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Abstract—Hyperspectral remote sensing images have unique
advantages in urban planning, precision agriculture, and ecology
monitoring since they provide rich spectral information. However,
hyperspectral imaging usually suffers from low spatial resolution
and high cost, which limits the wide application of hyperspectral
data. Spectral super-resolution provides a promising solution to
acquire hyperspectral images with high spatial resolution and
low cost, taking RGB images as input. Existing spectral super-
resolution methods utilize neural networks following a single-shot
framework, i.e., final results are obtained by one-stage spectral
super-resolution, which struggles to capture and model the
complex relationships between spectral bands. In this paper, we
propose Spectral-Cascaded Diffusion Model (SCDM), a coarse-
to-fine spectral super-resolution method based on the diffusion
model. The diffusion model fits the real data distribution through
stepwise denoising, which is naturally suitable for modeling rich
spectral information. We cascade the diffusion model in the
spectral dimension to gradually refine the spectral trends and
enrich spectral information of the pixels. The cascade solves the
highly ill-posed problem of spectral super-resolution step-by-step,
mitigating the inaccuracies of previous single-shot approaches.
To better utilize the potential of the diffusion model for spectral
super-resolution, we design Image Condition Mixture Guidance
(ICMG) to enhance the guidance of image conditions and
Progressive Dynamic Truncation (PDT) to limit cumulative errors
in the sampling process. Experimental results demonstrate that
our method achieves the state-of-the-art performance in spectral
super-resolution. Codes can be found at https://github.com/Mr-
Bamboo/SCDM.

Index Terms—remote sensing, spectral super-resolution, diffu-
sion model, cascade-based methods

I. INTRODUCTION

HYPERSPECTRAL remote sensing images (HSIs) sur-
pass RGB or multispectral images in capturing com-

prehensive spectral information. HSIs cover wavelength range
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Fig. 1. The previous approach is shown in (a) and our approach is shown
in (b). Our approach obtains higher-quality spectral super-resolution results
and multiple spectral resolutions by cascading the models in the spectral
dimension..

of visible bands, short-wave infrared, mid-infrared, and even
thermal infrared bands with nanometer spectral resolution. The
wide wavelength range and fine spectral resolution of spectral
data endow it unique advantages in various tasks, including
military applications [1], mineral exploration [2], ecological
conservation [3, 4], urban construction [5], and post-disaster
recovery [6]. However, due to the fine spectroscopy of different
imaging bands, HSIs often face rigorous challenges, such as
high acquisition costs, restricted imaging quality, limited spa-
tial resolution [7], etc. Consequently, acquiring remote sensing
images that possess both high spatial and spectral resolution
remains an arduous undertaking, profoundly restricting the
scope of HSI applications.

Spectral super-resolution methods offer a potential solution
to mitigate above challenges, employing well-designed models
to obtain high spatial resolution HSIs from RGB remote
sensing images as input. However, transforming RGB images
to HSIs is inherently challenging due to its ill-posed nature,
making it a complex process to model. Some attempts aim to
determine the optimal linear combination of basis functions for
each hyperspectral pixel through linear model optimization [8]
or reconstruct HSIs using a carefully trained sparse dictionary
[9–11]. However, these methods predominantly rely on linear
models to represent the mapping process, overlooking the
multitude of nonlinear intricacies inherent to HSIs, making
achieving satisfactory outcomes a formidable task.

With the burgeoning of deep learning techniques in the
domain of natural image generation [12, 13], deep learning-
based methods are progressively gaining popularity in the

https://github.com/Mr-Bamboo/SCDM
https://github.com/Mr-Bamboo/SCDM


IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2024 2

field of spectral super-resolution. These methods extract high-
level semantic features from RGB or multispectral images
through neural networks and subsequently generate HSIs
based on these features, effectively addressing the challenge of
accommodating the non-linear characteristics inherent to HSIs.
Deep learning-based approaches can be broadly classified into
two architectural paradigms. The first employs well-designed
convolutional neural networks (CNNs) augmented with pixel-
level reconstruction loss (e.g., Mean Squared Error Loss) and
incorporates advanced techniques such as residual structures
[14, 15], attention mechanisms [16–19], group recovery [20,
21], structural prior [22, 23] and other innovations to improve
the synthesis capacity of the network. The second category
involves the development of Generative Adversarial Networks
(GANs) [24], wherein discriminators guide the generators in
producing more authentic outcomes [25, 26]. The former ex-
hibits greater training stability but may encounter difficulties in
generating high-quality HSIs due to the constraints imposed by
the optimization objectives. In contrast, the latter demonstrates
well in generating HSIs with high fidelity but may exhibit
training instability and the tendency to replicate the most
common situation in the training dataset, potentially failing
to accurately fit the real data distribution.

In recent years, diffusion models have attracted much atten-
tion for tasks such as high-quality image generation [27] and
image super-resolution [28], which match the data distribution
by learning to reverse a gradual and multi-step noising process
[29, 30]. Diffusion models offer desirable distribution coverage
and a simple training objective, enabling them to effectively
capture real data distributions while maintaining training sta-
bility [31]. These properties make diffusion models naturally
suited for modeling the intricacies of spectral variability.

Although previous methods have achieved some success in
spectral super-resolution tasks, they all follow the single-shot
paradigm (Fig. 1 (a)), i.e., RGB remote sensing images are
processed in one stage to obtain complete spectral informa-
tion. However, real hyperspectral remote sensing images have
complex characteristics due to the influence of the atmosphere,
solar illumination, and sensor noise, which makes it difficult
to model their complete spectral details at once.

To address the above issues, we propose Spectral-Cascaded
Diffusion Model (SCDM), a multi-stage spectral super-
resolution method based on diffusion models. First, coarse-
grained spectral trends are obtained by using RGB information
to determine the basic properties of ground objects. Then, the
spectral trends are progressively refined by multiple diffusion
models cascaded in the spectral dimension. During the refine-
ment process, SCDM gradually fits the spectral variability
caused by the real-world imaging process to improve the
accuracy of spectral super-resolution. Meanwhile, our method
can also output spectral super-resolution results with different
spectral resolutions.

In order to fully integrate the rich information in the input
image conditions, we draw inspiration from [32] and propose
the Image Condition Guidance Mixture (ICMG) strategy. Dur-
ing the training process, the pre-trained diffusion model is fine-
tuned by randomly removing the image-conditional inputs.
During the sampling process, ICMG enhances the consistency

between the input image conditions and the sampling results
by linearly mixing the conditional and unconditional outputs.

