MLP decoder structures we proposed,
it can be seen that different decoder outcomes have certain per-
formance differences for different variables. The multivariate-
based HyperDS performs relatively better on wind speed
and 2m temperature, while the multi-block-based HyperDS
performs better on surface pressure and precipitation. We

believe this is due to the different statistical distributions of
various variables. Although we have normalized all variables
by their mean and variance, making them roughly follow a
Gaussian distribution with zero mean, there are still signif-
icant differences in the value ranges of each variable after
normalization. For example, the variation range of surface air
pressure is relatively larger, whereas the temperature variation
range is comparatively smaller. The decoder based on multiple
blocks, with each MLP representing a local region, can model
the data for a specific area more effectively, thus avoiding
the issue of too great a range of variable changes caused
by global modeling. The decoder based on multiple variables
uses a single MLP to model the entire meteorological field of
a region, which is more effective for variables with smaller
ranges of variation and can also save more computational
memory consumption.

2) Result Visualization: Fig. 5 illustrates the results of
downscaling at different test stations using various methods,
where the color of each station represents the magnitude of
the normalized mean square error at that station, with lighter
colors indicating larger errors. The base map of each visual
image is also the result of downscaling at the grid scale
with 0.25� spatial resolution of each model. The results in
the figure show that our proposed HyperSR method performs
significantly better at the site scale compared to other methods.
In particular, for the wind speed variable, the baseline methods
exhibit a large error in the northeastern area of the study region
(more white dots), but our method can effectively correct the
downscaling bias in this area. Combining this with Fig. 2,
we can see that for areas with sparser training stations (such
as the northeastern and western regions), the downscaling
performance of all methods tends to decline to different
extents compared to the densely observed southeastern re-
gion. However, our method still exhibits better generalization
performance; for instance, for the 2m temperature variable,
our method has relatively fewer white dots in the northeastern
region compared to other baseline methods. It is noteworthy
that the downscaling method based on super-resolution (SR)
achieves better downscaling results at the grid scale (i.e., base
map) compared to our method. This is a limitation of our
method and a direction for further improvement in the future.
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Fig. 5. Visualization comparison of downscaling to station-scale using different methods, where the color of each station represents the magnitude of the
normalized mean square error at that station, with lighter colors indicating larger errors, i.e. the darker the color of the site, the better the performance of the
downscaling. The base map of each visual image is also the result of downscaling at the grid scale with 0.25� spatial resolution of each model.
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D. Downscaling performance across different subregions

From Fig. 2, it is evident that the density of stations
exhibits significant variation according to different regions.
Specifically, the distribution of stations is relatively dense in
the southeastern coastal regions, whereas in the northwest
and southwest regions (such as the Xinjiang area and the
Tibetan Plateau), the distribution of sites is comparatively
sparse. Consequently, to further analyze the impact of station
density on the results of downscaling, we have established
four distinct subregions to compare the downscaling results
at the test stations within our proposed HyperDS and ERA5
interpolation. The division of the four subregions is as follows:

• Region 1 covers the southeast of the Chinese mainland
with a boundary of 105

�E to 125
�E and 20

�N to 40
�N.

A total of 270 test stations are included within this
subregion.

• Region 2 covers the northeast of the Chinese mainland
with a boundary of 120�E to 135

�E and 42
�N to 54

�N. A
total of 28 test stations are included within this subregion.

• Region 3 covers the northwest of the Chinese mainland
with a boundary of 80�E to 100

�E and 40
�N to 54

�N. A
total of 7 test stations are included within this subregion.

• Region 4 covers the Tibetan Platea area of the Chinese
mainland with a boundary of 80

�E to 100
�E and 25

�N
to 40

�N. A total of 16 test stations are included within
this subregion.

Tab. IV presents a comparison of the downscaling results
for stations across different subregions. The results from the
table clearly show significant differences in the downscaling
outcomes across different subregions. Region 1, having the
highest number of observational stations during the training
stage, also exhibits the best downscaling results. It is notewor-
thy that the wind speed variable in Region 1 demonstrated poor
performance with the ERA5 interpolation method. However,
by leveraging extensive observational station data for train-
ing, our proposed HyperDS method significantly enhanced
the downscaling results for wind speed, achieving the best
outcomes. This outcome is also consistent with the visual
results presented in Fig. 5. For the other three regions, which
have relatively fewer sites, particularly Regions 3 and 4, the
downscaling results for wind speed, temperature, and other
meteorological variables exhibit varying degrees of decline.
This is largely due to the discrepancies between the low-
resolution meteorological fields used as inputs and the ob-
servations made at the stations in these regions. Nevertheless,
HyperDS still enhanced the downscaling performance even
with fewer observations.

