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Abstract—Cloud and snow detection in remote sensing images
has advanced significantly with the aid of deep learning methods.
However, deep learning methods necessitate a large quantity of
labeled data, which consumes a substantial amount of human and
material resources. Numerous studies have focused on weakly
supervised methods to reduce the workload of annotation, but
the majority of these methods concentrate on cloud detection
and involve snow detection only infrequently. In this paper, we
propose a novel weakly supervised cloud and snow detection
(WCSD) method. Under the guidance of the remote sensing
imaging mechanism, we design generative adversarial networks
(GAN) to generate cloud and snow images and pseudo labels for
training detection networks. The proposed method can generate
clouds of different states and reproduce snow’s texture. For both
the cloud GAN model and snow GAN model, with only image-
level annotation training supervision, the models produce both
pixel-level cloud/snow reflectance and cloud opacity to obtain
the generated remote sensing images and corresponding pseudo
labels. Compared to other weakly supervised methods, our
method achieves superior cloud and snow detection performance.

Index Terms—Cloud and snow detection, deep learning, gen-
erative adversarial networks, weakly supervised learning, remote
sensing images

I. INTRODUCTION

REMOTE sensing technology has greatly expanded hu-
manity’s capacity to understand the earth. Remote sens-

ing satellite image processing and analysis is playing an
increasingly crucial role in modern agriculture, disaster pre-
vention, and resource exploration [1–13]. Clouds and snow are
common components in remote sensing images and are also
limiting factors affecting ground feature analysis. For instance,
ground objects are frequently obscured by clouds in multi-
spectral remote sensing images. Studies have indicated that, at
various times of the day, more than 60% of the world’s surface
is covered by clouds [14, 15]. Additionally, in some regions
of high latitude or altitude, snow may always be present.
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Cloud and snow detection is an essential step in the pre-
processing phase of remote sensing image production. Numer-
ous studies investigate how to rapidly extract cloud and snow
coverage areas from remote sensing images using rule-based
methods [16–23], machine learning-based methods [24–27],
and deep learning methods [28–43].

The rule-based cloud and snow detection method mainly
constructs relevant rules to detect clouds and snow based on
the spectral information of different bands. The two most
representative methods are the Automatic Cloud Cover As-
sessment (ACCA) [18, 19] and the Function of masks (Fmask)
[20–23]. ACCA method uses the 2nd-6th bands of Landsat 7
ETM+ satellite images and sets different thresholds based on
the reflection conditions of each band to extract cloud layers
precisely. The Fmask method takes the 1st-7th bands as input
and detects clouds and snow by quantitatively modeling the
bands’ relationship. The rule-based cloud and snow detection
methods are simple to calculate and require few computing
resources. They are generally based on the relationship be-
tween various spectra and have distinct physical meanings.
However, in high latitudes and mountainous terrain, these
methods have low detection accuracy. In addition, they require
the input image to contain sufficient spectral information,
which makes it difficult to apply to remote sensing images
other than Landsat.

The machine learning-based methods [24, 26, 27] require
the manual design of feature extraction algorithms in order
to extract the distinguishing characteristics of clouds, snow,
and ground objects. The machine learning-based detection
methods first extract image features of clouds and snow such
as visual texture from remote sensing images, and then use
machine learning algorithms such as support vector machine
[44] or random forest [45] to classify image pixels based on
the extracted image features. The classic detection methods
include brightness feature-based method [45, 46], texture
feature-based method [24] and local statistical feature-based
method [47, 48]. These methods are less stringent than the
rule-based cloud and snow detection methods for the input
bands. They also show higher detection accuracy than rule-
based methods in complex regions. Despite the fact that
machine learning-based methods have improved cloud and
snow detection performance, they require a large number of
manually designed image features. Subsequent development
of deep learning methods makes it possible to automatically
extract features and detect snow and clouds from remote
sensing images.

The deep learning-based cloud and snow detection methods
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[15, 28–39, 41, 42, 49, 50] have significantly improved the
cloud and snow detection in remote sensing images. The early
deep learning-based detection methods were realized through
image block classification [28], and then image segmentation
networks based on fully convolutional networks such as U-Net
dominated the field of cloud and snow detection [32, 51]. The
segmentation models based on Transformer further promoted
the development of cloud and snow detection technology
[52]. In addition, many weakly supervised cloud and snow
detection methods [53, 54] have been proposed to solve the
problem of insufficient high-quality labeled data. With a large
number of images that are pixel-by-pixel labeled, the strong
representation ability of deep learning methods significantly
improves the cloud and snow detection accuracy.

However, deep learning methods usually require a large
amount of labeled data, and the annotation process of remote
sensing images consumes a lot of time and resources and relies
on professionals. Moreover, clouds and snow usually exhibit
very similar visual characteristics in remote sensing images,
making it difficult to distinguish with previous methods.

