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Abstract—Many existing adversarial attacks generate Lp-norm
perturbations on image RGB space. Despite some achievements
in transferability and attack success rate, the crafted adver-
sarial examples are easily perceived by human eyes. Towards
visual imperceptibility, some recent works explore unrestricted
attacks without Lp-norm constraints, yet lacking transferability
of attacking black-box models. In this work, we propose a
novel imperceptible and transferable attack by leveraging both
the generative and discriminative power of diffusion models.
Specifically, instead of direct manipulation in pixel space, we craft
perturbations in the latent space of diffusion models. Combined
with well-designed content-preserving structures, we can generate
human-insensitive perturbations embedded with semantic clues.
For better transferability, we further “deceive” the diffusion
model which can be viewed as an implicit recognition surrogate,
by distracting its attention away from the target regions. To our
knowledge, our proposed method, DiffAttack, is the first that
introduces diffusion models into the adversarial attack field. Ex-
tensive experiments conducted across diverse model architectures
(CNNs, Transformers, and MLPs), datasets (ImageNet, CUB-200,
and Standford Cars), and defense mechanisms underscore the
superiority of our attack over existing methods such as iterative
attacks, GAN-based attacks, and ensemble attacks. Furthermore,
we provide a comprehensive discussion on future research avenues
in diffusion-based adversarial attacks, aiming to chart a course
for this burgeoning field.

Index Terms—Adversarial attack, diffusion model, impercepti-
ble attack, transferable attack.

I. INTRODUCTION

RECENT years have witnessed remarkable performance
exhibited by deep neural networks (DNNs) across a

range of domains, including autonomous driving [1], [2],
medical image analysis [3], [4], remote sensing [5], [6], etc.
Notwithstanding the indisputable advances, early investigations
[7] have elucidated the susceptibility of DNNs to meticulously
engineered subversions (hereafter referred to as “adversarial
examples”), which may induce grievous mistakes in real-world
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applications [8], [9]. Moreover, the transferability of these
adversarial examples across distinct model architectures [10]
poses an even greater hazard to practical implementations.
Therefore, it is of the utmost necessity to uncover as many
lacunae in machine perception – what may be termed “blind
spots” – as can feasibly be achieved, so as to bolster the DNNs’
resilience when faced with adversarial challenges.

Compared to white-box attacks [11], [12] that the attacker
can access the architecture and parameters of the target model,
black-box attacks [13], [14], [10] can not obtain the target’s
information and thus are much closer to real-world scenarios.
Among black-box directions, we here focus on the transfer-
based attacks [10] that directly apply the adversarial examples
constructed on a surrogate model to fool the target model. By
adopting different optimization strategies [15], [16], designing
various loss functions [17], [18], leveraging multiple data
augmentations [19], [20], [21], etc., existing approaches have
achieved much success and improved the attack’s transferability.
Lp-norm based methods. Most of the above methods

adopt Lp-norm in RGB color space as an indicator of human
perception and constrain the amplitude of the adversarial
perturbations under a specific value. Despite the efforts paid,
these pixel-based attacks are still easy to be perceived by
human eyes, and Lp-norm was recently found unsuitable to
measure the perceptual distance between two images [22], [23].
From the examples displayed in Figure 1, the perturbations
optimized by Lp loss are noticeable and appear similar to high-
frequency noise, which indicates overfitting on the surrogate
model, as revealed in [24], [25]. Despite having low L1 values,
these perturbations can hinder the transferability to other black-
box models [26], [24] and is easy to be defended against by
purification defenses [27], [28].

Towards imperceptible attacks. Recent works [26], [29],
[22] explored new ways to deceive human perception without
using the Lp-norm constraint (a.k.a. unrestricted attacks). By
applying perturbations on spaces such as object attribute [26],
color mapping matrix [29], etc., the adversarial examples
are well imperceptible despite large Lp-norm values in RGB
space. Furthermore, these studies [26], [29] have shown
that perturbations generated by unrestricted attacks—often
characterized by large-scale patterns with high-level continuous
semantics, as opposed to the high-frequency noise typical
of pixel-level perturbations—enhance transferability to other
black-box models and even to defended models. However, these
methods’ transferability still lags behind the pixel-based ones.

In this work, we propose a novel unrestricted attack based on
diffusion models [30]. Instead of manipulating pixels directly,
we optimize the latent of an off-the-shelf pretrained diffusion
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Fig. 1. Adversarial perturbations crafted by some attacks. The second row denotes the difference between the clean image and the adversarial example.
Please zoom in for a better view.

model [30]. Besides the basic transferability advantages of
high-level perturbations mentioned above, our motivation for
introducing the diffusion model into the adversarial attack
domain stems primarily from its two beneficial properties. 1)
Good imperceptibility. Diffusion models, originally designed
for image synthesis, tend to generate natural-looking images in
line with human perception. This inherent quality aligns well
with the imperceptibility requirement of adversarial attacks.
Moreover, the iterative denoising process within diffusion
models aids in reducing perceptible high-frequency noise. 2)
Approximation of an implicit surrogate. Despite being initially
designed for image synthesis, diffusion models trained on large-
scale datasets exhibit a notable discriminative capability [31],
[32]. This feature enables us to approximate them as implicit
surrogate models for transfer-based attacks. Leveraging this
“implicit surrogate”, we can potentially enhance transferability
across different models and defenses. Furthermore, the denois-
ing process of diffusion models, akin to a robust purification
defense [27], can further bolster the effectiveness of our attack
against defensive mechanisms.