In summary, the comparative results across different regions
fully demonstrate the effectiveness of the HyperDS method.
Additionally, it also reveals the uneven assimilation capabili-
ties of the original meteorological field data in various regions.
For areas where observation is particularly challenging, such
as the Tibetan Plateau, future efforts will require more special-
ized methods to further enhance downscaling performance.

E. Downscaling without High-resolution Gridded Supervision

In practical applications, high-resolution gridded meteo-
rological fields are often difficult to obtain, whereas direct
observations at observation stations are relatively easier to
access and the data quality is more stable. Obtaining station-
scale meteorological states directly from low-resolution meteo-
rological fields is a very meaningful task. Hence, we conducted
station-scale downscaling experiments without high-resolution
grid supervision based on the designed loss function Eq. 7.

Tab. V shows the downscaling results at the station level
for different methods. The results from the table indicate that,
even without high-resolution grid supervision, our proposed
HyperDS outperforms other methods on the majority of the
evaluation metrics for most variables, particularly for the wind
speed variable. However, for 2m-temperature and surface pres-
sure variables, compared to the results supervised with high-
resolution grid data, there is a noticeable performance decrease
(for surface pressure, the MSE decreased from 645.0722 to
805.9112, and for 2m-temperature, it decreased from 6.3588
to 7.1487). This performance degradation is because high-
resolution grid supervision provides a significant improvement
over coarse-resolution grid inputs at the station level for these
two variables. Consequently, the absence of high-resolution
grid data supervision leads to a decline in performance.
In contrast, for the wind speed variable, the downscaling
performance at the station level is slightly improved (MSE
decreased from 1.7995 to 1.7815) because the interpolation
results from low-resolution inputs are less dependent on high-
resolution supervision.

Although there is a certain degree of performance decline,
our proposed HyperDS method still outperforms the com-
parison methods even without high-resolution grid supervi-
sion. Even when the comparison methods incorporate high-
resolution supervision (as shown in the results of Tab. III),
our method remains superior on most metrics compared to
those based on grid super-resolution networks.

F. Ablation Study

We further compared the performance of the HyperDS
method under different settings to verify the impact of the
inclusion of observational data and the number of samples on
the method’s performance.

Tab. VI shows the test performance of HyperDS under
different experimental settings. The results indicate that the
inclusion of station observation supervision is the most critical
factor affecting the model’s performance. This is intuitive, as
previous work has also shown that there is an inherent bias be-
tween the meteorology itself and scattered station observations
[34], which cannot be recovered solely through high-resolution
grid supervision. Based on this result, coupled with the fact
that we use station observations as our supervision labels, it
means that no real-time station observations are needed during
the model inference stage. The model itself can adaptively
generalize the meteorological field to any station location,
which also implies that the model has learned the inherent bias
from the meteorological field to the station and has effectively
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TABLE IV
STATION-LEVEL DOWNSCALING RESULTS FOR WIND SPEED (ws), SURFACE PRESSURE (sp), 2M TEMPERATURE (t2m) AND TOTAL PRECIPITATION IN 1

HOUR (tp1h) ACROSS DIFFERENT SUBREGIONS.

Subregions #Stations Methods
ws sp t2m tp1h

MSE MAE MSE MAE MSE MAE MSE MAE

Region 1 270
ERA5 1� 5.5319 1.8160 721.5415 18.1236 4.6385 1.6041 1.3967 0.2135

HyperDS (Ours, multi-var) 1.7674 0.9430 478.7216 13.3340 4.6018 1.5668 1.3752 0.2137

HyperDS (Ours, multi-block) 1.9406 0.9742 470.5051 12.1737 4.6337 1.6130 1.3746 0.2147

Region 2 28
ERA5 1� 7.6884 2.2915 190.7777 10.4336 7.8760 1.8637 0.6024 0.1195

HyperDS (Ours, multi-var) 1.9086 1.05156 111.2481 8.2178 6.1165 1.7686 0.5844 0.1242