To reduce the need for labeled data, weakly supervised
learning provides an effective way of producing fine-grained
results with coarse-grained labels, such as implementing pixel-
by-pixel segmentation tasks using only the classification labels
of images. In semantic segmentation [55–58], object localiza-
tion [59–62], and etc., weakly supervised learning methods
have produced favorable results. Class activation map (CAM)
[63] is the most common method, which weights the features
prior to global pooling with parameters of the full connection
layer to obtain the response areas of various classes on the
input image, thereby achieving segmentation or localization.
The CAM method is simple but effective, which serves as the
foundation for numerous weakly supervised learning methods
[53, 54, 64–67].

Weakly supervised learning has also been developed for
the problem of cloud detection in remote sensing images.
Li et al. [54] proposed a CAM-based method for weakly
supervised cloud detection in remote sensing images, and
obtained favorable results. In addition to the CAM-based
method, generative adversarial networks can be used to gen-
erate cloud remote sensing images and their labels for weakly
supervised cloud detection. Zou et al. [53] proposed a weakly
supervised cloud detection method with generative adversarial
networks [68–70], which can generate cloud remote sensing
images and their pseudo-cloud labels with the input of cloud
images and background images. Li et al. [67] proposed a
weakly supervised cloud detection method GAN-CDM based
on synergistic combination of generative adversarial networks
and a physics-based cloud distortion model. GAN-CDM model
trained on Landsat images can provide accurate Landsat cloud
detection results and has good Sentinel-2 image transferability.
Liu et al. [71] proposed a weakly supervised cloud detection
framework that uses the bidirectional threshold segmentation
and adaptive gating mechanism to generate pseudo masks,
which are then used as weak supervision to optimize the
heuristic cloud detection network.

In satellite remote sensing images, clouds and snow often
appear simultaneously, making accurate snow identification

a significant challenge in cloud detection tasks. Because the
visual characteristics of clouds and snow are highly similar,
they are easily confused. We aim to establish a unified cloud
and snow hybrid imaging mechanism that clearly defines
both clouds and snow, helping neural networks learn more
efficiently to generate visually and physically authentic images
of clouds and snow. Based on this, the detection networks are
trained jointly in a weakly supervised manner to distinguish
between clouds and snow. The existing weakly supervised
learning related works mainly focus on cloud detection task,
rarely considering snow detection task. There has been a
lack of efforts to address cloud and snow detection issues
by deeply exploring the distribution relationships and imaging
characteristics of clouds and snow in remote sensing images.
Previous cloud detection methods often struggle to resolve the
interference problem between snow and clouds when dealing
with detection tasks involving cloud-snow mixed images.

In this paper, we propose a novel Weakly supervised Cloud
and Snow Detection (WCSD) method for remote sensing
images. Under the guidance of the imaging mechanism of
snow/cloud images, we design a generative framework con-
sisting of a pair of Generative Adversarial Networks (GAN) -
a cloud GAN model and a snow GAN model, that can produce
cloud and snow remote sensing images and their corresponding
pixel-wise labels. Then, we design a cloud/snow detection
network, using synthetic data and pseudo labels to achieve
weakly supervised cloud and snow detection.

In our method, the input of the cloud GAN model consists
of randomly selected cloud and cloud-free remote sensing
images. The model generates both cloud reflectance and cloud
opacity. By overlaying the cloud reflectance with cloud-free
remote sensing images according to cloud opacity, we can
generate not only cloud images but also their corresponding
pixel-level pseudo labels for cloud detection. For the snow
GAN model, the input consists of randomly selected snow
and background remote sensing images. It produces snow
reflectance, synthesizes new images with snow, and pixel-level
labels for snow detection. In addition, the generated snow
images can also be further input into cloud GAN to generate
cloud-snow mixed images as well as pixel-level labels.

We construct cloud detection networks and snow detection
networks based on ResNet50 [72]. Using the generated data
with their pseudo cloud and snow labels, weakly supervised
cloud detection and snow detection can be achieved. We exper-
iment on Levir CS [42], a public remote sensing cloud/snow
detection dataset. The experiments suggest that only trained
with coarse-grained image-level labels, our method can pro-
duce pixel-level cloud and snow detection results. Our method
achieves superior cloud and snow detection performance by
comparing it with several well-known weakly supervised se-
mantic segmentation methods and even matches the accuracy
of fully supervised cloud and snow detection methods trained
on pixel-level labels.

II. METHODS

Fig. 2 illustrates the proposed method’s overall structure. It
involves a cloud detection task and a snow detection task. In
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Fig. 1. An illustration of the cloud and snow imaging model. The energy
E captured by each unit of the imaging sensor can be approximately
decomposed into a linear combination of cloud reflectance energy Fc and
background energy Es. Background Es can be approximately expressed as
the superposition of snow reflectance energy Fs and ground objects reflectance
energy B.

each task, we introduce a GAN model to generate cloud/snow
images as well as pixel-level labels based on the imaging
mechanisms. Then, the cloud/snow detection networks are
trained based on the generated data. The subsequent sections
will introduce the remote sensing imaging models of cloud and
snow respectively, the image generation networks for cloud
and snow, the loss functions of different GAN models, the
cloud and snow detection methods, and the implementation
details of the proposed framework.

