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Dense Pixel-to-Pixel Harmonization via Continuous
Image Representation

Jianqi Chen, Yilan Zhang, Zhengxia Zou, Keyan Chen, and Zhenwei Shi*, Member, IEEE

Abstract—High-resolution (HR) image harmonization is of
great significance in real-world applications such as image syn-
thesis and image editing. However, due to the high memory costs,
existing dense pixel-to-pixel harmonization methods are mainly
focusing on processing low-resolution (LR) images. Some recent
works resort to combining with color-to-color transformations
but are either limited to certain resolutions or heavily depend on
hand-crafted image filters. In this work, we explore leveraging
the implicit neural representation (INR) and propose a novel
image Harmonization method based on Implicit neural Networks
(HINet), which to the best of our knowledge, is the first dense
pixel-to-pixel method applicable to HR images without any hand-
crafted filter design. Inspired by the Retinex theory, we decouple
the MLPs into two parts to respectively capture the content
and environment of composite images. A Low-Resolution Image
Prior (LRIP) network is designed to alleviate the Boundary
Inconsistency problem, and we also propose new designs for
the training and inference process. Extensive experiments have
demonstrated the effectiveness of our method compared with
state-of-the-art methods. Furthermore, some interesting and
practical applications of the proposed method are explored.
Our code is available at https://github.com/WindVChen/INR-
Harmonization.

Index Terms—Image harmonization, implicit neural represen-
tation, high resolution, pixel-to-pixel.

I. INTRODUCTION

IMAGE compositing, a fundamental technique in image
processing, has been widely used in various applications

such as image editing [1]–[3], data augmentation [4]–[6],
etc. It encompasses various methods such as image matting
[7] and shadow generation/removal [8], with the objective of
generating realistic synthetic outputs by extracting foreground
objects from one image and seamlessly integrating them into
another background image. Nonetheless, inconsistencies in
color spaces between the foreground and background of the
composite image often result in perceptual disparities due
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Fig. 1. Structural differences between the existing harmonization methods
and our proposed HINet.

to variations in lighting and tonal qualities. This challenge,
distinct from image enhancement techniques [9], [10] which
primarily address the overall appearance of an image, fre-
quently necessitates manual adjustments of the color distri-
bution within the foreground image layers, which demands
much professional knowledge and does cost lots of time.

Aimed to harmonize the composite images, [11] first in-
troduced deep learning into the task and many effective
approaches have been proposed [12]–[17] in recent years.
These data-driven approaches, compared with traditional ones
[18]–[21] that rely on matching low-level statistics between
foreground and background, have demonstrated better results
with their strong semantic representation capability. However,
as these methods mostly adopt a U-Net [22] like structure,
the harmonization process is essentially a dense pixel-to-pixel
transformation and costs much GPU memory [23]. As a result,
it is difficult for these methods to be applied for processing
high-resolution (HR) images, such as 2K or 4K, and most
of them only perform at a low resolution of 256⇥256 pixels.
To achieve HR image harmonization, more recent works [23]–
[25] proposed to leverage color-to-color transformations which
saves much memory. Despite the applicability of harmonizing
HR images, these methods are either limited to certain reso-
lutions [23], or heavily rely on hand-crafted filters [24], [25]
which are cumbersome in design and also limit the potential
of deep learning networks.
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Considering the unaffordable memory cost of the current
pixel-to-pixel deep learning-based harmonization frameworks,
we study if it is possible to apply a scale-adaptive dense pixel-
to-pixel transformation to HR image harmonization. In our
method, we are inspired by the recently popular paradigm Im-
plicit Neural Representation (INR) [26], [27], which leverages
a stack of multilayer perceptrons (MLP) to represent a 3D
scene [28] or a 2D image [26] parameterized by continuous
coordinate input. Two features of INR appeal to us. Firstly,
different from the CNN structure that takes the whole im-
age/feature map as input, the input to INR structure is a vector
containing grid coordinates, providing us more control over the
memory cost. Secondly, by inputting continuous coordinates
(x, y) and outputting RGB values, the MLP models in its
weights a continuous image that is not limited by resolution,
which may benefit HR image harmonization. Inspired by these
two advantages, in this paper we explore a novel dense pixel-
to-pixel image Harmonization method based on Implicit neural
Networks (HINet). Fig. 1 shows the differences between our
method and previous harmonization methods.

Directly applying conventional INR approaches to the im-
age harmonization task can lead to several issues, including
subpar performance, discontinuous patterns, and high memory
consumption. We have provided an extensive analysis of these
challenges in Sec. III-B. In light of these challenges, we have
meticulously designed the proposed HINet to achieve superior
harmonization results. Inspired by Retinex theory [29], [30],
we decouple the MLPs in the HINet decoder into a content
extraction part and an appearance rendering part. One is to
preserve content structure and determine what objects are in
the image, while the other is to capture the global environment
of the image. The parameters of these two parts’ MLPs are
predicted by different encoder layers, thus alleviating the
burden of the last output layer. Furthermore, to prevent the
potential inconsistency problem of the local MLPs, we design
a Low-Resolution Image Prior (LRIP) structure, where the
MLPs of the content extraction part are more finely divided
into several parts, each processing a specific resolution of
the input with the former lower resolution part’s output as a
prior. This structure can both solve the inconsistency problem
and reduce memory costs. For HR image harmonization train-
ing, we design a Random Step Crop (RSC) strategy, while
also introducing the inference process for ultra-HR images.
Moreover, following [24], [25], we include an optional 3D
lookup table (LUT) [31], [32] rendering branch to enrich the
comprehensibility of the model and enable the manual control.

Our contributions can be summarized as follows:
• As far as we know, our method is the first dense pixel-

to-pixel image harmonization method that can be applied
to HR images. The proposed HINet requires no hand-
crafted filters and liberates the strong learning ability of
the neural networks.

• We explore leveraging INR in image harmonization. We
expect that the new paradigm can pave way for more
future research on HR harmonization task.

• Extensive experiments have demonstrated the effective-
ness of our method. Compared with previous methods,
the HINet can achieve state-of-the-art performance on HR

image harmonization. Moreover, we have explored some
interesting potentials of the HINet in practical usages,
such as arbitrary resolution harmonization, and region-
based harmonization for both images and videos.

II. RELATED WORKS

Image Harmonization. In this part, we mainly focus on
reviewing deep learning-based image harmonization methods,
as their superiority over the traditional methods [18]–[21], [34]
has been demonstrated [11]. Since Tsai et al. [11] pioneered
conducting image harmonization with deep neural networks,
many data-driven methods [12]–[14], [16], [17], [35] have
been proposed and achieve good results on LR images. Cun
et al. [35] proposed to leverage the attention mechanism for
better learning features of foreground and background. Cong et
al. [12] considered the domain shift to harmonize composited
images. Ling et al. [14] referred to AdaIN [36] and regarded
image harmonization as a style transfer problem. Sofiiuk et
al. [16] proposed to utilize high-level semantic features from
pre-trained models. Hang et al. [17] leveraged contrastive
learning to narrow the solution space. These methods, although
performing well on LR image harmonization (256⇥ 256), are
hard to be applied to harmonize HR images due to the high
memory cost in their U-Net [22] structure design. To meet
the practical needs of HR image harmonization, more recent
works [23]–[25], [37]–[39] resorted to color-to-color opera-
tions. Cong et al. [23] proposed to combine features of pixel-
to-pixel and color-to-color transformations, and [24], [25]
manually designed several image filters and predicted their
parameters. Despite their potential in processing HR images,
there remain some limitations. For CDTNet [23], since the
Refinement Module alone requires about 6GB memory for a
single 2048⇥2048 image, it will consume unbearable memory
at higher resolution (e.g. 6K) and thus only works for certain
high resolutions. For [24], [25], although they are capable of
being applied to flexible high resolutions, these methods rely
heavily on hand-crafted filters that are cumbersome in design
[24], [25]. Recent [37] proposed to approximate the filters with
predicted piece-wise linear functions, yet may fail to model
complex scenes due to the simplicity of the function. Another
more recent study [38] also utilizes piece-wise linear curves
and predicts additional shading maps to enhance local control.
Additionally, [39] approximates color transformations through
the application of an affine matrix and predicts a corresponding
parameter map.