Furthermore, in reconstructing HSIs, the sampling process
in diffusion models can lead to instability, resulting in the
gradual accumulation of prediction errors. Additionally, the
ICMG strategy can produce high-dimensional unconditional
outputs, which may amplify this instability. The existing
fixed-threshold truncation methods are insufficient to handle
these situations. To address these issues, we implement an
adaptive truncation of the predicted noise at each step of
the sampling process. The truncation threshold is related to a
certain percentile of the current noise level, and this percentile
increases progressively during the sampling to accommodate
the difficulty of prediction at different time steps. This trunca-
tion method is termed Progressive Dynamic Truncation (PDT).
Compared with the fixed-threshold truncation, PDT can effec-
tively suppress instability and fully release the potential of the
ICMG strategy.

Experiments on the IEEE grss dfc 2018 [33, 34] dataset
show that SCDM can outperform CNN-based and GAN-based
methods for high-quality spectral super-resolution. The main
contributions of the paper can be summarized as follows:

1) Different from the previous single-shot paradigm, we
propose a novel super-resolution approach cascading
in spectral dimensions. On this basis, we propose the
Spectral-Cascaded Diffusion Model (SCDM), a multi-
stage method that models spectral information from
coarse to fine, allowing for a better fit to the complex
spectral properties of HSIs.

2) To fully utilize the input image condition, we design
the Image Condition Guidance Mixture (ICMG), and to
suppress instability of the sampling process, we propose
Progressive Dynamic Truncation (PDT).

3) The effectiveness of the proposed method is empirically
substantiated, exceeding the existing state-of-the-art spec-
tral super-resolution methods on four fidelity metrics.
Moreover, our method can output results at multiple
spectral resolutions.

The rest of the paper is organized as follows. In Section
II, we introduce spectral super-resolution methods, diffusion
models and the cascaded-based models. Section III details the
SCDM method. Section IV provides experimental evaluations
on the reconstruction quality. Section V gives the discussion
about the advantages and limitations of SCDM. Finally, we
draw conclusions in Section VI.

II. RELATED WORKS

In this section, we briefly review the spectral super-
resolution methods, diffusion models, and cascading-based
methods for image generation. Specifically, we focus on
diffusion models in the field of image generation.

A. Spectral super-resolution
Techniques to obtain hyperspectral images with high spatial

resolution include super-resolution [35–38], spectral super-
resolution [39–41], and image fusion [42]. Spectral super-
resolution complements missing spectral information in the
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spectral dimension. In this paper, we leverage high-resolution
RGB or multispectral images as conditional inputs to produce
high-resolution HSIs.

Some traditional spectral super-resolution methods revolved
around the concept of optimizing linear models, including the
utilization of basis functions [8, 43] or sparse representations
[9–11, 44]. However, these methods employed linear models
to model HSIs, which led to suboptimal modeling of the
inherent nonlinear characteristics. Furthermore, they exhibited
sensitivity to the selection of basis functions or dictionaries,
rendering them susceptible to potential instability.

In recent years, the rapid development of neural networks
has made deep learning-based methods a hot spot in spectral
super-resolution research. Such methods excel in learning the
nonlinear characteristics inherent to HSIs, leading to supe-
rior synthesis outputs. In terms of model architecture, deep
learning-based methods can be categorized into two primary
classes. One class is grounded in CNN and pixel-level loss
functions, which feature a straightforward optimization objec-
tive and robust training processes but may yield suboptimal
synthesis quality. The other class relies on GAN [24], excelling
in generating realistic results but often involving intricate
training procedures. To alleviate the synthesis complexity,
techniques like residual learning [14, 15], attention mecha-
nisms [16–18, 45], 3D convolutions [46, 47] and signal decom-
position theories [48, 49] have been introduced. Furthermore,
some researchers have integrated physical priors derived from
the imaging process, such as spectral response function (SRF)
[50] or spectral mixture model [51], to enhance the realism
and interpretability of the synthesized results.

Recently, Liu et al. also proposed a spectral super-resolution
method based on diffusion modeling. They introduced Hy-
perLDM [52], which aimed at transforming high-dimensional
hyperspectral data into a lower-dimensional latent space uti-
lizing VQGAN, subsequently diffusing it within this latent
domain. Despite offering a partial solution to the challenge
of challenging noise prediction, this approach still exhibits
constraints in achieving high-quality spectral super-resolution.

B. Diffusion Models

Diffusion models aim to generate images from Gaussian
noise via an iterative denoising process, which consists of a
forward process and a reverse process. During the forward
process, an image is converted to a Gaussian noise by adding
random Gaussian noise with T iterations. Ho et al. first
combined the diffusion model with a score-based model and
proposed the denoising diffusion probabilistic model (DDPM)
[29], which has achieved great success in image synthesis. In
contrast to GAN, the diffusion model demonstrates more de-
sirable distribution coverage, simpler training objectives, and
enhanced scalability [27]. Consequently, an increasing number
of researchers have shifted their focus towards improving
DDPM, unveiling the significant potential of diffusion models
within the field of image synthesis.

In recent years, a substantial body of research has been
conducted on conditional diffusion models to cope with down-

stream tasks with different conditional inputs. For category-
conditional image synthesis, Dhariwal et al. proposed the
Classifier-Guided Diffusion Model [27], which utilizes pre-
trained classifiers for guiding the sampling process of the dif-
fusion model. Subsequently, Ho et al. introduced the Classifier-
Free Guidance strategy [53], aimed at achieving the trade-
off between fidelity and diversity, all without the depen-
dency on a classifier. For image super-resolution, Saharia et
al. proposed SR3 [28], which generates high-quality images
through iterative refinement. For the text-generated image task,
GLIDE [54] combines the text feature into transformer blocks
in the denoising process. DALL-E 2 [55] combines a pre-
trained CLIP encoder with GLIDE and introduces a cascade
architecture to achieve higher-quality results. In addition,
the diffusion model also achieves surprising results in tasks
such as semantic image synthesis [32], inpainting [56], and
colorization [57]. Diffusion model-based approaches have also
achieved impressive success on remote sensing image super-
resolution tasks [58–60].