A. Cloud and Snow Imaging Model

Inspired by the cloud imaging model [53, 73], we extend
the image model with a hybrid form to handle the interference
from both clouds and snow in remote sensing images. In this
subsection, we introduce the hybrid image model used in our
method.

As shown in Fig. 1, the sensor onboard receives energy from
both ground objects and clouds at the same time. According
to [53, 73], remote sensing image E can be regarded as the
linear combination of cloud reflectance image Fc and a ground
object image G, which can be expressed as follows:

E = Fc + (1� ↵c)G, ↵c 2 [0, 1], (1)

where the energy of G comes from the reflected energy and the
radiation of ground objects. ↵c is the atmospheric attenuation
factor or the opacity of clouds: the larger the ↵c, the thicker
the cloud, ↵c = 0 indicates there is no cloud, while ↵c = 1
indicates the ground objects are completely obscured.

Considering the ground object may be also covered with
snow, although snow and cloud are similar in vision, their
imaging principle is quite different. Snow is usually attached
to ground objects and usually appears below clouds, which
presents a non-transparent state different from clouds.

Suppose Fs denotes the snow reflectance, B denotes the
ground objects, and when there are no clouds, the snow image
Es can be expressed as follows:

Es = ↵sFs + (1� ↵s)B, ↵s 2 {0, 1}, (2)

where ↵s denotes a binary mask indicating the location of
snow pixels. ↵s = 1 means that the ground objects are
completely covered by snow, and ↵s = 0 means that there
is no snow and the ground objects are clearly visible.

Since clouds and snow may both exist in the image at the
same time and snow is usually attached to the surface of
ground objects and under the cloud, by combining Eq. 2 and
Eq. 1, and let Es = G, a complete form of cloud and snow
imaging model can be expressed as follows:

E = Fc + (1� ↵c)G

= Fc + (1� ↵c)(↵sFs + (1� ↵s)B),
(3)

where 0  ↵c  1, and ↵s 2 {0, 1}.

B. Cloud and Snow Image Generation
We propose a weakly supervised approach for cloud detec-

tion. Given a set of images with and without clouds, our cloud
generation network Gc can synthesize new images with clouds
and pixel-level cloud reflectivity labels. The generated data
and labels are further provided to the cloud detection network
as training samples. Finally, pixel-level cloud detection is
achieved with only image-level annotations.

The input of our cloud generator is a pair of images - a
cloud-free image xb and a cloud image xc. The output of
the cloud generator is also a pair of images - the generated
cloud reflectance r̃c and the generated opacity ↵̃c, with the
same sizes as the input pair. In the above process, we do
not directly employ the networks’ outputs, but instead learn
to extract the cloud foreground image from the input cloud
image, thereby ensuring the generated cloud image’s texture
and color authenticity. Suppose the direct output of the cloud
generator is represented as rc, which is utilized to extract cloud
reflectance r̃c from the input cloud image:

r̃c = rc ·max(�(xc), 0), (4)

where �(xc) performs a nonlinear stretch on xc:

�(xc) = �1(e
�2xc � 1)xc, (5)

where �1 and �2 are the stretch factors. For the generated
cloud opacity, since it is highly related to the cloud reflectance
(higher reflectivity clouds may have greater thickness), we
consider cloud opacity ↵̃c as a linear transformation of the
cloud reflectance:

↵̃c = �r̃c, (6)

where � represents a scaling factor.
Given the generated reflectance r̃c and opacity ↵̃c, a new

image yc with cloud coverage can be synthesized based on the
imaging model Eq. 1 as follows:

yc = Gc(xc, xb)

= r̃c + (1� ↵̃c)xb.
(7)

We apply a linear combination of the generator’s output
instead of generating the cloud image directly from noise. We
apply a nonlinear stretch mapping to the input cloud image, en-
hancing the details of the clouds by adjusting the contrast and
brightness of the cloud regions, making the subtle and complex
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Fig. 2. Overview of the proposed method. It consists of two stages, each of which is responsible for detecting clouds and snow, respectively.

texture details of the cloud regions clearer. Furthermore, under
the constraints of the cloud and snow hybrid imaging physical
model, we further extract the foreground image of the cloud
from the input cloud image. By retaining the original features
of the input cloud image, we can avoid color distortion and
artifacts that may arise from directly generating cloud images,
ensuring the authenticity of the newly generated cloud image
in terms of cloud texture and color. This ensures that the
synthesized cloud image possesses both visual and physical
realism. In addition, the generated cloud reflectivity can be
used as a label to guide the training of subsequent cloud
detection models.