To harness the favorable attributes of diffusion models, our
work encompasses three key aspects. Firstly, we establish a
foundational attack framework that initially converts clean
images into noise and subsequently introduces modifications
in the latent space. In evaluating different methods for content
editing, such as guided text manipulation or latent code
manipulation, we opt for operating on the latents of diffusion
models. This choice significantly enhances the success of
our attack. Secondly, we scrutinize the potential recognition
capabilities of the pretrained diffusion model. We propose to
deviate the cross-attention maps between text and image pixels,
in which way we can transform the diffusion model into an
implicit surrogate model that can be practically deceived and
attacked. Finally, to avoid distorting the initial semantics, we
delve into the self-attention’s structure extraction capability
within the diffusion model. We propose leveraging it as a
constraint to mitigate context distortion, while also considering
specific measures like controlling inversion strength. We
term the proposed unrestricted attack as DiffAttack, and our
contributions can be summarized as follows:

• As far as we know, we are the first to reveal that

with its remarkable generative and implicit discriminative
capabilities, the diffusion model is a promising foundation
for creating adversarial examples that exhibit both high
imperceptibility and transferability.

• We propose DiffAttack, a novel unrestricted attack where
the good properties of diffusion models are leveraged by
careful designs. By utilizing the cross- and self-attention
maps and attacking the latent of the diffusion model,
DiffAttack is both imperceptible and transferable.

• Extensive experiments on a variety of model architectures,
datasets, and defense methods have demonstrated the
superiorities of our work over the existing attack methods.
These findings underscore the promising potential of our
research direction.

II. RELATED WORKS

Adversarial Attacks. Since Szegedy et al. [7] found that
DNNs can be deceived by imperceptibly small perturbations
applied on images, adversarial attacks have long attracted
significant attention in the deep learning field [12], [10].
Generally, the existing attacks can be divided into two parts:
white-box attack and black-box attack. For white-box scenarios
[11], [12], the attacker can get access to the model structures
and parameters of the target model. Thus, strong adversarial
examples can be crafted by directly using the backpropagated
gradients. For black-box scenarios, there is limited information
on the target model and it is closer to the real-world situation.
Current approaches are either based on queries [13], [33] or
on the cross-model transferability of adversarial examples [16],
[10]. Specifically, the former ones query the black-box model
many times. With the queried results, they generate adversarial
examples either by gradient approximation [33] or by random
search [13]. The transfer-based attacks resort to a surrogate
model. By crafting perturbations in the same way as white-box
attacks, they expect these adversarial examples can also have
a good effect on the target model. In this work, we focus on
the transfer-based part.

Transferable Attacks. To enhance the generalization of
adversarial examples crafted on surrogate models, previous
works put a lot of effort into keeping perturbations from
getting stuck in a model-specific local optimum that overfits the
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surrogate model and cannot transfer well to other methods. [34],
[35] adopted the straightforward strategy of model ensembles

to attack as many models as possible by finding an optimum
updated direction. [19], [20], [21] proposed to leverage data

augmentations to diversify the inputs, which ensures the
attack robustness under different scenarios. [17], [36], [18]
applied loss functions on the feature space which demonstrated
good performance on black-box targets. [15], [16] combined
momentum into optimization schedules to help jump out of local
optimum. Despite the much improvement in the transferability,
these works mostly conduct attacks with Lp-norm constraint
on RGB pixel space, resulting in high-frequency noises and
patterns (see Figure 1) which, though hold a relatively low value
on Lp-norm, are easy to be perceived by humans. In contrast,
our DiffAttack perturbs the latent in diffusion models, achieving
good imperceptibility together with excellent transferability
across various black-box models.

Unrestricted Attacks. Since Lp-norm in RGB space was
found not ideal for measuring the perceptual distance [26],
[29], recent research turns to unconstraint and proposes
unrestricted but imperceptible attacks. Bhattad et al. [37]
perturbed images from the perspective of color and texture.
Zhao et al. [22] adopted CIEDE2000 which can better indicate
the perceptual color loss. Qiu et al. [38] and Jia et al. [26]
achieve imperceptibility by modifying the attributes of the
images, especially human faces. Yuan et al. [29] constructed
a color distribution library, which is used to find a successful
distribution for adversarial attacks. However, despite their
good imperceptibility, these methods generally cannot compete
with the aforementioned pixel-based methods in terms of
transferability. Our work also falls in this direction but achieves
better transferability and imperceptibility, and is the first to
explore the strength of diffusion models in crafting unrestricted
attacks.