However, diffusion directly for spectral super-resolution
presents certain challenges. HSIs typically consist of tens or
even hundreds of spectral bands compared with RGB or multi-
spectral images. In this context, diffusion models necessitate
the incorporation or removal of noise in a high-dimensional
space, which makes the noise prediction problem difficult.
In this paper, we investigate diffusion models for spectral
super-resolution and deal with high-dimensional predictions
by cascading them in spectral dimension.

C. Cascade-based Image Synthesis Methods

Cascading pipelines are frequently utilized in the gener-
ation of large-scale images. When compared to small-scale
images, the synthesis of large-scale images often necessi-
tates the utilization of complex neural networks and intricate
computational techniques to effectively capture longer-range
dependencies among pixels. Cascading pipelines was initially
explored within the context of methods like VQ-VAE [61, 62]
and autoregressive models [63], which successfully mitigated
the challenges associated with large-scale image synthesis by
decoupling the synthesis task along the size dimension. Sub-
sequently, cascaded GANs have also demonstrated remarkable
success in various tasks, including image dehazing [64] and
sample augmentation [65].

In recent years, cascading pipelines have also been intro-
duced to diffusion models. Ho et al. [66] used cascaded diffu-
sion models to achieve category-conditional image generation.
Saharia et al. [28] applied cascaded diffusion models for image
super-resolution. In the domain of text-to-image task, DALL-
E 2 [55] and Imagen [67] utilize text-conditioned diffusion
models for small-scale image generation, and a series of super-
resolution diffusion models to generate larger-scale images.

However, most of the existing cascading pipelines cascade
models in the spatial dimension. To the best of our knowledge,
there exists no image synthesis method that cascades in the
spectral dimension.
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Fig. 2. An overview of the proposed method. The pipeline of SCDM is shown by (a).SCDM consists of a series of conditional diffusion models cascaded
in the spectral dimension. The conditional input to the first stage of the diffusion model is the RGB remote-sensing images, and the subsequent diffusion
models are conditioned on the output of the previous stage. The generation process of each stage starts with noise and iteratively denoises to yield the desired
outputs for the corresponding spectral bands. (b) shows the sampling procedure with ICMG, which achieves better utilization of the input conditions by
mixing conditional and unconditional outputs weighted in sampling. (c) illustrates the process of PDT, where p represents the truncation percentile. At the
early stages of sampling, the p value is relatively small. As the sampling progresses (with decreasing t), p increases.

III. PROPOSED METHOD

We introduce the Spectral Cascade Diffusion Model
(SCDM) as illustrated in Fig. 2, which consists of a series
of diffusion models cascaded in the spectral dimension. The
multiple diffusion models of the SCDM gradually generate
images with an increasing number of bands, starting from
RGB images, and subsequently up-sampling the images along
the spectral dimension while incorporating spectral details.
The structure of the multiple diffusion models remains consis-
tent except for the dimensions of the input and output chan-
nels. These models can be simultaneously and independently
trained, obviating the need for data generated by the previous
model.

A. Priliminary of Denoising Diffusion

The diffusion model [29] consists of two processes: a
forward process that perturbs data to noise and a reverse
process that converts noise back to data. The forward process
is typically hand-designed to transform any data distribution
into a simple Gaussian distribution, while the reverse process
generates data samples by inverting the forward process with
deep neural networks.

Let the diffusion process consist of a total of T steps, x0

denotes the input data sample, and xt denotes the intermediate

state of the input data in the diffusion process with a time step
of t = 1, 2, ..., T . The forward process q(·) can be defined as

q(x1, x2, . . . , xT |x0) :=
TY

t=1

q(xt|xt�1)

q(xt|xt�1) := N (xt;
p
1� �txt�1,�tI).

(1)

where N (x;µ,�2) denotes x follows a Gaussian distribution
with mean µ and variance �2 and �t 2 (0, 1) is a predefined
sequence of variances of Gaussian noise.

As observed by Sohl-Dickstein et al. [68], we can marginal-
ize the joint distribution in Eq. (1) to obtain the analytical form
of q(xt|x0), which is denoted as

q(xt|x0) = N (xt;
p
↵̄tx0, (1� ↵̄t)I), (2)

where ↵̄t :=
tQ

s=1
(1� �t). Then given x0, we can easily obtain

a sample of xt by sampling a Gaussian vector ✏ ⇠ N (0, I) and
utilizing the reparameterization technique, without iteratively
adding noise.

xt =
p
↵̄tx0 +

p
1� ↵̄t✏. (3)

For the reverse process, the diffusion model starts by first
generating an unstructured noise from the prior distribution,
then gradually removing noise therein by running a learnable
Markov chain in the reverse time direction. Specifically, the
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purpose of the reverse process is to model the reverse distribu-
tion q(xt�1|xt) at time step t. If µ✓ and ⌃✓ denote the mean
and covariance of the Gaussian noise that should be removed,
respectively, the reverse distribution can be approximated by
a trainable neural network with parameters ✓ as

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)). (4)

The joint distribution is

p✓(x0:T ) = p(xT )
TY

t=1

p✓(xt�1|xt). (5)

where xT ⇠ N (0, I).
To optimize the neural network, we minimize the Kullback-

Leibler (KL) divergence between the reverse process p✓(x0:T )
and the actual time reversal of the forward process q(x0:T ):

L := DKL (q(x0:T )kp✓(x0:T ))

= Eq(x0)q(x1:T |x0)


�log p✓(x0:T )

q(x1:T |x0)

�
+ const,

(6)

where const represents a constant that does not depend on the
model parameter ✓ and hence does not affect optimization.
The first term of the second line in Eq. (10) is the variational
lower bound (VLB) of the log-likelihood of the data x0, that
is

Lvlb = Eq(x0)q(x1:T |x0)


�log p✓(x0:T )

q(x1:T |x0)

�
. (7)

The objective of DDPM training is to minimize the negative
VLB, which is particularly easy to optimize because it is a sum
of independent terms, and can thus be estimated efficiently by
Monte Carlo sampling and optimized effectively by stochastic
optimization.

Further improvements come from variance reduction by
rewriting the Eq. (7) as

Lvlb = Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
.