HyperDS (Ours, multi-block) 2.5825 1.2313 82.6108 6.8603 7.8511 1.8394 0.5801 0.1211

Region 3 7
ERA5 1� 3.1861 1.3679 1433.3450 29.4225 14.3588 3.0458 0.0703 0.0421

HyperDS (Ours, multi-var) 2.8637 1.2714 1394.6950 27.1029 10.7129 2.8938 0.0700 0.0677

HyperDS (Ours, multi-block) 3.0135 1.3189 1061.6501 26.0353 15.8731 3.1928 0.0690 0.0568

Region 4 16
ERA5 1� 3.9376 1.5139 2713.4776 42.2931 27.4980 3.9007 0.2903 0.1418

HyperDS (Ours, multi-var) 3.0041 1.3109 1218.1292 26.3006 15.4011 3.1412 0.2753 0.1430

HyperDS (Ours, multi-block) 3.3948 1.3837 990.8851 24.5738 23.3481 3.4003 0.2682 0.1243

TABLE V
STATION-LEVEL DOWNSCALING RESULTS FOR WIND SPEED (ws), SURFACE PRESSURE (sp), 2M TEMPERATURE (t2m) AND TOTAL PRECIPITATION IN 1

HOUR (tp1h) OF VARIOUS METHODS WITHOUT HIGH-RESOLUTION GRIDDED SUPERVISION.

Method
ws sp t2m tp1h

MSE MAE MSE MAE MSE MAE MSE MAE

UNet [73] 5.3051 1.7508 1078.9179 21.6993 7.6797 1.9225 1.1426 0.1992

EDSR [48] 5.2994 1.7495 1082.5246 21.7704 7.6539 1.9183 1.1426 0.1902

HyperDS (Ours, multi-var) 1.7815 0.9613 901.4435 17.9062 7.1487 1.8239 1.1319 0.1940

HyperDS (Ours, multi-block) 2.0379 1.0335 805.9112 16.0210 7.4909 1.9281 1.1274 0.1943

TABLE VI
ABLATION STUDY RESULTS OF HYPERDS WITH MULTI-BLOCK-BASED MLP DECODER. THE SETTINGS ’STATION’ AND ’H8’ REPRESENT THE

STATION-LEVEL SUPERVISION AND H8 SATELLITE IMAGE INPUT. THE SETTING ’SAMPLE’ REPRESENTS THE SUBGRID-SAMPLING STRATEGY IN MLP
DECODER.

Method
Settings ws sp t2m tp1h

station h8 sample MSE MAE MSE MAE MSE MAE MSE MAE

HyperDS

7 3 3 5.4509 1.7769 1088.7840 23.3697 9.2645 2.2367 1.1427 0.1983

3 7 3 1.8876 0.9893 721.9860 15.2776 6.8517 1.8417 1.1262 0.1910

3 3 7 2.3029 1.1133 729.5865 15.7978 7.1172 1.8925 1.1322 0.1936

3 3 3 1.9671 1.0126 645.0722 14.6524 6.5747 1.8400 1.1260 0.1859

reduced it. Therefore, our method can be regarded as a general
interpolation model from the meteorological field to stations.

Regarding the input of H8 remote sensing satellite images,
although it is not a direct representation of meteorological con-
ditions, through our designed feature extraction and implicit
retrieval network, the model can learn useful information from
indirect observations. However, the results indicate that the
input from H8 did not show a positive impact on all variables.
This is because the satellite observations we input are Level
1 radiance data, in which the meteorological state information

is implicit and incomplete. From the types of Level 2 (L2)
inversion products provided by the Himawari-8 satellite, it is
evident that the primary meteorological variables related to
it are surface temperature, humidity, and high-altitude wind
speed (obtained indirectly based on cloud movement). There-
fore, in the experimental results, the incorporation of H8 data
has a more pronounced improvement in 2m temperature and
surface pressure (which are strongly correlated with humidity).
However, for the surface wind speed, since it has a significant
deviation from the high-altitude wind speed, the results do not
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show a direct enhancement.
Sampling at the subgrid coordinates is also one of the inno-

vative aspects of our method. By using subgrid sampling, the
traditional implicit neural representation methods can be better
aligned with the continuous distribution characteristics of the
meteorological field, and the scattered station observations are
treated as samples to be averaged with other samples within
the same pixel. We set subgrid sampling numbers to 2 for
comparison, and the experimental results also indicate that
more samples typically yield better experimental outcomes and
faster convergence rates. However, excessive sampling usually
means greater GPU memory usage; therefore, we only set the
maximum number of samples to 10 during the experimental
process.