In contrast to previous dense pixel-to-pixel harmonization
approaches relying on CNN structures, our work introduces
an INR-based method meticulously tailored for processing
high-resolution composite images in a dense pixel-to-pixel
manner. Notably, it represents the first dense pixel-to-pixel
high-resolution image harmonization method. The utilization
of this dense pixel-to-pixel approach enables us to harness
the full potential of deep networks, surpassing the capabili-
ties of hand-crafted filters commonly employed in color-to-
color methods. This enhancement empowers us to effectively
address more complex scenarios, ultimately yielding state-of-
the-art performance.



CHEN et al.: DENSE PIXEL-TO-PIXEL HARMONIZATION VIA CONTINUOUS IMAGE REPRESENTATION 3

. . .

. . .

𝑀𝐼~

R C

C

Extra Global Features

. . . 

. . . 

𝑥, 𝑦

𝑟𝑔𝑏𝑥,𝑦

𝑚𝑥,𝑦

𝑉~

—Batch of 𝑟𝑔𝑏𝑥,𝑦

. . . Assemble

U

C

Encoder Decoder LUT Harmonize 
(Optional)

Low-Resolution Image Prior
𝑓𝐶𝑜𝑛𝑡_𝐵1

𝑓𝐶𝑜𝑛𝑡_𝐵2

𝑓𝐶𝑜𝑛𝑡_𝐵3

𝑓𝐴𝑝𝑝

Content MLPs
(Local)

Appearance MLPs
(Global)

𝐶𝑎𝑡(𝐺𝑟𝑖𝑑, 𝐼,𝑀) ∈ 𝑅(𝑁4 ∙ 𝑁4)×6

𝑅256×256×4

𝑅(𝑁2 ∙ 𝑁2)×6

𝐹 ∈ 𝑅(𝑁4 ∙ 𝑁4)×𝐾

𝑅(𝑁2 ∙ 𝑁2)×𝐾

𝑅(𝑁2 ∙ 𝑁2)×(6 + 𝐾)
𝑅(𝑁 ∙ 𝑁)×(6 + 𝐾)

𝐼 ∈ 𝑅𝑁×𝑁×3

( ൗ𝑆 4)
2 𝑀𝐿𝑃𝑠

( ൗ𝑆 2)
2 𝑀𝐿𝑃𝑠

𝑆2 𝑀𝐿𝑃𝑠

1 𝑀𝐿𝑃

𝑀 × 𝐼 + (1 − 𝑀) × 𝐼

3D LUT

Optional

R Resize

C Concat

U Upsample

Skip Connections

MLP Weights Prediction

Intermediate Features
~

−− ~

Fig. 2. The pipeline of our method. The HINet consists of an Encoder, a Decoder, and an optional LUT Harmonize module. Given a downsampled composite
image eI and its mask M , the Encoder predicts parameters of the decoder’s MLPs and 3D LUT (optional). Fix the MLPs’ parameters, we feed into the decoder
a batch of vectors V , which is a concatenation of grid coordinate (x, y), value mx,y in M , and value frgbx,y in eI . We then assemble the output vectors
rgbx,y , and obtain harmonized images I . Note that the number of layers in the figure is simplified, please refer to Sec. IV-A for more details. Details of the
Encoder structure can be referred to [16], where “Extra Global Features” denotes the features from an additional HRNet [33].

Implicit Neural Representation. The INR method was
originally proposed in [40], and has gained much popularity
in 3D area recently [28], [41], [42], where it can represent
a continuous 3D shape and is a memory-economic way
compared to traditional approaches [43]–[47] such as point
cloud and voxel. The key idea of INR is to convert originally
sparse coordinates into continuous signals. Some recent studies
[26], [27] show that INR with Fourier embedding and periodic
activation like sinusoidal can be well applied to 2D area
and represent photorealistic images. Since the coordinates are
in a continuous real space, the generated images are then
continuous. Inspired by INR, many recent works have explored
leveraging it into different tasks and achieving some good
results, e.g. image-to-image translation [48], image super-
resolution [49], image generation [50]–[52], etc. Different
from these works, we focus on building a dense pixel-to-pixel
image harmonization network that can be applied to ultra-
HR images. The HINet structure has been carefully designed
and some interesting potentials for practical use have been
explored.

III. PROPOSED METHOD

A. Overview

The HINet architecture consists of an encoder and a de-
coder. The encoder structure aligns with prior research [16],
[25], incorporating additional global features within its inter-
mediate layer. In the decoder segment, we adhere to the INR
paradigm, employing a stack of MLPs. The overall architecture
is illustrated in Fig. 2. Given a composite image eI , we input its

resized version (256x256) and the corresponding mask M into
the encoder. This step enables the prediction of parameters for
the decoder MLPs. Once the decoder’s weights are determined,
we feed it with a batch of vectors V , with a batch size
matching the pixel count of the original composite image. The
vector V represents a concatenation of grid coordinates (x, y),
mask values mx,y , and composite image values frgbx,y . These
vectors undergo processing by the decoder MLPs, yielding
harmonized signals rgbx,y . By assembling these output RGB
values, we generate the final harmonized image I .

In the subsequent subsections, we will delineate the chal-
lenges associated with implementing INR for image harmo-
nization in Section B. Following this, Sections C through E
will provide an in-depth exposition of our network designs,
specifically crafted to address these challenges.

B. Analysis of Existing Challenges

Leveraging INR for the image harmonization task is a
challenging task. Recently, there have been many approaches
[48], [50]–[52] applying INR to tasks like image generation
and image translation. These methods usually take encoder’s
output features as the MLPs’ weights and get generated images
by feeding in coordinates. Some of them apply a stack of
globally representative MLPs [50] where every coordinate is
processed by the same MLP, while others apply locally rep-
resentative MLPs [48] that coordinates are split into different
parts and processed by corresponding MLPs. Although these
methods achieved attractive results in some tasks, there are
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mainly three challenges in transferring to image harmonization
task.

The first challenge is the design of the INR structure. Since
the harmonization task requires preserving content structure
while aligning color space between foreground and back-
ground, we may encounter content loss [48] if we choose
to utilize global MLPs. Whereas if we choose to leverage
local MLPs, the memory cost will dramatically increase which
is unaffordable, especially for real harmonization scenarios
where images can reach high resolutions, and it may also
introduce the problem of inconsistency in the boundaries of
adjacent image regions (see Sec. III-D).

The second challenge is the insufficiency of the encoder out-
put features. Existing methods mostly predict the parameters
of all MLPs only from the features of the last encoder layer.
Although deep layers do capture rich semantic information,
content structure information is not well preserved, and it
is burdensome to predict a large number of parameters by
a single layer. A downsampling operation may reduce the
number of parameters, yet inevitably decrease the output
image fidelity due to more structural information loss.

The third challenge is how to perform HR training and
inference without consuming too much memory. Real-world
harmonization scenarios often encounter ultra-HR images, e.g.,
6K. Even just harmonizing a single one (e.g., 6048 ⇥ 4032
pixels) will consume lots of memory as the vectors input
to INR can build a huge batch (⇡ 107). Dealing with such
an ultra-HR problem is still underexplored by previous INR
works.

Considering the aforementioned challenges, we have metic-
ulously crafted HINet. These challenges are individually tack-
led by our solutions in Sec. III-C, Sec. III-D, and Sec. III-E.

C. Decoupled Content and Appearance MLPs

Existing INR approaches either leverage a stack of globally
representative MLPs [50], [51] where each layer is a single
MLP, or locally representative MLPs [48] where each layer is
an MLP matrix that consists several MLPs (The differences
are displayed in Fig. 2). The former may have a low fidelity
problem [26], while the latter may have an out-of-memory
problem as there are more MLPs.