(8)

Noting that LT is irrelevant to ✓ and L0 is equal to Lt�1

when t = 1. Therefore, the Lvlb is determined by the expected
value of the sum of Lt�1. The tractable posterior distribution
q(xt�1|xt, x0) conditioned on x0is:

q(xt�1|xt, x0) = N (xt�1; µ̃t(xt, x0), �̃tI), (9)

where µ̃t(xt, x0) :=
p
↵̄t�1�t

1�↵̄t
x0 +

p
1��t(1�↵̄t)

1�↵̄t
xt and �̃t :=

1�↵̄t�1

1�↵̄t
�t.

Thus Lt�1 can be written in the following form

Lt�1 = DKL (q(xt�1|xt, x0)kp✓(xt�1|xt))

= Eq


1

2�2
t

kµ̃t(xt, x0)� µ✓(xt, t)k2
�
+ const.

(10)

Finally, utilizing the reparameterization technique to trans-
form the mean form of Lt�1 into the noise form yields

Lsimple = Ex0⇠q(x0),✏⇠N (0,I),t⇠U(1,T )

⇥
�(t)k✏� ✏✓(xt, t)k2

⇤
,

(11)
where �(t)is a weighting function, U(1, T ) is a uniform
distribution over the set 1, 2, ..., T , and ✏✓(xt, t) is the noise
predicted by the neural network given xt and t and parame-
terized by ✓.

B. Spectral-Cascaded Diffusion
Hyperspectral data exhibit complex distribution and high

dimensionality, making it challenging to direct synthesis us-
ing diffusion models. We propose a novel approach that
decomposes the process from RGB remote sensing images
to hyperspectral remote sensing images along the spectral
dimension. Specifically, we employ a cascade of multiple
diffusion models. The initial model takes the RGB image
as a conditional input and generates an image with low
spectral resolution. Subsequent models utilize the output of
the preceding model as their conditional input, progressively
enhancing spectral details. The final diffusion model produces
the target HSI. We term this pipeline as Spectral-Cascaded
Diffusion.

Based on experience, we employed a two-stage cascade
model in this study, ensuring that the increasing multiplier in
the number of bands remains as consistent as possible across
both stages. This allocation strategy strikes a balance between
the complexity of reconstruction and error accumulation. We
summarize the band allocation strategy with the following
formula

n = b3⇥
p
N/3c, (12)

where n is the number of HSI bands to be reconstructed in
the first stage, N is the total number of bands in the complete
HSI to be reconstructed, b·c represents rounding operation.
The bands to be reconstructed in the first stage are obtained
by sampling the complete HSI at equal intervals along the
spectral dimension.

For each stage, we design a UNet [69] as noise prediction
network. Using conditional RGB images as input, the diffusion
model is iteratively denoised for T steps, gradually recovering
the HSI from the noise randomly sampled from N (0, 1). In
this section, we describe the design of the denoising network
and the loss function.

1) Denoising network: We utilize the U-Net from [29] as
the base noise prediction network, augmented with conditional
inputs. Hence, we take the time step t and the image condi-
tion Xi required for this diffusion process as inputs to the
noise prediction network. For the image conditional input,
we first extract the features by an image conditional encoder.
The encoded features are concatenated with the noisy image
features obtained by the U-Net encoder and finally fed into
the decoder of the U-Net to remove the noise. Except for
the initial convolutional layer, the image conditional encoder
shares weights with the other layers of the U-Net encoder.

The U-net is built mainly on Resblocks [70] and At-
tentionBlocks [71] with 2D convolution. For U-Net en-
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coder, We perform 7 downsampling operations with multi-
plicity [1, 2, 2, 2, 2, 2, 2], resulting in feature resolutions of
[2562, 1282, 642, 322, 162, 82, 42] in the specified order. Each
Resblock is repeated 2 times for each resolution. The Atten-
tionBlock is only used for the feature resolution at 16 ⇥ 16.
The design of the U-Net decoder is almost symmetrical to the
encoder, except that the number of repetitions of the Resblock
has been changed to 3. U-Net uses skip connections between
the features of the encoder and decoder corresponding to the
resolution.

2) Loss functions: We use two objective functions to train
our spectral-cascaded diffusion model. The first objective
function is the DDPM denoising loss. According to Eq. (11),
it can be expressed as the Mean Square Error (MSE) loss
between the predicted noise and the true noise:

LMSE = Ex0⇠q(x0),✏⇠N (0,I),t⇠U(1,T )k✏� ✏✓k22. (13)

However, using only MSE would focus more on the dif-
ferences between pixel values and ignore the requirement of
spectral profile accuracy, so we constrain the spectral proper-
ties of the synthesized images by introducing the spectral angle
similarity loss. The spectral angle similarity loss is defined
as the cosine similarity between the original and synthesized
spectral vectors. The loss is written as follows:

LSAM = 1� cos(x0, x✓,0)

= 1� 1

n

nX

i=1

Pm
j=1 x✓,0ij · x0ijqPm

j=1(x✓,0ij )
2 ·

qPm
j=1(x0ij )

2
,

(14)
where x✓,0 is denoted as 1p

↵t

�
xt �

p
1� ↵̄t✏✓

�
and x0ij

represents the spectrum of the pixel at position (i, j) in x0ij .
Therefore, the overall objective function is:

LD = LMSE + �LSAM

✓⇤ = argmin
✓

LD.
(15)

C. Image Condition Mixture Guidance

For the diffusion model conditioned on image c, previous
studies have obtained the image at step t� 1 by learning the
conditional distribution p✓(xt|c) and then taking the following
sampling approach similar with DDPM [29]:

xt�1 =
1p

1� �t
(xt �

�tp
1� ↵̄t

✏✓(xt|c)) + �t✏, (16)

where ✏✓(xt|c) is the noise prediction output of the denoising
network Di(x, t, c) for i th diffusion model.

However, it has been shown that conditional diffusion mod-
els can not explicitly handle conditional inputs in the sampling
process of the DDPM. In addition, the sampling approach
of DDPM may result in synthetic images that lack realism
and exhibit reduced correlation with the conditional image,
particularly when there is a significant disparity between
the conditional image conditions and the final output [32].
Dhariwal et al. introduced a classifier guidance technique,
which enhances the quality of generated samples by mixing the
score estimates from the conditional diffusion model with the

log-probability gradient of the classifier [27], which is denoted
as:

✏̂✓(xt|c) = ✏✓(xt|c) + s · ⌃✓(xt|c) ·rxt log p(c|xt), (17)

where s is the guidance weight used to weigh sample quality
over diversity, and ⌃✓(xt|c) represents the variance. However,
for image-conditioned diffusion models, relying on the classi-
fier to provide the gradient is inappropriate.