Like the above cloud generation process, we introduce a
snow generator Gs to synthesize snow images and pixel-wise
labels. A pair of images consisting of a background remote
sensing image xb and a snow image xs are fed to the snow
generator. The snow reflectance r̃s is generated as follows:

r̃s = xsrs. (8)

Based on r̃s, the snow’s opacity ↵̃s can be further obtained
by setting a threshold ⌘s:

↵̃s =

(
1 if r̃s � ⌘s

0 else.
. (9)

Then, based on the snow imaging model, a new snow remote
sensing image ys can be generated using the input background
image xb and the generated reflectance r̃s and opacity ↵̃s:

ys = Gs(xs, xb)

= ↵̃sr̃s + (1� ↵̃s)xb.
(10)

In addition to adding cloud layers on top of the background
image, we also add clouds to snow images. Note that cloud
and snow pixels may exist at the same time in the same
area, their overlay order cannot be changed arbitrarily, because
cloud layers usually overlie snow layers, but not vice versa.
Therefore, to generate cloud-snow mixed images, we feed
the synthesized snow images ys and randomly selected cloud
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Algorithm 1 Weakly Supervised Cloud and Snow Detection
(WCSD)

(1) Cloud image generation
Input: Background cloud-free image xb and cloud image xc

Output: Generated cloud image yc and label ePc

1: erc, e↵c
rc rc, Gc(xb, xc) . Gc is the cloud generator

2: yc = erc + (1� e↵c)xb, ePc  erc
3: Dc(yc;xc)! Real/Fake . Dc is the cloud discriminator
4: return yc,

ePc

(2) Cloud/snow image generation
Input: Background image xb and snow image xs, randomly

selected cloud image xc, fixed cloud generator Gc

Output: Generated cloud/snow image ycs, cloud label ePc,
snow label ePs

1: ers, e↵s
rs Gs(xb, xs) . Gs is the snow generator

2: ys = e↵sers + (1� e↵s)xb

3: LA = FG(ys) . FG is the pre-trained snow classifier
4: erc, e↵c

rc Gc(ys, xc)
5: ycs = erc + (1� e↵c)ys, ePc  erc, ePs = (1� ePc)e↵s

6: Ds(ycs;xs)! Real/Fake . Ds is the snow discriminator
7: return ycs,

ePc,
ePs

(3) Cloud and snow detection
Input: Generated cloud/snow image ycs, cloud label ePc,

snow label ePs

Output: Cloud detection result Pc, snow detection result Ps

1: Pc = Fc(ycs) . Fc is the cloud detection network
2: Ps = Fs(ycs) . Fs is the snow detection network
3: return Pc, Ps

images xc into the cloud generator. By following the imaging
model Eq. 3 and combining Eq. 7 and Eq. 10, the synthesized
images that contain both cloud and snow pixels can be finally
expressed as:

ycs = r̃c + (1� ↵̃c)ys

= r̃c + (1� ↵̃c)(↵̃sr̃s + (1� ↵̃s)xb).
(11)

C. GAN Loss Functions
To train the cloud generator Gc and the snow generator Gs,

we introduce two discriminators Dc and Ds respectively. The
generators and the discriminators are jointly trained under a
Least-Square GAN framework [69].

For the cloud GAN model, during the training process, the
cloud generator continuously generates cloud reflectance r̃c

and opacity ↵̃c, which is synthesized to obtain a new cloud
image yc. yc and input cloud image xc are fed to the cloud
discriminator. On one hand, the discriminator is trained to
judge which input images are fake and which are real. The
loss function of the discriminator is defined as follows:

LDc =
1

2
(Dc(xc)� 1)2 +

1

2
Dc(Gc(xc, xb))

2
. (12)

On the other hand, the generator is trained to make the fake
images more similar to the real ones, and thereby “fool” the
discriminator. The loss function of the generator is defined as
follows:

LGc =
1

2
Dc(Gc(xc, xb)� 1)2. (13)

To make the generated cloud images more realistic,
we apply constraints to the saturation of the generated
cloud reflectance: �s||s||22, where s = (max(R,G,B) �
min(R,G,B))/max(R,G,B) and �s represents a penalty
factor. Therefore, the total loss of the cloud generator can be
expressed as:

LGc =
1

2
Dc(Gc(xc, xb)� 1)2 + �s||s||22. (14)

The cloud generator and cloud discriminator can be trained
jointly under a unified training objective. By combing the loss
functions Eq. 12 and Eq. 14, the training can be performed
under a min-max optimization process, where the objective
function is defined as follows:

G
?
c , D

?
c = arg min

Gc,Dc

max
Dc

(LGc + LDc). (15)

For the snow GAN model, the loss functions of the gener-
ator Gs and the discriminator Ds are defined similarly to the
cloud GAN model:

LDs =
1

2
(Ds(xs)� 1)2 +

1

2
Ds(Gs(xs, xb))

2
, (16)

LGs =
1

2
Ds(Gs(xs, xb)� 1)2 + LA(ys), (17)

where the only difference is that we apply an additional
regularization term LA to the loss function of the generator.
LA is the loss value from a pre-trained snow classification
network given the input of synthesized snow image ys. The
reason behind this is to prevent the generator from producing
“cloud-like” snow images. This ensures that the generated
snow images can be classified as snow by the pre-trained
classifier, thereby enabling the snow generator to produce
semantically more “snow-like” images.

The two networks Gs and Ds can be also jointly trained
under a min-max optimization process:

G
?
s, D

?
s = arg min

Gs,Ds

max
Ds

(LGs + LDs). (18)

D. Cloud and Snow Detection

At the cloud and snow detection stage, we train the detectors
based on the images and pixel-wise labels generated by the
cloud GAN model and the snow GAN model. Both the
cloud detector and the snow detector are fully convolutional
networks.