Referring to Retinex theory [29], [30] that decomposes an
image into illumination and reflectance, we can also decom-
pose the harmonization task into two pieces: determining the
environment and the content objects of an image. Along with
this idea, we decouple the MLPs in the decoder into a content
extraction part fCont and an appearance rendering part fApp.
Specifically, fCont leverages locally representative MLPs to
both extract objects information and ensure content structure
retention, while fApp adopts a globally representative MLP
to capture the background environmental condition. Since the
content structure is mostly preserved in low-level features and
the objects recognition only requires local receptive fields, we
predict the parameters of fCont by shallow encoder layers.
For fApp, we predict its parameters from deep layers that
can capture global and high-level features, thus conducive to
environment capture.

𝑴𝑳𝑷_𝟏 𝑴𝑳𝑷_𝟐

𝑴𝑳𝑷_𝟑 𝑴𝑳𝑷_𝟒

𝑰𝒏𝒑𝒖𝒕 𝑪𝒐𝒐𝒓𝒅𝒔

(a) Composite image (b) Boundary inconsistency problem

(c) Discontinuous pattern (d) Continuous pattern

Fig. 3. Boundary Inconsistency Problem Illustration. When utilizing locally
representative MLPs on a composite image (a), the inconsistency problem
emerges. To clearly illustrate this, we consider only four local MLPs, as
depicted in (b). Near the boundary of these MLPs, the MLP processing
the input coordinate abruptly transitions from one to another, causing a
discontinuous pattern, as seen in (c). In contrast, our designed LRIP structure
ensures a continuous result, as depicted in (d).

It should be noted that recent works [13], [15] also build
networks from the perspective of Retinex. However, unlike
their strict adherence to Retinex theory (explicitly output
illumination and reflectance images, and then multiplying the
two), we implicitly embed the idea into the decoder structure
design to extract content and environment information. To the
best of our knowledge, our design of decoupled MLPs has
not been previously explored by other INR works. Moreover,
such a design not only offloads the last layer of the encoder
and makes the structure of the encoder well aligned with that
of the decoder, but also benefits from both local and global
MLPs (as shown in Tab. VIII).

D. Low-Resolution Image Prior
In this section, we first discuss the boundary inconsistency

problem caused by the design of the fCont, then we introduce
our solution. To be specific, since fCont adopts an MLP
matrix structure, the input is divided into several parts, each
corresponding to a specific MLP. Therefore, at the boundary of
two adjacent MLPs, the processing MLP will suddenly switch
from one to another, leading to a discontinuous pattern. We
illustrate this problem in Fig. 3.

A very straightforward solution for the above problem is
to leverage bilinear interpolation instead of the nearest match.
For each input, we query its nearest four corner MLPs and
calculate the interpolated MLP. Take the four corner MLPs as
fp, where p 2 {1 : 4}, from the top-left corner to the bottom-
right one, and the area enclosed by the current position and
each corner as sp, then the generated MLP can be formulated
as:

fgen =
X

p2{1:4}

sp
0

sall
· fp (1)
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where sall =
P

p2{1:4} s
p and p0 is the opposite corner of p. In

this way, each input vector is processed by a continuous MLP
matrix, thus alleviating the inconsistency problem. However,
although the bilinear interpolation strategy looks simple and
effective, it is not feasible in practice. For example, suppose
the original MLP matrix is composed of 16 ⇥ 16 MLPs, in
this case, even if we harmonize an LR 256⇥ 256 image, then
by using the interpolation strategy, we will finally generate a
256 ⇥ 256 MLP matrix, an unbearable ⇥256 increase in the
number of parameters.

To both reduce the memory cost and avoid the bound-
ary inconsistency between blocks, we propose a new net-
work structure named “Low-Resolution Image Prior (LRIP)”.
Specifically, we divide the MLPs in fCont into several blocks.
We feed the input vectors to each block, and the batch size
increases hierarchically. Except for the first one, each block is
conditioned on the output features of the previous block (See
Fig. 2 for more details). Given a 256⇥256 image and an LRIP
structure with two blocks B1, B2 (for simplicity), the process
is defined as follows:

F1 = B1(V1282) (2)

F2 = B2(Cat(V2562 , Up(F1))) (3)

where VN2 denotes the input vectors with a batch size of
N2, F is the output feature which has the same batch size
as the input, Cat(·) is the concatenation operation, Up(·) is
the upsampling operation. We adopt the bilinear upsampling in
LRIP. In this way, we convert the idea of continuous MLPs to
continuous input. Each input is conditioned on the previous
block, thus learning a more global representation and can
alleviate the inconsistency problem effectively. Furthermore,
since the blocks (except the last one) have a lower resolution
input, the LRIP structure can save a lot of memory while
maintaining high-quality results.

Note that in [51], the authors designed multi-scale INRs
which seems similar to our LRIP structure. However, there
are many differences. The main difference is in the decoder
structure. Due to the different aims, [51] merely used a stack
of global MLPs as the decoder structure, while in our design,
we need to leverage local MLPs to ensure content retention.
Furthermore, their decoder’s parameters are all from the output
features of the encoder’s last layer, while ours are well aligned
with the encoder structure which can make full use of all
encoder layers.

E. HR Image Harmonization
Compared with LR image harmonization, it is more chal-

lenging to harmonize an HR image, especially for dense
pixel-to-pixel transformation methods. We, therefore, propose
designs for both the training and inference processes.

Multiple inputs. The conventional input of the INR is the
coordinate (x, y) [26], [27], [50], [51]. Although with only
the coordinate as input, we can achieve some good results
in LR image harmonization, the quality deteriorates sharply
when harmonizing higher-resolution images. Considering that
the network only sees the LR image (the encoder’s input is
a down-sampled version of the image), when applied to HR

image harmonization, the decoder is required to not only do
harmonization but also super-resolution. We show that this will
be a much more challenging task and the network just fails to
achieve both. Therefore, in practice, apart from the coordinate
(x, y), we also feed the composite image’s RGB value frgbx,y
and the mask value mx,y into the input vector, which is
expected to provide guidance for the decoder and make it focus
on the harmonization task. In this way, our input is finally a
6D vector that can be formulated as V = (x, y, frgbx,y,mx,y).

HR training process. When harmonizing LR images, the
training process is straightforward and we can just feed all
the input vectors into the decoder. However, as mentioned in
Sec. I, it is unaffordable for HR image harmonization due
to the huge batch size. Benefiting from the advantage of the
INR that the input is a batch of vectors, rather than a whole
feature matrix as CNN, we can feed partial vectors into the
decoder, and we design a Random Step Crop (RSC) strategy
which is simple but effective. To be specific, we crop out
the same local area from the composite image, the coordinate
map, and the mask, and feed the vectors in this area into the
decoder. The RSC strategy is somewhat similar to the regular
RandomCrop augmentation, except that we not only need to
crop the original resolution images but also the downsampled
ones to meet the needs of the LR input in the LRIP structure
(Please refer to Sec. III-D.). Furthermore, the motivation of
the RSC strategy is for the feasible HR image training but
not the data augmentation. Following [25], we also employ a
progressive training strategy, first training on LR images and
then finetuning on HR ones, which can bring in better results.

HR inference process. Similar to the problem in the
training process, the inference can also encounter a memory
problem. Here we split the input batch into several sub-batches
along the image’s row dimension (also can be along the
column), feed these sub-batches into the decoder one by one,
and then assemble them as the harmonization result. Another
problem is that in the real world, the resolution of many images
is not divisible by the downsampling multiple of the LRIP
structure. To deal with that, each block of LRIP takes input
vectors of the same batch size (identical to the composite
image’s size) instead of different ones.

Optional 3D LUT prediction. In the proposed HINet, we
can optionally predict the 3D LUT parameters for harmoniza-
tion. The 3D LUT is a lookup table that maps an RGB value
to another value, with which we can harmonize the foreground
of the composite image. The motivation of this optional design
is for facilitating the manual control of users and enhancing
the network’s comprehensibility. Since 3D LUT is essentially a
global transformation, we predict its parameters by the features
for fApp. Different from the elaborately designed filters in
[24], [25], we predict the 3D LUT parameters directly and
can obtain competitive results. Note again that the 3D LUT
is optional and the network performance is not affected by its
existence (see Tab. XII).