Inspired by [53] and [32], we designed the Image Condi-
tion Mixture Guidance (ICMG) strategy for sampling image-
conditioned diffusion models. It is worth noting that the
dissimilarity between the estimated noise ✏✓(xt|c) in the image
conditional guidance and the estimated noise ✏✓(xt|;)in the
unconditional case is directly related to the log-probability
gradient employed for the mixing process, which is denoted
as:

✏✓(xt|c)� ✏✓(xt|;) / rxt log p(xt|c)�rxt log p(xt)

/ rxt log p(c|xt).
(18)

Therefore, during the sampling process, we can improve
the quality of the samples by mixing the output of the
conditional diffusion model with the output of the jointly
trained unconditional diffusion model:

✏̂✓(xt|c) = ✏✓(xt|c) + s · (✏✓(xt|c)� ✏✓(xt|;)), (19)

where ; is defined as the image with all band pixel values set
to 0. The sampling process of ICMG is shown in Fig. 2 (b)
and Algorithm 2.

In the training process, we jointly train unconditional dif-
fusion models by setting the probability of randomly setting
the image condition to zero. The training process for each
diffusion model in Spectral-Cascaded Diffusion is shown in
Algorithm 1.

Algorithm 1 Training of i th Diffusion Model in Spectral-
Cascaded Diffusion
Input: q(x0), image condition c corresponding to x0, proba-

bility of unconditional training punc, learning rate lr.
Output: The denoising network with parameters ✓Di for i th

diffusion model.
1: repeat
2: Sample x0 ⇠ q(x0), ✏ ⇠ N (0, I), t ⇠ U({1, . . . , T})
3: c ; with probability punc
4: Predict the noise with ✏✓(xt|c) = Di(t, xt, c), xt =p

↵̄tx0 +
p
1� ↵̄t✏

5: Calculate gradient descent r✓Di
LD

6: Update ✓Di with ✓Di  ✓Di � lrr✓Di
LD

7: until converged

D. Progressive Dynamic Truncation Strategy

For the distribution of bounded data (e.g., image data), trun-
cation of the sampling process using thresholding can reduce
the adverse effects of out-of-bounds errors in the sampling
process, and thus guide the model to sample high-quality
samples [67, 72]. Many of the previous image-conditioned
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diffusion models use static thresholding to truncate the sam-
pling results at each step. However, due to the complexity of
hyperspectral images and the specificity of guided sampling,
static thresholding sampling leads to insufficiently accurate
spectral details in the synthesized images.

For guided sampling, Saharia et al. [67] proposed a dy-
namic thresholding technique that actively prevents pixels
from exceeding the boundary at each step by pushing the
out-of-bounds samples inward. In each sampling step of this
technique, the dynamic threshold is set based on the pixel
value of x0 predicted directly. However, for hyperspectral
images, it is difficult to predict x0 directly, which leads to
intolerable bias. Therefore, we modify the above truncation
method by setting the truncation threshold dynamically for
the noise predicted in each step.

Specifically, in each sampling step, we set ⌧p to the absolute
pixel value of a certain percentile p in ✏✓(xt|c). If ⌧p exceeds
1, we truncate the predicted noise to the range [�⌧p, ⌧p],
otherwise we truncate to the range [�1, 1]. In this way, we
can control the truncation dynamically and adaptively at each
step.

Simultaneously, the sampling process of the diffusion model
introduces instability, which must be mitigated to achieve a
HSI that closely resembles the ground truth. The initial steps of
sampling (i.e., when t is close to T ) establish the fundamental
trajectory of the reconstruction and necessitate predictions at
high noise levels, where instabilities are significant and may
lead to catastrophic errors. To address this, we set smaller
percentiles for truncation in initial sampling step to reduce
instability. In the later stages of sampling, as the model
predicts at lower noise levels with increased stability, the
truncation percentile can be appropriately raised. Therefore,
we define the percentile value p as a monotonically decreasing
function of time t, denoted as p(t), referred to as progressive
dynamic truncation (PDT). This approach ensures that p(t)
is smaller at the beginning of the sampling and gradually
increases as the process continues. In our method, p(t) is set
as a linear function of

p(t) = p0 + (pT � p0)t. pT < p0. (20)

In general, we set p0 to 1.0. Thus, the truncation threshold
⌧p(t, ✏✓) is related to the time step and the noise at that time
step.

The process of progressive dynamic truncation for sam-
pling is shown in Fig. 2 (c) and Algorithm 2, where
Clamp(✏̂✓(xt|c), ⌧p(t, ✏✓) represents threshold noise to the
range [�⌧p(t, ✏✓), ⌧p(t, ✏✓)].

IV. EXPERIMENT

In this section, we present the datasets and experimental set-
tings to validate the performance of spectral super-resolution.
Additionally, we showcase the synthesis results of SCDM and
conduct meticulous ablation studies on it.

A. Datasets and Experimental Setup
We evaluate our method on the IEEE grss dfc 2018 dataset

and Pavia Center dataset. IEEE grss dfc 2018 dataset was

Algorithm 2 Progressive Dynamic Truncation for Sampling
Input: image condition c, guidance weight s, progressive

function for threshold �(t).
Output: x0 ⇠ q(x0).

1: Sample xT ⇠ N (0, 1);
2: for t = T, . . . , 1 do
3: Calculate conditional output ✏✓(xt|c) = D(t, xt, c)
4: Calculate unconditional output ✏✓(xt|;) = D(t, xt, ;)
5: ✏̂✓(xt|c) = ✏✓(xt|c) + s · (✏✓(xt|c)� ✏✓(xt|;))
6: ✏̃✓(xt|c) = Clamp(✏̂✓(xt|c), ⌧p(t, ✏✓))
7: Sample ✏ ⇠ N (0, I) if t > 1, else ✏ = 0
8: xt�1 = 1p

1��t
(xt � �tp

1�↵̄t
✏̃✓(xt|c)) + �t✏

9: end for

collected by the National Center for Airborne Laser Mapping
(NCALM) from Houston University [33, 34]. The dataset
contains an image scene with spatial size 4172 ⇥ 1202 and
48 bands, covering a wavelength range of 380-1050 nm.
The bands 23,12,5 from the data are chosen as the RGB
image condition input. The dataset is cropped into 27 paired
512⇥ 512 patches, where 3 patches without overlap are used
for testing and others for training. All methods are trained on
256⇥256 patches randomly cropped from the training patches
and tested on 3 patches with a size of 512⇥ 512 patches.