The generated cloud/snow image ycs can be used as input
for the cloud detection networks f

det
c . The labels for training

are obtained from the generated cloud reflection image r̃c:

p̃c =

(
1 if r̃c � ⌘c

0 else.
, (19)

⌘c is a predetermined threshold, and the pixel locations in
r̃c that exceeds ⌘c indicates the presence of clouds. Suppose
f
det
c represents the cloud detection network, and the detection

output probability map is pc, we have:

pc = sigmoid(fdet
c (ycs)), (20)
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TABLE I
A DETAILED CONFIGURATION OF OUR NETWORKS.

Layer Input #In #Out Stride �(·)

En
co

de
r

conv1 image img channel 64 1 ReLu
ResBlock1 conv1 64 256 2 ReLu
ResBlock2 ResBlock1 256 512 2 ReLu
ResBlock3 ResBlock2 512 1024 2 ReLu
ResBlock4 ResBlock3 1024 2048 2 ReLu

conv2 ResBlock4 2048 2048 2 ReLu
conv3 conv2 2048 2048 2 ReLu

D
ec

od
er

interp1 conv3 2048 2048 2 None
conv4 interp1 2048 2048 1 ReLu
interp2 conv4 + ResBlock4 1024 1024 2 None
conv5 interp2 1024 1024 1 ReLu
interp3 conv5 + ResBlock3 1024 1024 2 None
conv6 interp3 1024 512 1 ReLu
interp4 conv6 + ResBlock2 512 512 2 None
conv7 interp4 512 512 1 ReLu
interp5 conv7 + ResBlock1 256 256 2 None
conv8 interp5 256 64 1 ReLu
conv9 conv8+conv1 64 out channel 1 None

where f
det
c (ycs) is the output logits of the detection network

f
det
c , sigmoid(·) is the sigmoid function that converts the

output logits to probability values.
The loss function for training the cloud detection network

is defined based on the standard cross-entropy loss:

Lfdet
c

= p̃c log pc + (1� p̃c) log(1� pc). (21)

As for the snow detection branch, its input-output formula
and loss function are similar to those of the cloud detection
branch. Note that, snow labels may be obscured by clouds.
Therefore, cloud cover must be considered when generating
snow labels, i.e., only the snow pixels in areas not covered
by clouds are used as positive samples for training. The snow
label can be obtained using the following formula:

p̃s = (1� p̃c)↵̃s. (22)

After obtaining the label, the snow detection loss function
can be also defined similarly to the cloud detection loss:

Lfdet
s

= p̃s log ps + (1� p̃s) log(1� ps), (23)

where ps = sigmoid(fdet
s (ycs)) represents output probability

map of snow detection networks.
The pseudocode of the proposed weakly supervised cloud

and snow detection framework WCSD is shown in Algorithm
1.

E. Implementation Details
1) Hyperparameter Settings: During the training of the

cloud GAN and snow GAN networks, the learning rates of
the generator and discriminator are set to 1e�5 and 1e�6. The
cloud detection and snow detection networks have a learning
rate of 1e�4. �1 is set to 3 and �2 is set to 0.5. � is set to 1.0.

2) Network Structure: We use the same network con-
figuration for the cloud/snow detectors and the cloud/snow
generators. The details of the network architecture are given
in Table I. For the cloud discriminator and snow discriminator,
except for the class number of outputs, the network structure

is the same as ResNet50 [72]. For the generator and detection
networks, more refined features need to be extracted. We,
therefore, designed an encoder-decoder architecture based on
ResNet50. We remove the initial down-sampling operations of
ResNet50 and retain its residual modules. In the feature output
part of ResNet50, other convolution operations are involved.
In the decoder stage, we use interpolation and convolution to
gradually increase the fineness of the output feature maps until
it has the same sized output as the input image. For each up-
sampling operation, we use a feature fusion strategy to further
enrich the features.

The columns “#Out”, “#In”, “Stride” and “�(·)” represent
the number of output channels, input channels, stride, and
activation functions of the operation respectively. “Layer”
represents the name of the operation, where “conv” represents
convolution operation and “interp” represents bilinear interpo-
lation. “ResBlock” refers to the residual module in ResNet50.

3) Data Augmentation: We use data augmentation on both
cloud/snow images and background images to increase the
diversity of the generated data. These data augmentation
includes random left-right flips, random up-down flips, and
random rotations with {0, 90, 180, 270} degrees. In addition,
the images are randomly cropped to generate data at various
resolutions.

4) Inference Details: During the detection, to improve
the accuracy of cloud and snow detection, we first use an
image-level classification network that has been pre-trained to
determine whether the image to be detected contains clouds
or snow. If only clouds are included, only cloud detection is
performed. The snow detection part follows a similar logic.
If both clouds and snow are presented, cloud detection should
precede snow detection, and the cloud detection results should
be given the highest priority.