G. Analysis of the effectiveness of Himawari-8 obervations
To further explain the negative impact of Himawari-8 ob-

servations on wind speed variables as shown in Tab. VI, we
have designed an additional experiment for interoperability.
Since the retrieval process in the HyperDS model proposed
in this paper is implicitly represented through the cross-
attention mechanism in the Transformer model, it is not
possible to intuitively visualize the effects of the inversion.
Therefore, we designed a vanilla CNN-based encoder-decoder
network, taking H8 observations as input and using ERA5 for
supervision, to simulate the retrieval process. As illustrated
in Fig. 6, we visualized the albedo03 band of the input H8
observations, as well as the retrieved meteorological fields
and the corresponding ground truth. By observing the texture
information in the retrieved results, it can be seen that the
surface pressure variables perform the best, followed by tem-
perature and precipitation. However, the retrieved results for
wind speed variables are inferior. This visualization results to
some extent illustrate the negative impact of H8 observations
on wind speed as shown in Tab. VI.

Further explanation for this can be analyzed from the
imaging characteristics of the H8 satellite. The H8 bands we
input include visible light, near-infrared, and infrared water
vapor channels. The reflectance of these channels contains
information related to surface reflectance, surface water vapor,
and clouds. The surface pressure variable is most signifi-
cantly influenced by air temperature and humidity, and they
change relatively steadily over time. Therefore, rich texture
information can be inverted from H8 observations. However,
for wind speed, although our method inputs data from two
adjacent frames of H8, hoping to indirectly obtain wind speed
information through the movement of clouds, the high altitude
of the clouds does not adequately represent surface wind
speed. This leads to the inadequacy of H8 observations in
capturing wind speed information.

H. Optimization process analysis
Since our method requires the simultaneous optimization of

two losses at the grid scale and the station scale, we further
discuss the trade-off between these two types of losses to
analyze the impact of different losses and labels on the model
optimization process. Both previous work [34] and the exper-

imental results discussed above have adequately illustrated a
substantial systematic bias between meteorological conditions
at the station scale and the grid scale. Our approach uses
the meteorological fields at the grid scale as input and, by
modeling a continuous representation of the meteorological
field, aims to obtain high-precision meteorological states at the
station scale to alleviate this systematic bias. However, during
the training process, as mentioned in Eq. 11, we introduced
supervisory information from both the station scale and the
grid scale and combined them in a weighted sum to serve as
the objective function. This also creates a trade-off between
the two different losses.

Fig. 7 displays the changes in the normalized MSE loss for
the validation set at both the station scale and grid-scale during
the training process. It should be noted that because we have
incorporated strong prior information (such as interpolation
results, etc.) as inputs into our model, the model is capable of
achieving satisfactory convergence within just one epoch. As
a result, the overall loss function appears relatively smooth.
The curves in the figure indicate that for all models, the grid-
scale loss decreases steadily with the progression of training.
However, the station-scale loss is relatively more volatile
and tends to first decrease and then increase as the number
of training epochs increases (this is particularly evident for
the models with � = 0.05). As � increases from 0.05 to
0.1, this phenomenon is somewhat mitigated, but there is
a corresponding decline in performance at the grid scale.
We believe that such results are primarily due to a certain
level of discrepancy between the two types of losses, and the
fact that there are fewer station-scale samples compared to
grid-scale samples, leading to a degree of sample imbalance.
Furthermore, the results in the table also reveal that high-
resolution grid supervision has a significant impact on grid-
scale performance, but the effect is relatively tolerable for
station-scale predictions. Upon further analysis of cases with
high-resolution station supervision, models with multi-block
decoders exhibit a significant performance improvement at
the grid scale compared to multi-variable decoders; however,
this improvement is not as pronounced at the station scale.
Additionally, the convergence speed of the former is noticeably
superior to that of the latter.