The Pavia Center dataset was captured by the ROSIS sensor
covering a wavelength range of 430-860 nm and contains 102
bands with a total of 1096⇥715 effective pixels after removal
of bad bands. The bands 60,30,10 from the data are chosen as
the RGB image condition input. We used 1024⇥715 pixels in
our experiments and cropped 8*6 = 48 patches with a size of
128⇥ 128. 40 of them are used for training and 8 for testing,
with no overlap between the training and testing data.

The proposed SCDM method is compared with six
state-of-the-art methods, including the CNN-based method
MSCNN [39], HSCNN+ [14], FMNet [15], HSRNet [50]
and HASIC-Net [18], the GAN-based method R2HGAN
[26] and the diffusion-based method HyperLDM [52].
HSCNN+ [14] uses multiple residual blocks for feature map-
ping. MSCNN [39] designs a multiscale deep convolution
network with pixel-shuffle. FMNet [15] designs an adaptive
receptive field that maintains spectral learning capability.
HASIC-Net [18] utilizes the attention module to focus on
structural information similarity. LTRN [23] combine low-
rank tensor decomposition with CNN to adaptively reconstruc-
tion HSI. R2HGAN generates HSIs under a GAN framework
with spectral and spacial discriminators [26] and Hyper-
LDM designs a latent diffusion model for spectral super-
resolution [52]. For fair competition, all these methods are
optimized adequately and parameters for the best results are
selected.

For a fair competition, all the experiments are conducted
with the Intel (R) Xeon (R) Gold 6330 CPU @2.00GHZ and
an NVIDIA GeForce RTX 4090 GPU, optimized adequately
and the best parameters are selected.

We utilize four metrics to measure the quality of spectral
super-resolution, including root-mean-square error (RMSE),
mean peak signal-to-noise ratio (MPSNR), mean structural
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MSCNN HSCNN+ FMNet HASIC-Net LTRN R2HGAN HyperLDMReal

test image1
band 1

SCDM (Ours)

MSCNN HSCNN+ FMNet HASIC-Net LTRN R2HGAN HyperLDMReal

test image1
band 37

SCDM (Ours)

MSCNN HSCNN+ FMNet HASIC-Net LTRN R2HGAN HyperLDMReal

test image2
band 29

SCDM (Ours)

MSCNN HSCNN+ FMNet HASIC-Net LTRN R2HGAN HyperLDMReal

test image2
band 18

SCDM (Ours)

MSCNN HSCNN+ FMNet HASIC-Net LTRN R2HGAN HyperLDMReal

test image3
band 16

SCDM (Ours)

MSCNN HSCNN+ FMNet HASIC-Net LTRN R2HGAN HyperLDMReal

test image3
band 23

SCDM (Ours)

Fig. 3. Results of each spectral super-resolution method on different bands. Rows 1, 3, and 5 show the global results, and rows 2, 4, and 6 show the local
details.

similarity (MSSIM) [73], and SAM, to quantitatively evaluate
the performance of all the compared methods. The RMSE
measures the difference between the reconstructed image and
the true value. The MPSNR and MSSIM are metrics that
show the spatial fidelity of the reconstructed HSI which are
computed on each band and averaged over all spectral bands,
with larger values of the results indicating that the method is
more effective in preserving spatial detail. Meanwhile, SAM
evaluates the spectral retention of all compared algorithms,
with improved spectral fidelity when SAM is small.

B. Implementation Details

1) Parameter Settings: In the spectral-cascaded diffusion
model, the time-embedding et 2 R1⇥512 and the probability
of unconditional training punc = 0.1. The loss weight of the
spectral angle similarity loss � = 1.

For IEEE grss dfc 2018 dataset, we employ a two-stage
cascade process. In the first stage, we reconstruct a 12-band
image with a spectral resolution of 60nm, equivalent to a 4x

downsampling of the full HSI in the spectral dimension. In
the second stage, we reconstruct the complete 48-band image.
The PDT percentile threshold p0 is set to 0.96 in the first stage
and 0.88 in the second stage.

For Pavia Center dataset, we employ a two-stage cascade
process. In the first stage, we reconstruct a 17-band image with
a spectral resolution of 24nm, equivalent to a 6x downsampling
of the full HSI in the spectral dimension. In the second
stage, we reconstruct the complete 102-band image. The PDT
percentile threshold p0 is set to 0.97 in the first stage and 0.90
in the second stage.

2) Training details: For both datasets, during the train-
ing, we optimize each diffusion model with the Adam op-
timizer [74], and the learning rate is initially set to 10�4. The
first and second stage are both trained 100000 iterations.

C. Comparison with Other Methods

Fig. 3 shows the output results of each spectral super-
resolution method. It can be seen that our SCDM still performs
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MSCNN HSCNN+ FMNet HASIC-Net R2HGAN HyperLDM SCDM 
(Ours)

LTRN

band 1

band 12

band 24

band 36

band 48

Fig. 4. The absolute differences between the reconstructed images and the ground truth at bands 1, 12, 24, 36, and 48 on IEEE grss dfc 2018 dataset. The
scale values on the color bar on the right side represent the absolute difference divided by the maximum possible value in the reconstructed HSI.

better when other methods fail to reconstruct certain bands
correctly. In addition, in terms of the spatial details of the
reconstruction, our SCDM method also obtains optimal results.
For example, in the results shown in row 6 of Fig. 3, all other
spectral super-resolution methods are hard to obtain the point-
like textures on the building, while SCDM can super-resolve
these texture details clearly as well.

A comparison of the absolute differences in each band of the
HSIs synthesized by our proposed SCDM and other methods
with respect to the ground truth is shown in Fig. 4. The
visualized results show that the SCDM method has smaller
differences in each of the displayed bands compared to the
other methods. It is worth noting that nearly all comparative
methods struggle to achieve satisfactory reconstruction in the
later bands, particularly in the near-infrared range beyond
750nm. However, the SCDM method demonstrates a signifi-
cant advantage in synthesizing these bands. To illustrate this,
we compared the PSNR values for each band, as shown
in Fig. 5. The results indicate that our method exhibits
a notable advantage in reconstruction quality, especially in
the near-infrared bands beyond 750nm. This is because the
input RGB image covers only the visible range and does
not include information from the near-infrared range. In such
cases, images reconstructed using single-stage methods often
show lower quality in the near-infrared range. In contrast, the
SCDM method, which progressively increases in the spectral
dimension, better captures information from the near-infrared
range.