III. EXPERIMENTAL RESULTS

A. Experimental Setup
In the experiments, we compare the proposed method with

both weakly supervised segmentation methods and fully su-
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Examples of remote sensing images from the Levir CS dataset and their corresponding supervision labels. In the label images, 0 represents background,
128 represents clouds, and 255 represents snow.

pervised segmentation methods. We also compare with some
recent methods proposed specifically for the remote sensing
image cloud/snow detection tasks. All of the methods are
trained and evaluated using the Levir CS dataset [42]. The
Levir CS dataset contains 4168 GF-1 satellite WFV scenes.
Each scene covers 211km ⇥ 192km, the resolution is 8m.
The multispectral images from the Levir CS dataset contain
four bands. Specifically, the spectral ranges of these bands
are 450� 520nm (Band 1: Blue Band), 520� 590nm (Band
2: Green Band), 630 � 690nm (Band 3: Red Band), and
770 � 890nm (Band 4: Near-Infrared Band), respectively. In
subsequent experiments, we only use the three visible light
RGB bands from the Levir CS dataset. The images in the
Levir CS dataset are collected from a global scale and include
various ground types such as plains, plateaus, oceans, deserts,
ice, etc. The pixel-level labels for all images are manually
annotated into three categories: background, cloud and snow.
In subsequent experiments, the training, validation, and test
sets are divided in the ratio of 3:1:1. For the weakly supervised
learning methods, neither the training set nor the validation
set contains pixel-level labels and only image-level labels of
whether clouds or snow are contained are provided during the
training process. Fig. 3 shows some sample remote sensing
images from the Levir CS dataset and their corresponding
cloud and snow pixel-level category labels. Manually annotat-
ing such pixel-level supervision labels is expensive and prone
to errors, especially when visually similar clouds and snow
appear simultaneously in an image. Sample images (a) and (b)
in Fig. 3 contain only clouds, (c) and (d) contain only snow,
(e) and (f) contain both clouds and snow, and (g) contains
neither clouds nor snow.

B. Evaluation Metrics
In our experiment, Precision (P), Recall (R), F1-score (F1),

and Overall Accuracy (OA) are used as our evaluation metrics
to assess the performance of cloud and snow detection. The
metrics are defined as follows:

P =
TP

TP + FP
, (24)

R =
TN

TP + FN
, (25)

F1 =
2 ⇤ P ⇤R
P +R

, (26)

OA =
TP + TN

TP + TN + FP + FN
, (27)

where TP , TN , FP , and FN represent true positive, true
negative, false positive, and false negative pixels, respectively.

C. Compared with Weakly Supervised Learning Methods
We compare our method with the latest weakly supervised

learning methods, which all use the same image-level labels
for training. Because there are only weakly supervised cloud
detection methods currently, we use some latest weakly su-
pervised semantic segmentation methods for cloud and snow
detection comparison.

Table II shows the comparison results. Among them, the
GradCAM [64] and WDCD method [54] are designed based
on the CAM method [63]. GradCAM [64] is an improvement
of the CAM method. WDCD method is a cloud detection
method based on the CAM method. We extend it to the task
of snow detection, with the same network structure as cloud
detection. Both GAN-CDM [67] and CloudMatting [53] are
weakly supervised cloud detection methods, and both need to
generate cloud remote sensing images with the help of GANs.
Since they are not easy to extend to snow detection tasks, we
only compare their performance in cloud detection tasks.

The proposed method has achieved the best cloud and snow
detection effect, as demonstrated by the experimental results.
Weakly supervised learning methods based on CAM, such
as GradCAM and WDCD methods, can accomplish cloud
detection and snow detection simultaneously, but both cloud
detection and snow detection have relatively low performance.
In terms of index recall, the WDCD method slightly surpasses
the proposed WCSD method, indicating that the detection
threshold of the WDCD method is relatively lower, allowing
it to detect more clouds and snow. However, as can be seen
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TABLE II
COMPARISON WITH WEAKLY SUPERVISED LEARNING METHODS ON CLOUD AND SNOW DETECTION TASKS.

Methods Cloud detection Snow detection
precision recall F1 OA precision recall F1 OA

GradCAM [64] 0.2825 0.6976 0.4021 0.6138 0.1598 0.5354 0.2465 0.9349
WDCD [54] 0.2756 0.8849 0.4203 0.5455 0.1934 0.7022 0.3033 0.9362

GAN-CDM [67] 0.4630 0.8644 0.6030 0.7161 – – – –
CloudMatting [53] 0.7019 0.8345 0.7625 0.9032 – – – –

WCSD (ours) 0.7353 0.8292 0.7838 0.9138 0.5107 0.5718 0.5395 0.9807

from other metrics in Table II, the performance of the WDCD
method in metrics other than recall significantly decreases
compared to other methods, especially the WCSD method.
This suggests that the detection results of the WDCD method
contain a large number of false alarms, demonstrating that this
method does not balance the detection rate and false alarm rate
well. The performance of the GAN-based methods surpasses
that of the CAM-based methods, and the performance gap
between the GAN-based methods and the proposed WCSD
method is relatively small. However, none of the GAN-based
methods can detect snow.