It is also worth noting that the LUT prediction is indepen-
dent of our INR decoder. That is, users have the flexibility to
choose which to use in inference based on their preference for
higher harmonization quality (INR decoder) or more control
over the result (3D LUT). This is quite different from recent
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TABLE I
COMPARISONS WITH RECENT STATE-OF-THE-ART HR HARMONIZATION METHODS [23]–[25]. SINCE CDTNET [23] IS NOT OPEN SOURCE AND ONLY
WORKS ON CERTAIN HIGH RESOLUTIONS AS DISCUSSED IN SEC. II, WE DIRECTLY QUOTE THEIR CDTNET-256 RESULTS (NOT CDTNET-512, WHOSE

INPUT CONFIGURATION IS NOT ALIGNED WITH OTHER HR METHODS) ON HADOBE5K SUB-DATASET. FOR HARMONIZER [25] AND DCCF [24], AS
THERE MISSED SOME METRIC RESULTS IN THE ORIGINAL PAPERS, WE RE-RUN THEIR INFERENCE CODE ON THE ORIGINAL RESOLUTION VERSION OF THE

IHARMONY4 DATASET [12] WITH THE SAME DEVICE. THE BEST RESULT IS SHOWN IN BOLD.

HAdobe5K Metric CDTNet [23] Ours

1024⇥ 1024

MSE# 21.24 22.68
fMSE# 152.13 187.97
PSNR" 38.77 38.38
SSIM" 0.9868 0.9886

2048⇥ 2048

MSE# 29.02 24.08
fMSE# 198.85 192.20
PSNR" 37.66 38.35
SSIM" 0.9845 0.9886

Original resolution
(⇠ 6K)

MSE# - 21.81
fMSE# - 173.72
PSNR" - 38.71
SSIM" - 0.9871

Dataset Metric Harmonizer [24] DCCF [25] Ours

HAdobe5K
MSE# 24.09 23.12 21.45
fMSE# 193.70 195.60 172.79
PSNR" 37.82 37.78 38.67
SSIM" 0.9339 0.9858 0.9873

HCOCO
MSE# 20.39 16.84 17.29
fMSE# 364.52 317.43 315.98
PSNR" 37.80 38.65 38.65
SSIM" 0.9858 0.9929 0.9927

Hday2night
MSE# 37.72 55.78 51.24
fMSE# 636.04 715.52 713.66
PSNR" 37.20 37.52 37.35
SSIM" 0.9548 0.9787 0.9801

Hflickr
MSE# 67.82 64.62 66.56
fMSE# 473.30 438.44 449.71
PSNR" 33.44 33.61 33.56
SSIM" 0.9714 0.9843 0.9844

All
MSE# 27.09 24.72 24.62
fMSE# 331.73 302.57 296.31
PSNR" 37.31 37.84 38.07
SSIM" 0.9685 0.9896 0.9900

CDTNet OursComposite Ground Truth

Fig. 4. Visual comparisons on 2048⇥2048 HR version of HAdobe5K
sub-dataset. From left to right, we show the composite images, the
results of [23] and ours, and the ground truth images. The foreground
is stroked by a red line. We have resized the images to their original
aspect ratio for a better view.

Harmonizer OursComposite Ground TruthDCCF

Fig. 5. Visual comparisons on the original resolution of iHarmony4 dataset
(resolution can reach 6K). We are the first dense pixel-to-pixel method that can
be applied to the original resolution. From left to right, we show the composite
images, the results of [24], [25] and ours, and the ground truth images. The
foreground is stroked by a red line. Please zoom in for a better view.

CDTNet [23] as LUT prediction is an integral part of their
final structure.

IV. EXPERIMENTS

A. Experimental Settings
Datasets. We follow previous papers to train and evaluate

our method on the benchmark dataset iHarmony4 [12], which
is synthesized using color transformation methods such as
[53] and consists of 4 sub-datasets (HAdobe5k, HCOCO,
Hday2night, and HFlickr), with 73146 images in total. For

the HR image harmonization, we follow [23] to evaluate on
HAdobe5k sub-dataset that consists of HR images among
the four sub-datasets, and also follow [24], [25] to evaluate
on the original resolution iHarmony4 dataset without any
downsampling operation. To further illustrate the effectiveness,
we follow the existing approaches [13], [14], [17], [23] and
evaluate our method on 99 LR real composite images released
by [11] and 100 HR ones released by [23].

Evaluation metrics. We follow the previous methods and
evaluate the harmonization performance with Mean Squared
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DoveNet RainNet IntrinsicIH IHTComposite Ours Ground Truth

Fig. 6. Visual comparisons on 256⇥ 256 LR version of iHarmony4 dataset.
From left to right, we show the composite images, the results of [12]–[15]
and ours, and the ground truth images. The foreground is stroked by a red
line. We have resized the images to their original aspect ratio for a better
view.

Error (MSE), foreground MSE (fMSE, only consider the
foreground area), Peak Signal-to-Noise Ratio (PSNR), and
Structure Similarity Index Measure (SSIM).

Implementation details. We adopt the iDIH-HRNet [16]
as the encoder structure. The first three encoder layers are
leveraged to predict parameters of fCont which is a three-
block LRIP structure, while the remained layers are utilized
to construct a U-Net [22] like structure and the output is for
predicting fApp and the optional 3D LUT (See Fig. 2 for
more details). If not specified, the number of the three LRIP
blocks’ hidden layers are 3, 2, and 1 respectively, and we
set 2 hidden layers for fApp. All the hidden layers are of 32
dimensions. We adopt the same positional embedding as [50]
and also leverage the Factorized Multiplicative Modulation
[51] to reduce redundant parameters. The 3D LUT dimension
is set to 7.

We only utilize L2 loss to supervise the harmonization
results, in addition to an extra regularization ensuring that
the 3D LUT values do not overflow. We adopt AdamW
[54] optimizer with an initial learning rate 1e�4. We train
our model for 60 epochs with a batch size of 16, and the
learning rate decays in a Cosine Annealing strategy. The model
is implemented with Pytorch and we conduct training and
evaluation on a single RTX 3090 GPU.

B. Comparison with Existing Methods
HR image harmonization. We here compare our method

with the recent HR image harmonization methods [23]–[25],
[37], which leverage color-to-color transformations. We con-
duct experiments on 1024⇥1024 and 2048⇥2048 versions of
HAdobe5K sub-dataset, in the same way as in [23]. Results in
Tab. I show that we achieve better performance than [23] on
higher resolution (2048⇥ 2048). Although [23] performs well
on 1024⇥1024, with the resolution increasing, its performance
drops sharply, while our method maintains stable performance
and even achieves better results on the original resolution.

Following [24], [25], we conduct the harmonization ex-
periment on the original resolution of iHarmony4 dataset. It
is worth noting that within the four sub-datasets of iHar-
mony4, HAdobe5K stands out as the sole dataset predomi-
nantly comprising images with resolutions ranging from 2K
to 6K resolution (1944⇠6048), while all other datasets fea-

Mask CDTNetComposite Ours

Fig. 7. Visual comparisons on 100 HR real composite images (1024⇥1024)
released by [23]. As there is no ground truth, from left to right, we show
the composite images, the masks, and the results of [23] and ours. We have
resized the images to their original aspect ratio for a better view.

DoveNet RainNet IntrinsicIH IHTComposite OursMask

Fig. 8. Visual comparisons on 99 LR real composite images (256 ⇥ 256)
released by [11]. As there is no ground truth, from left to right, we show the
composite images, the masks, and the results of [12]–[15] and ours. We have
resized the images to their original aspect ratio for a better view.

ture images with resolutions below 1024 (HCOCO/120⇠640,
Hday2night/313⇠854, Hflickr/150⇠1024). From Tab. I, our
method substantially beats the previous DCCF in all metrics
(e.g., PSNR 38.67 vs. 37.78) on HAdobe5K. This demonstrates
our method’s effectiveness in handling ultra-HR images and
underscores our superiority in real-world harmonization sce-
narios that frequently involve HR imagery. Besides, we can
also observe that the HINet outperforms the two state-of-
the-art HR harmonization methods on the entire iHarmony4
dataset.