We also compared the spectral curves of some key objects,
as shown in Fig. 6. It can be seen that SCDM has more

TABLE I
ACCURACY OF DIFFERENT METHODS ON IEEE grss dfc 2018 DATASET.

FOR RMSE AND SAM, A LOWER SCORE INDICATES BETTER, WHILE FOR
MSSIM AND MPSNR, A HIGHER SCORE IS BETTER.

Method RMSE # SAM # MSSIM " MPSNR "

CNN-based

MSCNN 2117.14 0.1696 0.9555 37.945
HSCNN+ 1015.51 0.1559 0.9439 39.089

FMNet 697.94 0.0875 0.9729 42.829
HASIC-Net 887.05 0.1811 0.9834 44.312

LTRN 644.22 0.1066 0.9585 41.297

GAN-based R2HGAN 467.06 0.0596 0.9861 46.840

Diffusion-based HyperLDM 515.99 0.0724 0.9797 44.736
SCDM(Ours) 359.48 0.0672 0.9887 47.207

TABLE II
ACCURACY OF DIFFERENT METHODS ON PAVIA CENTER DATASET. FOR

RMSE AND SAM, A LOWER SCORE INDICATES BETTER, WHILE FOR
MSSIM AND MPSNR, A HIGHER SCORE IS BETTER.

Method RMSE # SAM # MSSIM " MPSNR "

CNN-based

MSCNN 1971.30 0.1686 0.8899 22.860
HSCNN+ 315.66 0.1435 0.8923 32.142

FMNet 1080.80 0.1011 0.9344 25.779
HASIC-Net 233.07 0.1080 0.9284 34.118

LTRN 239.22 0.1268 0.9060 32.795

GAN-based R2HGAN 852.83 0.1327 0.8926 28.3438

Diffusion-based HyperLDM / / / /
SCDM(Ours) 172.42 0.1042 0.9509 36.496



IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2024 10

Fig. 5. PSNR values of each band achieved by different methods on IEEE
grss dfc 2018 dataset.

accurate reconstruction results for these key features. For
example, for the plant shown in Fig. 6(a) and the white
car shown in Fig. 6(d), SCDM can more accurately fit the
spectral values between the near-infrared bands (700 nm to
900 nm). And Fig. 7 shows that our SCDM is a process of
continuous refinement of spectral details from spectral trends,
gradually fitting the real spectral curve through a coarse-to-fine
paradigm.

TABLE III
ABLATION STUDIES OF THE NUMBER OF CASCADE STAGES ON IEEE

grss dfc 2018 DATASET. † DENOTES THE FINAL SETTING.

RMSE # SAM # MSSIM " MPSNR "

1 stage 626.48 0.0764 0.9857 42.922
2 stage† 359.48 0.0672 0.9887 47.207
3 stage 572.75 0.0826 0.9845 42.844

TABLE IV
ABLATION STUDIES OF THE NUMBER OF CASCADE STAGES ON PAVIA

CENTER DATASET. † DENOTES THE FINAL SETTING.

RMSE # SAM # MSSIM " MPSNR "

1 stage 200.12 0.1118 0.9500 35.588
2 stage† 172.42 0.1042 0.9509 36.496
3 stage 191.92 0.1184 0.9440 35.277

TABLE V
ABLATION STUDIES OF THE INCREASING MULTIPLIER OF EACH STAGE ON

IEEE grss dfc 2018 DATASET. † DENOTES THE FINAL SETTING.

increasing multiplier RMSE # SAM # MSSIM " MPSNR "

2⇥,8⇥ 595.14 0.0668 0.9815 42.467
4⇥,4⇥† 359.48 0.0672 0.9887 47.207
8⇥,2⇥ 560.44 0.0792 0.9839 42.822

Finally, we report a comparison of similarity metrics on
the two datasets and the results are presented in Tables I
and II. It can be found that our proposed SCDM method
achieves the optimum in three metrics of RMSE, MSSIM, and
MPSNR compared to other methods. In terms of SAM metric,
our method consistently achieved the second-best results. This

demonstrates that the SCDM method can reconstruct HSIs of
higher quality and fidelity compared to other methods.

Additionally, we do not conduct experiments with the
HyperLDM method on the Pavia Center dataset. This decision
is made because HyperLDM relies on a spectral library for
reconstruction, which requires precise wavelength informa-
tion for each band. However, the Pavia Center dataset has
removed certain bad bands and does not provide the specific
wavelengths corresponding to these bands. As a result, we are
unable to match band numbers with wavelengths. To ensure
fairness, we chose not to include a comparison of HyperLDM.

D. Ablation Studies

In this section, we further investigate some of the key de-
signs in the method. First, we explore the effect of the number
of diffusion models in the cascade on the super-resolution
performance to verify the effectiveness of the spectral cascade
and to determine the optimal cascade strategy. Afterward, we
performe experimental validation of the effectiveness of PDT
and ICMG at each stage in the cascade. Finally, we analyze
the parameter settings of the PDT.

1) Design of cascade strategy: We first performed an
ablation study on the number of cascade stages using the IEEE
grss dfc 2018 dataset dataset and the Pavia Center dataset.
For IEEE grss dfc 2018 dataset dataset, the two-stage setup
involved band number increase multipliers of 4⇥ in each
stage, while the three-stage setup used multipliers of 4⇥, 2⇥,
and 2⇥, respectively. For Pavia Center dataset, the two-stage
configuration involved reconstructing 17 bands (5.7⇥ increase)
first, followed by 102 bands (6⇥ increase). The three-stage
configuration involved 12 bands (4⇥ increase), 34 bands (2.8⇥
increase), and 102 bands (3⇥ increase).

The results, shown in Tables III and IV, reveal that the
two-stage setup achieved the best results across four metrics
on both datasets. In contrast, the three-stage method even
showed a decline in three metrics compared to the single-
stage approach. This decline is due to gaps in the training
and testing processes. In addition to the first stage, each
stage’s input consists of true bands during training, while
during testing, the input is the output from the previous stage.
With an excessive number of stages, errors from earlier stages
accumulate, leading to a decline in the quality of the final
output.