Fig. 4 illustrates the results of various cloud and snow
detection methods. Different rows in the figure represent
various input data. The first column represents the image input,
the second column represents the labels, and the remaining
columns represent the results from different methods. The
black-color pixels represent the ground objects, while the
cyan and yellow pixels represent snow and cloud, respectively.
According to the visualization results, it is difficult for the
CAM-based methods to accurately depict the cloud-snow
boundary. Both the GradCAM method and the WDCD method
can only approximate the position of clouds or snow, but their
accuracy cannot be compared with other methods.

The GAN-based methods, including GAN-CDM and Cloud-
Matting, have significantly improved the accuracy of cloud de-
tection, especially CloudMatting, which can generate pseudo
labels pixel-by-pixel and thus achieve extremely precise cloud
detection results. However, neither the GAN-CDM nor Cloud-
Matting method can distinguish between cloud and snow.
They both incorrectly identify snow as clouds. In the cloud
detection task, the proposed WCSD method can produce
more accurate cloud detection results than the CloudMatting
method. Similarly, in the snow detection task, the WDCD
method can achieve more accurate snow detection results, and
in some cloud-snow mixed images, it can also distinguish
clouds and snow more precisely.

D. Compared with Supervised Learning Methods
We compare our proposed method to several supervised

learning methods, such as the well-known semantic seg-
mentation methods FCN-32s and FCN-16s [74], as well as
some fully supervised cloud and snow detection methods. All
methods of comparison are trained using pixel-level labels.
Table III displays their results.

The experimental results demonstrate that our proposed
method can achieve comparable results as the fully supervised
method (FCN-32s) in cloud and snow detection tasks, but

there still remains a gap with CDSNet [49]. Fig. 5 illustrates
the results of various methods. Different rows in the figure
correspond to distinct input images. The first column repre-
sents the image input, the second column represents the labels,
and the subsequent columns represent the results of various
methods. The color maps are defined in the same way as
Fig. 4. Furthermore, it can be seen that some fully supervised
methods, especially the FCN method, output smooth clouds
and snow masks, while some fine clouds and snow are not
detected. This is because the pooling operation used in the
feature extraction process of such segmentation methods leads
to the loss of image details due to downsampling, and the final
prediction mask obtained by upsampling the feature map is not
fine enough.

E. Generated Data Analysis
Fig. 6 shows some generated cloud and snow remote sensing

images by our method. It can be seen that our method can
generate cloud images with different types and thicknesses.
The snow images can be generated in various states, and
the texture of snow can be restored effectively. In addition,
our method can generate images containing both clouds and
snow, where the overlay order between clouds and snow is
accurately restored. However, in our generated results, there
are also cases where the texture of snow and the texture of
ground objects are inconsistent. This is because our method
has not yet considered the correlation between ground objects
and snow when generating snow.

Our method can also generate pseudo labels for the images,
where the cloud and snow coverage area can be accurately
labeled. Because the labels are generated automatically, the
inaccurate labeling of boundaries and thin clouds could be a
factor limiting the performance of our method for cloud and
snow detection.

F. Ablation Experiments
We conducted ablation experiments where various strategies

were eliminated to evaluate the efficacy of our proposed
method. The results are shown in Table IV. The evaluated
strategies include reflectance stretching, opacity adjustment,
and snow semantic guidance, which are described as follows:

reflectance stretching (S). When generating cloud or snow
images, our method has two steps: generating reflectance
images and synthesizing new images. Considering that for
cloud-free areas, the generated reflectivity value should be
strictly equal to 0, therefore, we perform a stretching operation
on the output reflectance image as described in section II-B.
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Image Label GradCAM WDCD GAN-CDM CloudMatting WCSD (Ours)

Cloud Snow Background

Fig. 4. Detection results of different weakly supervised learning methods on cloud and snow detection task.
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Image Label FCN-32S FCN-16S Wang et al., 2022 CDSNet WCSD (Ours)

Cloud Snow Background

Fig. 5. Detection results of different supervised learning methods on cloud and snow detection task.
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Fig. 6. Some generated cloud and snow remote sensing images and their corresponding pseudo labels.
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TABLE III
COMPARISON WITH SUPERVISED LEARNING METHODS ON CLOUD AND SNOW DETECTION TASKS.

Methods Cloud detection Snow detection
precision recall F1 OA precision recall F1 OA

FCN-32s [74] 0.8432 0.7022 0.7663 0.9202 0.5907 0.6230 0.6064 0.9840
FCN-16s [74] 0.8654 0.7220 0.7872 0.9273 0.6132 0.6286 0.6208 0.9848

Wang et al. [50] 0.8803 0.7573 0.8142 0.9352 0.7238 0.6931 0.7081 0.9887
CDSNet [49] 0.9011 0.8280 0.8630 0.9510 0.7320 0.6886 0.7097 0.9889
WCSD (ours) 0.7353 0.8292 0.7838 0.9138 0.5107 0.5718 0.5395 0.9807

TABLE IV
ABLATION EXPERIMENT RESULTS ON CLOUD AND SNOW DETECTION. ABLATION ITEMS ARE REFLECTANCE STRETCHING (S), OPACITY ADJUSTMENT

(A), AND SNOW SEMANTIC GUIDANCE (G).