From the analysis above, it is evident that for the novel task
we proposed, it is unreasonable to focus solely on improving
station-scale performance without considering the grid scale.
Therefore, devising more rational model structures to further
enhance the downscaling performance at both scales is an
important research direction for the future.

VI. DISCUSSION

The purpose of this paper is to downscale grid-scale mete-
orological field data to the scale of discrete scattered stations.
This allows us to obtain the meteorological state at any lo-
cation based on widely used coarse-resolution meteorological
field data, which has significant practical importance. The new
task proposed in this paper, along with the novel method
HyperDS, integrates multi-scale observational information into
the downscaling task, effectively achieving station-scale down-
scaling. However, there are still many aspects of this task
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Fig. 6. Illustration of meteorological field retrieved based on Himawari-8 observations using a vanilla CNN-based encoder-decoder network. It can be seen that
the retrieval results for temperature, pressure, and precipitation variables exhibit good detail in texture; however, it fails to recover high-frequency information
for wind speed variables.

that can be further explored and researched. We will discuss
the current issues and potential future directions from two
perspectives: the data and the methodology.

1) Observation Data: Based on the experiments and anal-
yses conducted, it is evident that incorporating multi-scale
observational data plays a crucial role in the downscaling task.
The dataset we currently propose includes only two types
of observational information: station observations and geo-
stationary satellite radiance values. Especially with regard to
satellite observations, the data types contained within a single
data source are quite limited. In the operational forecasting

data assimilation process [62], multisource and multisensor
remote sensing data are used to obtain different meteorological
variables. Therefore, integrating more types of remote sensing
observation data into the dataset is important for constructing
a continuous-scale multivariate meteorological field. However,
this task is also very challenging, involving specialized knowl-
edge related to the sensors and corresponding meteorological
variables, as well as complex data preprocessing procedures.
In addition, the number of station data points we utilized
is still relatively small. Previous work has used data from
tens of thousands of stations to achieve high-accuracy station-
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(a) Normalized MSE validation loss on station-level scale.

(b) Normalized MSE validation loss on grid-level scale.

Fig. 7. Illustration of the changes in the normalized MSE loss on the
validation set under various hyperparameter settings during the training
process, with 0.05 and 0.1 indicating the � values of the station loss in Eq.
11.

scale weather forecasts [34]. Incorporating more station data is
also crucial for continuous-scale modeling. We also welcome
more researchers to integrate more types of data into our task
to enhance the capability of continuous-scale modeling for
more meteorological variables, and we hope that related work
can assist with the practical applications of meteorological
forecasting.

2) Models and Methodology: Designing model architec-
tures and methods suitable for the current task is also key
to improving the performance of the task. Unlike traditional
downscaling works based on super-resolution, downscaling to
the scale of individual stations places higher demands on the
model’s ability to represent resolution continuously. The Hy-
perDS proposed in this paper starts from this perspective and
has achieved good performance in downscaling to the station
scale. However, the current method sacrifices the performance
of grid-scale downscaling to some extent in order to enhance
station-scale downscaling, which is not a trade-off we desire
to see. This is also a common problem with many super-
resolution methods based on implicit neural representations.
Therefore, how to design a more effective model that ensures
multi-scale modeling accuracy while supporting continuous-

resolution representation is an urgent issue to be addressed in
the future.

VII. CONCLUSION

In this paper, we extend the traditional fixed-resolution grid-
based downscaling task to the scale of scattered station scale
to derive accurate surface meteorological states at arbitrary
locations. To restore the meteorological state of the subgrid,
we integrate multi-scale observational data into the down-
scaling process and propose a new model based on a hy-
pernetwork structure called HyperDS. It uses high-resolution
remote sensing images as prior input and scattered obser-
vation station data as station-scale labels. By continuously
modeling the meteorological field with neural fields, it ef-
fectively integrates multi-scale observational information and
achieves high-precision meteorological field downscaling at
the station scale. Through extensive experimental comparisons
with specially designed baseline methods, we have verified
the effectiveness of our proposed approach, particularly in
terms of performance on wind speed and surface pressure
variables, where it significantly outperforms other methods.
This paper represents the first exploration into observation-
driven downscaling of meteorological fields to station scales.
We hope that in the future, more researchers will build on
this foundation to study more effective methods, enhancing
the accuracy and capability of continuous meteorological field
modeling.
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