Additionally, we conducted experiments on the IEEE
grss dfc 2018 dataset, examining the effect of the band num-
ber increase multiplier in each stage. The results, presented
in Table V, show that maintaining a consistent multiplier for
the number of bands across both stages generally yields higher
quality results.

In conclusion, we recommend using a two-stage approach,
ensuring that the multiplier for the increase in the number of
bands is as consistent as possible across both stages. This strat-
egy effectively breaks down the complexity of reconstructing
HSIs, while also avoiding the error accumulation associated
with having too many stages.
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(a) plant (b) soil (c) road

(d) white car (e) parking lot (f) building

Fig. 6. Spectral curves on six objects generated by different methods.

(a) grass (b) road (c) soil

Fig. 7. Comparison between the output and the true value of SCDM for different spectral resolutions. It can be seen that SCDM is a process that goes from
coarse to fine in the spectral dimension, and the prediction results are obtained from the gradual refinement of the spectral trend.

TABLE VI
ABLATION STUDIES OF THE SCDM ON IEEE grss dfc 2018 DATASET, † DENOTES THE FINAL SETTING.

Stage 1 Stage 2 Metrics

Name PDT ICMG PDT ICMG RMSE SAM MSSIM MPSNR

1 696.73 0.0729 0.9847 42.600
2 ! ! 538.49 0.0631 0.9874 43.682

3 † ! ! ! 359.48 0.0672 0.9887 47.207
4 ! ! 647.09 0.0916 0.9818 42.732
5 ! ! ! 597.93 0.0769 0.9850 43.351
6 ! ! ! 565.89 0.0711 0.9855 43.471
7 ! ! ! 574.91 0.0833 0.9825 42.853
8 ! ! ! ! 402.55 0.0728 0.9868 45.951
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TABLE VII
ANALYSIS OF THE PDT PERCENTILE THRESHOLD pT ON IEEE

grss dfc 2018 DATASET. † DENOTES THE FINAL SETTING.

stage pT RMSE # SAM # MSSIM " MPSNR "

1

0.99 489.74 0.0946 0.9733 48.796
0.98 376.64 0.0611 0.9882 49.656
0.97 323.36 0.0479 0.9916 49.911

0.96 † 317.06 0.0473 0.9919 49.684
0.95 319.82 0.0484 0.9918 49.420

2

0.94 376.91 0.0791 0.9872 46.712
0.92 361.23 0.0693 0.9885 47.179
0.90 359.07 0.0674 0.9886 47.237

0.88 † 359.48 0.0672 0.9887 47.207
0.86 360.09 0.0673 0.9887 47.179

2) Effectiveness of ICMG and PDT: We explored the im-
pact of the proposed ICMG strategy and PDT method on the
IEEE grss dfc 2018 dataset, as shown in Table VI. It can be
observed that, compared to fixed-threshold truncation, PDT
effectively mitigates the instability caused by the diffusion
sampling process and the unconditional outputs from ICMG,
resulting in higher fidelity reconstructions (according to 2,6).
The combined effect of PDT and ICMG allows for a more
thorough extraction of information from the input image
conditions, thereby improving the quality of the reconstructed
results (according to 3,5,8).

Additionally, we found that employing PDT in the first stage
and PDT combined with ICMG in the second stage yields the
best overall performance. When both stages are set to use PDT
and ICMG, although the results are not optimal, there are also
improvements across four metrics compared to the baseline.

3) Parameter analysis: We conducted experiments on the
IEEE grss dfc 2018 dataset to investigate the impact of dif-
ferent PDT percentile thresholds pT at each stage. Table VII
shows how varying pT values in the first and second stages
affect the reconstruction quality. The results indicate that the
optimal pT for the first stage is 0.96, while for the second
stage, it is 0.88. This suggests that when fewer bands need
to be reconstructed, a higher pT should be used, and as the
number of bands to be reconstructed increases, pT should be
lowered.

The rationale behind this observation is that in the early
stages, our method reconstructs images with lower spectral
resolution, which primarily reflect the basic properties of
ground objects. At this stage, the instability is minimal, and
extensive truncation during early sampling is unnecessary.
However, in the later stages, the reconstructed images need
to include a substantial amount of additional spectral detail,
which also encompasses complex environmental effects and
sensor noise, leading to higher instability. Therefore, stronger
truncation during early sampling is required.

V. DISCUSSION

Compared to previous diffusion-based spectral super-
resolution methods, SCDM shows significant improvements
in reconstruction quality and outperforms existing CNN-based
and GAN-based methods in similarity metrics. Cascading in
the spectral dimension is a promising approach as it decom-
poses the complexity of spectral reconstruction. Moreover, as

observed in Figure 5, this strategy may enhance the recon-
struction quality in the infrared wavelength range, which is not
covered by RGB images. This design may also have a positive
effect on models with other architectures, and targeted research
can be conducted in the future to explore this potential.

However, our model incurs significant time overhead.
Firstly, the diffusion model requires hundreds or even thou-
sands of sampling steps during inference. Secondly, the multi-
stage cascading approach further multiplies the inference time.
Thirdly, the ICMG strategy, which calculates both conditional
and unconditional outputs, doubles the inference time. There-
fore, accelerating the inference process of SCDM is a key area
for future research.

VI. CONCLUSION

In this paper, we propose a novel spectral super-
resolution method by stepwise refinement for reconstructing
hyperspectral images from RGB remote sensing images, called
SCDM. The pipeline of SCDM consists of multiple diffu-
sion models, which progressively synthesize images with an
increasing number of bands, starting from the RGB image,
sequentially spectrally upsampling and gradually refining the
spectral details. This design enhances the ability of diffusion
models to predict high-dimensional noise. In order to make the
conditional diffusion model better utilize the input conditions,
we introduced ICMG, which reconstructs the hyperspectral
image with a stronger correlation to the input conditions by
interpolating the fraction of the results with and without the
image condition inputs in total during the sampling process.
To avoid the error caused by the instability of the sampling
process, which achieved better results than employing fixed
threshold truncation. Experiments show that our proposed
SCDM method can reach the advanced level in the spectral
super-resolution task.
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