Ablation Cloud detection Snow detection
S A G precision recall F1 OA precision recall F1 OA

⇥ ⇥ ⇥ 0.8758 0.5927 0.7070 0.9085 0.3979 0.5622 0.4660 0.9745
X ⇥ ⇥ 0.7349 0.7876 0.7603 0.9075 0.4391 0.5859 0.5020 0.9770
X X ⇥ 0.7244 0.8120 0.7657 0.9075 0.4088 0.6587 0.5045 0.9807
X X X 0.7353 0.8292 0.7838 0.9138 0.5107 0.5718 0.5395 0.9807

opacity adjustment (A). Considering the correlation be-
tween opacity and cloud reflection, we use Eq. 6 to calculate
the opacity of the cloud, instead of adding random perturbation
to the foreground image like the previous method [53].

snow semantic guidance (G). As discussed in Sec. II-C, to
prevent the generator from producing “cloud-like” snow im-
ages, we introduce snow classification networks as a semantic
guidance in the snow generation process.

According to the results of the ablation experiment, re-
flectance stretching can effectively improve the accuracy of
cloud and snow detection, particularly in cloud detection,
which significantly improves recall scores. The generated
images with and without reflectance stretching are displayed
in Fig. 7. The first three rows represent the results without
stretching, while the last three rows represent the results with
stretching. Each column, from left to right, depicts the input
background image for GANs, the generated cloud image, the
generated cloud reflectance, the generated cloud opacity, and
the generated cloud labels. Without stretching, the generated
cloud remote sensing image may encompass a mask layer
resembling thin clouds in the non-cloud region, as depicted
in the figure. This is because the generated cloud reflection
image has a certain value in the non-cloud region, rather than
being close to 0. After stretching is applied, this problem can
be effectively avoided, and the generated cloud image is more
realistic, thus improving the detection performance.

In addition to reflectance stretching, using additional net-
work branches to predict opacity can increase the diversity of
generated cloud images and further improve the performance
of cloud and snow detection. The addition of semantic guid-
ance to snow GANs can significantly boost the performance
of snow detection. Fig. 8 depicts the snow remote sensing
image generated with and without semantic guidance. The
figure demonstrates that semantic guidance can result in snow
remote sensing images with more pronounced snow texture
and a higher level of authenticity. In the absence of semantic
guidance, the networks are also capable of generating realistic

snow images, but in some cases, they may generate images
with subtle textures that resemble cloud images. When these
images are used for training the cloud/snow detectors, the
detection performance will be affected.

G. Limitation and Discussion
For remote sensing images containing both clouds and snow,

distinguishing between cloud and snow areas is a difficult
problem. Our method can distinguish between snow and cloud
as it can generate more realistic snow and cloud remote
sensing images. Nonetheless, the following limits remain in
our proposed method.

• The high resemblance of cloud and snow makes the
detection challenging, even with pixel-level supervision.
There is still room in our method, particularly for snow
detection accuracy. Our snow generator currently only
considers the texture of the snow itself and ignores the
correlation between ground objects and snow textures,
resulting in instances where the snow and the ground
objects are not well coordinated, thereby affecting the
accuracy of the subsequent detection.

• The labels automatically generated by the proposed
method may be ambiguous. In many cases, the proposed
method can generate visually consistent cloud and snow
images, but the labels produced may lack a uniform
definition standard in the boundary and thin cloud areas.
This results in errors being introduced in the process
of training the cloud and snow detector using generated
images and labels.

Although clouds and snow have very similar visual effects
in remote sensing images, their reflectance characteristics
differ in certain specific spectral bands. Currently, our data
design is based on the visible RGB three bands, but the
WCSD framework is also compatible with other spectral
bands. Introducing information from near-infrared and other
bands could potentially improve cloud and snow detection
accuracy. Addressing these issues by incorporating additional
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Fig. 7. Generated images with and without reflectance stretching. The figure’s first three rows show the results without stretching, while the last three rows
show the results with stretching.
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Fig. 8. Snow remote sensing image generated with and without semantic guidance. The figure’s first two rows show the results without semantic guidance,
while the last two rows show the results with semantic guidance.

spectral information will help enhance detection accuracy
and resolve label ambiguities. In addition, to improve the
rationality of snow generation, additional meta-information,
such as the Digital Elevation Model (DEM) of the image, can
be introduced to generate snow images that better match the
terrain.

IV. CONCLUSIONS

We propose a novel weakly supervised method for remote
sensing image cloud and snow detection. Our method em-
ploys the cloud and snow imaging mechanism to construct
generative adversarial networks that are capable of generating
cloud and snow images, as well as their corresponding labels.
The generated images and labels are then used for training
cloud and snow detection. Compared to other weakly super-
vised methods, our method achieves superior cloud and snow

detection performance. Using only image-level training labels,
our method achieves comparable accuracy to fully supervised
learning methods trained on pixel-level training labels.
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