We also compare with the recent S2CRNet [37]. Since
their open-source pre-trained model requires extra semantic
labels as input, we do not display the comparison results in
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TABLE II
COMPARISONS ON 256⇥ 256 LR VERSION OF THE IHARMONY4 DATASET [12] WITH OTHER DENSE PIXEL-TO-PIXEL HARMONIZATION METHODS. THE

BEST RESULT IS SHOWN IN BOLD, WHILE THE SECOND BEST IS UNDERLINED. THE ARROW OF THE METRIC INDICATES IN WHICH DIRECTION THE VALUE
IS BETTER. THE RESULTS OF THE STATE-OF-THE-ART METHODS ARE QUOTED FROM THEIR SOURCE PAPERS, WHILE “-” INDICATES THAT NO RELEVANT

RESULTS ARE PROVIDED.

Dataset Metric DIH [11] S2AM [35] DoveNet [12] BargainNet [55] RainNet [14] IntrinsicIH [15] IHT [13] iDIH-HRNet [16] CDTNet [23] Ours

HAdobe5K
MSE# 92.65 48.22 52.32 39.94 - 43.02 38.53 21.80 20.62 23.11
fMSE# - - - - - 284.21 265.11 - - 170.85
PSNR" 32.28 35.34 34.34 35.34 36.22 35.20 36.88 37.19 38.24 38.31

HCOCO
MSE# 51.85 33.07 36.72 24.84 - 24.92 16.89 13.93 16.25 16.41
fMSE# - - - - - 416.38 299.3 - - 296.45
PSNR" 34.69 36.09 35.83 37.03 37.08 37.16 38.76 39.63 39.15 39.16

Hday2night
MSE# 82.34 48.78 54.05 50.98 - 55.53 53.01 60.18 36.72 51.60
fMSE# - - - - - 797.04 704.42 - - 670.32
PSNR" 34.62 35.60 35.18 35.67 34.83 35.96 37.10 37.71 37.95 37.81

HFlickr
MSE# 163.38 124.53 133.14 97.32 - 105.13 74.51 59.42 68.61 68.52
fMSE# - - - - - 716.60 515.45 - - 448.77
PSNR" 29.55 31.00 30.21 31.34 31.64 31.34 33.13 33.88 33.55 33.53

All
MSE# 76.77 48.00 52.36 37.82 40.29 38.71 30.30 22.15 23.75 24.82
fMSE# 773.18 481.79 549.96 405.23 469.60 400.29 320.78 256.34 252.05 283.56
PSNR" 33.41 35.29 34.75 35.88 36.12 35.90 37.55 38.24 38.23 38.26

TABLE III
USER STUDY ON 99 LR REAL COMPOSITE IMAGES RELEASED BY [11]. FOR THE VOTING METRIC, EACH USER CAN SELECT MORE THAN ONE REALISTIC
IMAGE. “TOTAL VOTES” REPRESENTS THE NUMBER OF TIMES ONE METHOD’S RESULTS ARE CHOSEN AS REALITY. “RATIO” DENOTES THE PERCENTAGE
AMONG ALL VOTES. FOR THE B-T SCORE, EACH USER MUST CHOOSE THE PREFERRED ONE FROM A PAIR OF TWO IMAGES. THE BEST VALUE IS SHOWN

IN BOLD AND THE SECOND BEST IS UNDERLINED.

Metric Composite DoveNet [12] RainNet [14] IntrinsicIH [15] IHT [13] Ours

Voting Total votes 161 215 293 326 299 306
Ratio 10.06% 13.44% 18.31% 20.38% 18.69% 19.13%

B-T Score 0.0688 0.1375 0.1848 0.1901 0.2285 0.1903

TABLE IV
USER STUDY ON 100 HR REAL COMPOSITE IMAGES RELEASED BY [23].

FOR THE VOTING METRIC, EACH USER CAN SELECT MORE THAN ONE
REALISTIC IMAGE. “TOTAL VOTES” REPRESENTS THE NUMBER OF TIMES
ONE METHOD’S RESULTS ARE CHOSEN AS REALITY. “RATIO” DENOTES

THE PERCENTAGE AMONG ALL VOTES. FOR THE B-T SCORE, EACH USER
MUST CHOOSE THE PREFERRED ONE FROM A PAIR OF TWO IMAGES.

Metric Composite CDTNet [23] Ours

Voting Total votes 274 349 512
Ratio 24.14% 30.75% 45.11%

B-T Score 0.260 0.308 0.432

Tab. I. Referring to the original paper [37], both S2CRNet-
S and S2CRNet-V get about 36⇠37 PSNR on 2048⇥2048
HAdobe5K, while ours can get 38.35 PSNR (Tab. I). There-
fore, our method is still better even without additional la-
bel input. We also extend our comparison to more recent
works [38], [39]. We cite their results directly from their
respective source papers. When evaluated on the 2048⇥2048
HAdobe5k dataset, our method achieves a PSNR of 38.35,
slightly outperforming [38] which attains 38.29. While [39]
achieved notable results with their ViT backbone on the full-
resolution iHarmony4 dataset, when evaluated under a similar
experimental setup (using a CNN backbone and only L2 loss),
our results remained competitive, with our method reaching
38.07 PSNR compared to their 38.05 PSNR.

For visual comparisons, we display the results on 2048 ⇥
2048 version of HAdobe5K sub-dataset in Fig. 4, aligned
with [23], and display the results on the original resolution

of iHarmony4 dataset (resolution can reach 6K) in Fig. 5,
aligned with [24], [25].

LR image harmonization. We also evaluate our method on
LR image harmonization in Tab. II. Since the existing pixel-
to-pixel methods [11]–[16], [35], [55] cannot be applied to
HR images, for fair comparisons, we conduct experiments on
256 ⇥ 256 LR iHarmony4 dataset and achieve competitive
performance. We also take [23] into consideration which
is a combination of pixel-to-pixel and color-to-color trans-
formations, while we do not consider the recent [17] as
it introduces extra training data. From the results, we can
observe that the HINet can achieve competitive results on
LR image harmonization compared with other state-of-the-art
methods. Considering the comparison results on HR images
displayed in Tab. I, it can be seen that our method achieves
more performance gains as the image resolution increases. We
visualize the comparisons on 256⇥256 version of iHarmony4
dataset in Fig. 6.

Real composite images. Since the iHarmony4 is a synthetic
dataset [12], to better reveal the performance of our method
on real images, we follow [23] to harmonize 100 HR real
composite images released by [23] in Fig. 7 and also follow
[14], [15], [17] to visualize the harmonization results on 99
LR real composite images released by [11] in Fig. 8. We
conduct user studies for a fair comparison. The result shows
the superiority of our method.

Since there are no ground truth images for the real com-
posite images, we cannot leverage the former metrics (PSNR,
MSE, and fMSE) to evaluate our performance. Here, we
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TABLE V
EFFCIENCY COMPARISON ON A SINGLE 2048⇥2048 IMAGE.

Metrics Color-to-Color Methods Dense Pixel-to-Pixel Methods
S2CRNet-S Harmonizer DCCF IntrinsicIH IHT Ours

Params(M) 1.15 4.73 18.09 33.80 21.80 38.21
MACs(G) 0.605 0.036 12.677 OOM OOM 36.484

Mem(M) (Train) 9621 4732 4159 OOM OOM 2835
Mem(M) (Inference) 346 931 1525 OOM OOM 7365/2439/831

Time(s) 0.16 0.15 0.14 OOM OOM 0.23/0.52/1.12

TABLE VI
THE EFFICIENCY OF THE DESIGN OF MLPS DECOUPLING AND LRIP

STRUCTURE. THE METRICS ARE EVALUATED ON 256⇥ 256 IMAGES WITH
A BATCH SIZE OF 2.

Structure Params (M) Mem (MB)
Pure local MLPs with LRIP 40.38 1233.20

LRIP Blocks with the same size inputs 38.21 1411.16
ours 38.21 1137.52

follow [14] to conduct a user study. Specifically, we invite
8 volunteers to choose the most realistic one/ones from the
composite image and the results of the compared methods.
Each time, we present an image and its variants to the user. The
order is randomly shuffled, thus the users do not know which
method the image belongs to. Every volunteer will evaluate
the whole 100 HR real composite images and the 99 LR ones.
From the results in Tab. IV and Tab. III, we can observe that
our method can achieve the best performance on HR image
harmonization and achieve competitive performance with the
state-of-the-art methods on LR image harmonization.

Additionally, we adopted the Bradley-Terry model (B-T
model) [56] for ranking, following [12], [24]. In this metric,
volunteers were presented with pairs of results, randomly
sampled from all methods (including composite images). They
were required to select the preferred result in each pair.
Pairwise comparisons were conducted on the 100 HR real
composite images and the 99 LR ones, resulting in 1485
LR pairs and 300 HR pairs. We invited another 5 volunteers
to participate in this ranking study, and the corresponding
B-T scores are provided in Tab. IV and Tab. III. Notably,
the conclusions drawn from the aforementioned voting metric
remain robust, despite some variations in the rankings of LR
images.

C. Efficiency Analyses

In Tab. V, we take a single 2048⇥2048 image as an example
and compare the efficiency with existing methods from the
perspective of model parameters (Params), calculation amount
(MACs), memory overhead (Mem) during training and infer-
ence, and inference runtime (Time). For the memory cost and
runtime of inference, we show results when the input is split
into 1/4/16 parts (see Sec. III-E). From the results, thanks to
the RSC strategy designed in Sec. III-E, we have the lowest
training memory cost (less than 3GB) among all methods. By
varying the number of input splits, we can achieve competitive
performance with color-to-color methods either on inference
memory cost or runtime. Regarding model parameters, our
approach offers flexibility during the inference phase. We can

TABLE VII
THE EFFICIENCY OF THE DESIGN OF THE RSC TRAINING STRATEGY FOR
HR IMAGE HARMONIZATION. “DIRECT FINETUNE” DENOTES INPUTTING
ALL THE VECTORS FOR TRAINING, NOT USING THE RSC STRATEGY. THE

METRICS ARE EVALUATED ON IMAGES WITH A BATCH SIZE OF 2.

Resolution Strategy Mem (MB)

1024⇥ 1024
Direct finetune 4586.35
RSC finetune 4090.86

2048⇥ 2048
Direct finetune 15641.33
RSC finetune 4090.86

TABLE VIII
DEMONSTRATION OF THE EFFECTIVENESS OF MLPS DECOUPLING. THE

EXPERIMENTS ARE CONDUCTED ON LR IHARMONY4 DATASET.

Structure MSE# fMSE# PSNR"
Pure global MLPs 25.35 290.01 38.13
Pure local MLPs 25.56 294.97 38.00

Decoupled MLPs (ours) 24.82 283.56 38.26
Params from the last layer 25.17 288.04 38.17

Params from multiple layers (ours) 24.82 283.56 38.26

prune it to exclusively employ our INR decoder (34.71M
parameters) or solely utilize the predicted 3D LUT (23.98M
parameters), adapting to different scenarios. Consequently, we
can match the parameter count with other dense pixel-to-pixel
methods. Most importantly, we hope to draw the attention
that our method is the first dense pixel-to-pixel method that
can handle HR images (⇠6K, others encounter out-of-memory
(OOM)). Considering pixel-to-pixel methods can model more
complex scenarios than color-to-color ones (see Sec. II), our
method, with SOTA harmonization performance and compet-
itive efficiency, is of great significance and beneficial to this
field’s development.

Moreover. to validate the efficiency of our design, we here
adopt Model Parameters (Params) and GPU Memory Cost
(Mem) metrics. From Tab. VI, we can see that splitting MLPs
into fCont and fApp can both reduce parameters and save
memory cost compared with the structure of pure local MLPs,
while the design of LRIP that leverages different batch sizes of
input vectors can save much memory. From Tab. VII, we can
observe that, with image resolution increasing, the memory
cost of the direct finetuning grows sharply, while there is no
impact on the memory cost of our RSC strategy, nor is the
performance (Please see Tab. XII).

D. Ablation Studies

Effectiveness of MLPs decoupling. To verify the effective-
ness of the decoupled design of fCont and fApp, we conduct
experiments in Tab. VIII where we modify the HINet with
pure global MLPs or local MLPs. We also compare with a
modified version that the parameters of MLPs are all from
the last layer of the encoder. The results have validated the
superiority of our design.

Effectiveness of LRIP structure. We compare with the
HINet without LRIP structure in Tab. IX, from which we
can observe that the network with the LRIP structure achieves
higher accuracy. To go a step further, we also compare with
the structure with each block fed inputs of the same batch size
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TABLE IX
DEMONSTRATION OF THE EFFECTIVENESS OF THE LRIP DESIGN. “NO

LRIP” DENOTES ONLY THE FIRST BLOCK HAS THE INPUT VECTORS. THE
EXPERIMENTS ARE CONDUCTED ON LR IHARMONY4 DATASET.

Structure MSE# fMSE# PSNR"
No LRIP 25.65 288.41 38.10

Blocks with the same batch size inputs 25.01 285.79 38.16
LRIP (ours) 24.82 283.56 38.26

TABLE X
THE EFFECTIVENESS OF MULTIPLE INPUTS FOR HR IMAGE

HARMONIZATION. THE EXPERIMENTS ARE CONDUCTED ON HADOBE5K
SUB-DATASET. THE BEST RESULT IS SHOWN IN BOLD. “BILINEAR RESIZE”

DENOTES INTERPOLATING LR HARMONIZATION RESULTS FOR HR
RESULTS, WHILE “DIRECT QUERY” DENOTES QUERYING THE DECODER
THAT IS TRAINED ON LR IMAGES FOR HR HARMONIZATION RESULTS.

Resolution Input type & Strategy MSE# fMSE# PSNR" SSIM"

256⇥ 256
SingleInput 22.79 183.85 37.92 0.9894

MultipleInput 22.52 182.11 38.00 0.9897

1024⇥ 1024

SingleInput + Bilinear resize 33.84 293.11 35.69 0.9691
MultipleInput + Bilinear resize 32.40 287.84 35.78 0.9701

SingleInput + Direct query 69.93 631.6 32.01 0.9346
MultipleInput + Direct query 23.44 194.7 38.02 0.9883

TABLE XI
DEMONSTRATION OF THE EFFECTIVENESS OF RSC STRATEGY ON
HADOBE5K DATASET. “DIRECT QUERY” DENOTES QUERYING THE

DECODER THAT TRAINED ON LR IMAGES FOR HR HARMONIZATION
RESULTS. “DIRECT FINETUNE” DENOTES INPUTTING ALL THE VECTORS
FOR TRAINING, NOT USING THE RSC STRATEGY. “OOM” REPRESENTS

THE OUT-OF-MEMORY PROBLEM.

Resolution Strategy MSE# fMSE# PSNR"

1024⇥ 1024

Direct query 23.44 194.70 38.02
Train from scratch 36.44 263.28 36.85

Direct finetune 23.46 193.27 38.38
RSC finetune 22.68 187.97 38.38

2048⇥ 2048
Direct query 26.04 212.46 37.76

Direct finetune (OOM) - - -
RSC finetune 24.08 192.20 38.35

Original resolution
(⇠ 6K)

Direct query 32.63 246.33 37.07
Direct finetune (OOM) - - -

RSC finetune 21.81 173.72 38.71

TABLE XII
DEMONSTRATION THAT THE HINET DOES NOT RELY ON 3D LUT

PREDICTION. THE EXPERIMENTS ARE CONDUCTED ON LR IHARMONY4.

Metric Only LUT prediction Extra LUT Prediction
w/o w/

MSE# - 24.74 24.82
fMSE# - 283.05 283.56
PSNR" - 38.29 38.26

LUT-MSE# 25.81 - 25.56
LUT-fMSE# 297.72 - 293.66
LUT-PSNR" 38.03 - 38.08

(LRIP is fed inputs of gradually increasing batch size), and the
LRIP again achieves better results.

Evaluation of specific designs. As mentioned in Sec. III-E,
we leverage multiple inputs to help harmonize HR images.
To compare with only using the grid coordinate as input,
experiments are conducted as shown in Tab. X. We can observe
that although different types of inputs have competitive results
on LR image harmonization, when applied to HR images, only
the coordinate input cannot achieve satisfying accuracy, even
worse than using bilinear interpolation (only resize the fore-

TABLE XIII
EFFECT OF DIFFERENT NUMBERS OF CHANNELS IN MLPS ON THE FINAL

PERFORMANCE. THE EXPERIMENTS ARE CONDUCTED ON LR
IHARMONY4 DATASET.

MLP width MSE# fMSE# PSNR"
16 25.68 293.70 38.04
32 24.82 283.56 38.26
64 24.74 283.05 38.31

TABLE XIV
EFFECT OF DIFFERENT NUMBERS OF HIDDEN LAYERS IN fCont ON THE

FINAL PERFORMANCE. THE EXPERIMENTS ARE CONDUCTED ON LR
IHARMONY4 DATASET.

fCont structure Depth MSE# fMSE# PSNR"

Same depth all blocks
1 24.82 284.91 38.15
2 25.30 288.94 38.13
3 24.89 282.58 38.24

Different depth each block
1, 2, 3 24.26 282.00 38.24
3, 2, 1 24.82 283.56 38.26

TABLE XV
EFFECT OF DIFFERENT NUMBERS OF HIDDEN LAYERS IN fApp ON THE

FINAL PERFORMANCE. THE EXPERIMENTS ARE CONDUCTED ON LR
IHARMONY4 DATASET.

fApp depth MSE# fMSE# PSNR"
1 24.91 286.64 38.23
2 24.82 283.56 38.26
4 24.62 286.73 38.17

TABLE XVI
PERFORMANCE OF DIFFERENT POSITION EMBEDDINGS. THE

EXPERIMENTS ARE CONDUCTED ON LR IHARMONY4 DATASET.

Positional embeddings MSE# fMSE# PSNR"
Nerf [28] 33.64 321.59 37.95
RFF [27] 28.15 326.94 37.62

INR-GAN [51] 25.48 285.64 38.28
CIPS [50] 24.82 283.56 38.26

TABLE XVII
PERFORMANCE OF DIFFERENT 3D LUT DIMENSIONS. THE EXPERIMENTS

ARE CONDUCTED ON LR IHARMONY4 DATASET.

3D LUT dimensions LUT-MSE# LUT-fMSE# LUT-PSNR"
5 25.55 299.47 37.95
7 25.81 297.72 38.03
13 25.59 298.48 37.93
17 25.90 305.43 37.88

ground, while the other parts keep the same as the composite
image).

To evaluate the effectiveness of the designed RSC HR
training strategy, we conduct experiments in Tab. XI on the
HAdobe5K sub-dataset, as it has much higher resolution
among the four datasets in the iHarmony4 dataset [23]. We
compare with results by directly querying the decoder trained
on LR images for HR harmonization, and results by directly
finetuning/training from scratch the network with HR images
(here we only consider 1024 ⇥ 1024, images with higher
resolution will encounter an out-of-memory problem). From
the results, we can see that our proposed RSC training strategy
greatly improves the performance of HR image harmonization.

In Tab. XII, we show that using an additional 3D LUT
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(a) Full Harmonization

(b) Partial Harmonization

Fig. 9. Region-based harmonization of composite images. (a) displays the
normal harmonization process that feeds all the vectors into the decoder, while
(b) displays the region-based harmonization process.

prediction head has trivial impacts on the final harmonization
results (even has a 0.03 PSNR drop). Thus we do not rely
on it like [23]–[25]. Moreover, we can observe that with our
method, the predicted 3D LUT can achieve better results.

Settings of MLPs width. We here test the effect of
different numbers of channels in MLPs on the harmonization
performance. From Tab. XIII, we can observe that with the
MLPs’ width increasing, the results get better. Considering
the practical memory limitation, we choose 32 channels as
the final design.

Settings of MLPs depth. In this part, we test different
settings of the MLP hidden layers’ number in fCont and fApp

respectively. From the results in Tab. XIV, the effectiveness
of adopting decreasing number of hidden layers for blocks
in the LRIP structure is verified. Not only does it maintain
harmonization performance, but such a structure also saves
a lot of memory cost (the batch size of the input vectors
increases from the first block to the last block). From the
results in Tab. XV, we set two hidden layers for fApp.

Choices of positional embedding. As mentioned in [27],
[28], a proper positional embedding is important for INR per-
formance. Here we try several different positional embeddings
[27], [28], [50], [51]. From the results in Tab. XVI, we finally
adopt the positional embedding in [50].

3D LUT dimensions. To evaluate the effect of different 3D
LUT dimensions, we conduct experiments in Tab. XVII. We
can observe that there is a peak in the middle. Dimensions
that are too large or too small can both lead to performance
degradation. We consider that small dimensions may be not
sufficient enough to cover the variation range, while large
dimensions may cause redundant parameters’ predictions,
leading to much burden on the encoder.

V. APPLICATIONS

A. Region-based image harmonization
As mentioned in Sec. III-E, one property of the INR decoder

is that the input is no longer a feature map but a batch of

vectors. By leveraging this feature, we can achieve region-
based harmonization by only feeding the vectors inside the
foreground area into the decoder, while leaving the remained
area untouched. In this way, the proposed HINet can harmo-
nize a partial area of the composite image, thus saving much
memory cost and achieving speedup. This is a feature that
existing methods [16], [17], [23] do not have, since their CNN
decoder needs to receive the output features of the entire image
from the encoder as input, while we utilize the INR paradigm
whose input is a batch of vectors V . Fig. 9 displays the
region-based harmonization process. Given a 3K composite
image, if we feed the vectors of the entire image into the
decoder (somewhat similar to the CNN process), there will be
about 10 million input vectors, which will cause much memory
consumption and slow processing speed. While, if we apply
region-based harmonization and only harmonize the vectors
in the foreground region, the number of input vectors will be
reduced to 0.5 million, just equivalent to processing half a 1K
image!

Take advantage of this potential, we can even apply the
HINet to video harmonization, while preventing much memory
cost. We here just take the video as a stack of image frames,
and the process is similar to Fig. 9. We display the video
harmonization process in Fig. 10.

B. Arbitrary resolution image harmonization

One defect of the previous methods [15], [17] is that
once the network structures are configured, these methods
can only harmonize the images with a fixed resolution. If
we want to harmonize images with other resolutions, the
network structure must be re-configured and retrained. To
demonstrate it more clearly, suppose that we have a pure
convolution structure designed for 256 ⇥ 256 images, then
when the input is 256⇥256 or a multiple of that, the network
can handle it. However, if the input is e.g. 256 ⇥ 257 (only
one value increased), then the network may fail to process it,
as the resolution 257 is not divisible by the downsampling
multiple of the network’s encoder. It is feasible to resize the
image to the nearest multiple of 256 ⇥ 256, but since the
downsampling multiple of the encoder is usually large [16],
much information may be lost if the image is directly resized
to a lower resolution (See Fig. 11 as an example), while if
the image is resized to a higher resolution, then there will be
much redundant computational overhead. As a comparison,
the proposed HINet can achieve arbitrary resolution image
harmonization. Since our method is built based on the INR
paradigm, we consider the task as harmonizing continuous
images rather than discrete image arrays. Therefore, in our
method, we only need to sample intermediate coordinates to
construct an input batch with the size identical to the image,
and then can produce a higher fidelity harmonization result
than direct using interpolation, even if the target resolution has
never been seen by the model (See Fig. 11 and the experiments
in Tab. X). We illustrate this feature in Fig. 12 for better
comprehensibility. Given vectors of different batch sizes, we
can get harmonization results at different resolutions.
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Composite

Partial Area

Result

Video Frames

Fig. 10. Region-based harmonization of composite video clips. The first row denotes the composite frames. In the second row, we stroke the partial area
whose vectors are fed into the decoder with a red line, while the remained untouched region is made transparent. We display our harmonization results in the
third row. Please zoom in for a better review.

(a) Composite image (2K) (b) Bilinear resize (c) Our method

Fig. 11. Arbitrary resolution harmonization potential of our method. Take a
2K image (a) as an example, the harmonization result by bilinear interpolation
(b) losses much information, while ours (c) keeps high fidelity even though
we only train the network on LR images (Please zoom in for a better view).

(a) Composite image

(c) 𝟐𝟓𝟔 × 𝟐𝟓𝟔 result (d) 𝟐𝟎𝟒𝟖 × 𝟐𝟎𝟒𝟖 result

(b) Bilinear resize result

(e) 𝟒𝟑𝟔𝟖 × 𝟐𝟗𝟏𝟐 result   
(original resolution)

...

...

... ...

...

Decoder

𝟐𝟓𝟔𝟐 input vectors
𝟐𝟎𝟒𝟖𝟐 input vectors

𝟏𝟎𝟕~ input vectors

...

... ...

...

...
. .

Fig. 12. Illustration of arbitrary resolution harmonization. (a) is the composite
image with the foreground stroked by a red line. (c), (d), and (e) are
harmonization results with different resolutions. (b) is the result of bilinearly
resizing (c) (only resize the foreground, other region keeps the same as (a)).
Please zoom in for a better view.

C. Optional usage of 3D LUT

In Sec. IV-D, we mention that the HINet can optionally
predict a 3D LUT for controllable harmonization, and the exis-

Linear Interpolation

Fig. 13. Illustration of smooth 3D LUT interpolation on video harmonization.
The first row is frames of the composite video with the foreground stroked
by a red line. The second row is the predicted 3D LUT. The third row is
the harmonization result with the interpolated 3D LUT. Please zoom in for a
better view.

tence of this optional part will not affect the final performance
of the network. The motivation follows [24], [25] to make
more space for manual control of the harmonization result,
since the HINet is essentially a black box with little control by
the user. Different from the complex design of the hand-crafted
image filters in [24], [25], we adopt 3D LUT, which is a global
RGB-to-RGB mapping. Although [24] claimed that directly
predicting the filters’ parameters cannot achieve good results,
for which they utilized a hierarchical structure, in the HINet,
we have no special design for 3D LUT prediction but directly
predict it by the encoder’s features, and the performance still
looks good (Please refer to Tab. XII).

The potential usages of 3D LUT are two-fold. On the
one hand, the users can better understand how the network
harmonizes composite images. Along with that, they can
manually change the harmonization result by modifying the
parameters of the 3D LUT, which is easy with the help of
PhotoShop and 3D LUT Creator tools. On the other hand, if
high harmonization quality is not pursued, we can apply 3D
LUTs to video harmonization for fast and continuous results.
As mentioned in [24], harmonizing each video frame indepen-
dently can lead to flickering phenomena, so they leverage the
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exponential moving average on the hand-crafted image filters’
arguments for smoothness. Inspired by them, we here linearly
interpolate the parameters of 3D LUT for continuous results.
Suppose the 3D LUT parameters at Mth frame is lutM , that at
Nth frame is lutN , then the parameters at intermediate frames
(M : N) can be formulated as:

lutK = lutM +(lutN � lutM )⇥K �M

N �M
,K 2 (M : N) (4)

Then, we can extract several frames at intervals from the video,
predict their 3D LUT, and interpolate the other frames’. It
allows for video harmonization to be fairly quick and results
to be continuous. We display the process in Fig. 13.

TABLE XVIII
PERFORMANCE ON VIDEO HARMONIZATION. THE EXPERIMENTS ARE

CONDUCTED ON THE HYOUTUBE DATASET. “TL” DENOTES TEMPORAL
LOSS. THE BEST RESULT IS SHOWN IN BOLD, WHILE THE SECOND BEST IS

UNDERLINED.

Method fMSE MSE PSNR TL Time(s)

Lu et al. [57] 186.72 26.50 37.61 5.11 2.37
Harmonizer 211.49 32.28 36.48 23.72 1.49

Harmonizer (EMA) 197.36 30.17 36.84 17.11 1.49

Ours(LUT) 176.99 24.45 38.56 7.09 1.23
Ours(LUT-Interpolation) 171.80 23.73 38.71 6.73 0.86

Ours(Decoder) 159.42 22.38 39.12 6.06 1.53

D. Video Harmonization

For a comprehensive evaluation, we extended our method
to the video harmonization task and conducted experiments
on the publicly available HYouTube dataset [57], consisting
of 3194 video samples, each consisting of 20 frames. We
resized the frames to 256⇥256, in alignment with [57]. We
compared our approach with Harmonizer [24] and the video
harmonization framework presented in [57]. Both Harmonizer
and our method were trained from scratch on the training
set of HYouTube. Regarding [57], we directly reference the
results reported in their source paper. As Harmonizer is
originally designed for image harmonization, we also compare
its exponential-moving-average (EMA) variant tailored for
video harmonization. We set its EMA coefficient to 1/6,
corresponding to a frame interval of 167ms in HYouTube,
which is also in line with Harmonizer’s source code. For
our method, we assess both the performance of the INR
decoder and the 3D LUT. We also evaluated the 3D LUT
interpolation strategy mentioned in Sec. V-C, where we sample
five key frames from the 20-frame video clip. We measured
performance using metrics such as fMSE, MSE, and PSNR.
Additionally, we employed the Temporal Loss (TL) in [57] to
assess temporal consistency and measured the inference time
for processing a 20-frame video clip on a single RTX 3090
with the batch size set to 1.

The results, presented in Tab. XVIII, indicate that our
method outperforms the other methods in almost every metric
for video harmonization, except for temporal consistency.
This demonstrates the superior generalization of our approach.
Regarding temporal consistency, our 3D LUT interpolation

strategy not only enhances performance but also accelerates
the harmonization process. In contrast, Harmonizer’s EMA
strategy, while reducing the TL metric value, does not improve
processing speed since it still calculates every frame’s result.
Both Harmonizer and our method fall short when compared
to [57]. We attribute this to the fact that [57] incorporates
temporal information, considering several previous and future
frames in their network’s input, thereby having access to more
temporal data. In contrast, Harmonizer and our approach rely
on simpler averaging and interpolation strategies.

VI. LIMITATIONS

Although we have carefully designed the structure, the
limitation of the INR still remains, especially on the speed
performance when being applied to ultra-HR image harmo-
nization. Since we need to split the input of the decoder into
different parts to avoid being out of memory, the memory
performance improves along with a certain speed sacrifice.
Moreover, compared with the existing methods that leverage
a U-Net like structure, there is still space to better fuse the
shallow features and deep features in the HINet, which can
provide richer features for the MLPs’ predictions. We leave
these limitations to our future work.

VII. CONCLUSION

In this paper, we explore a novel method for HR image
harmonization with dense pixel-to-pixel transformations. We
leverage the implicit neural representation and carefully design
the decoder’s structure to ensure visual harmony and reason-
able memory cost. To our best knowledge, the proposed HINet
is the first dense pixel-to-pixel harmonization method that can
be applied to images ⇠ 6K without any hand-crafted image
filter and is also the first approach that leverages INR for
the harmonization task. Experiments conducted on iHarmony4
dataset have demonstrated the effectiveness of our method
for HR image harmonization. Some application potentials in
practical usage are explored. We expect that our work can
pave way for more research on deep learning-based HR image
harmonization.
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