Diffusion Models. Recently, diffusion models [39] have
attracted extensive attention and shown their fabulous power.
Images are first converted into purely Gaussian noise in the
forward process and then a U-Net structure is trained to predict
the added noise in each timestep of the denoising process.
Being trained on large numbers of data, the diffusion models
[40], [41], [30] can either generate high-quality images from
randomly sampled noise, or more specific ones that follow the
guidance of text prompt. Due to its significant performance,
the diffusion model has also diffused to other areas, such as
image inpainting [42], [43], image super-resolution [44], real
image editing [45], [46], etc. Recent work further showed
that the pretrained diffusion models can be taken as good
recognition models [31], [32] and denoisers [27]. Despite the
many applications mentioned above, the potential of diffusion
models in the adversarial attack field remains underexplored.

III. METHOD

A. Problem Formulation

Given a clean image x and its corresponding label y,
attackers aim to craft perturbations that can deviate the decision

of a classifier F✓ (✓ denotes the model’s parameters) from
correct to wrong:

F✓(Attack(x;G�)) = F✓(x
0) 6= y (1)

where Attack(·) is the attack approach and x0 is the crafted
adversarial example. Since F✓ is inaccessible in black-box
scenarios, the adversarial examples are crafted on a surrogate
model G�.

Different from previous pixel-based attacks [16], [19] that
apply Lp-norm constraints on pixel values (k✏kp < c, where
✏ is the perturbation and c is a hyperparameter), we impose
perturbations in the latent space of the diffusion model and rely
on properties of the diffusion model to achieve visually natural
and successful attacks. In the following parts, we will first
outline essential background information on diffusion models
and subsequently provide a detailed description of our design.

B. Formulation of DDPM and DDIM Inversion

Denoising Diffusion Probabilistic Models (DDPMs) [48] are
a class of generative models that sample images by gradually
denoising an initial Gaussian noise. There is a forward process

and a denoising process in DDPMs. The forward process is
to gradually add Gaussian noise to the original image x0 and
thus produces a series of noisy latents x1, x2, · · · , xT :

q(xt|xt�1) = N (
p
1� �txt�1,�tI) (2)

where �t 2 (0, 1). When T is large enough, the last latent xT

will approximately follow an isotropic Gaussian distribution.
Instead of iteratively calculating the intermediate latents to

get xt, a good property of the forward process is that we can
directly sample xt from x0:

q(xt|x0) = N (
p
↵̄tx0, (1� ↵̄t)I) (3)

xt =
p
↵̄tx0 +

p
1� ↵̄t✏, ✏ ⇠ N (0, I) (4)

where ↵t = 1� �t, ↵̄t =
Qt

s=0 ↵s.
The denoising process is to draw a new sample from the

distribution q(x0). Starting from xT ⇠ N (0, I), we can get a
new sample by iteratively sampling the posteriors q(xt�1|xt).
Since q(xt�1|xt) is intractable due to the unknown data
distribution q(x0), a neural network p✓ is trained to approximate
that by predicting the mean and covariance of q(xt�1|xt),
which is shown to also be Gaussian distributions [49]:

p✓(xt�1|xt) = N (µ✓(xt, t),⌃✓(xt, t)) (5)

Since µ✓(xt, t) =
1p
↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt, t)

⌘
, Ho et al. [48]

simplified the objective function by only predicting the noise
✏✓(xt, t):

min
✓

L(✓) = Ex0,✏⇠N(0,I),tk✏� ✏✓(xt, t)k22 (6)

After we get the trained ✏✓(xt, t) (normally a U-Net struc-
ture), we can conduct a sampling as follows:

xt�1 = µ✓(xt, t) + �tz, z ⇠ N(0, I). (7)

Since the classic DDPMs are essentially a Markov chain and
they require a large timestep T to achieve good performance. To
accelerate DDPMs sampling process, Song et al. [47] generalize
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Fig. 2. Framework of DiffAttack. We adopt Stable Diffusion [30] and leverage DDIM Inversion [47] to convert the clean image into the latent space. The
latent is optimized to deceive the classifier. The cross-attention maps are leveraged to “deceive” the diffusion model, and we use self-attention maps to preserve
the structure. For simplicity, we here do not display the unconditional optimization, whose details can be referred to Section III-E.

DDPMs from a particular Markovian process to non-Markovian
processes:

xt�1 =
p
↵t�1

✓
xt �

p
1� ↵t✏✓(xt, t)p

↵t

◆

+
q
1� ↵t�1 � �2

t · ✏✓(xt, t) + �tz, z ⇠ N(0, I)
(8)

By setting �t = 0, we then get a deterministic sampling process
(from xT to x0), which is the DDIM’s principle.

Since the deterministic process of DDIM can be further taken
as Euler integration for solving ordinary differential equations
(ODEs)[47], we can map a real image back to its corresponding
latent by reversing the process. This operation, named DDIM
Inversion, paves the way for later editing of real images [50],
[46]. By rewriting Eq. 8, the denoising process of DDIM is as
follows:

xt�1 � xt =
p
↵̄t�1

h⇣p
1/↵̄t �

p
1/↵̄t�1

⌘
xt

+
⇣p

1/↵̄t�1 � 1�
p
1/↵̄t � 1

⌘
✏✓(xt, t)

i

(9)
We can then encode the real image into the latent space by
reversing the above formulation:

xt+1 � xt =
p
↵̄t+1

h⇣p
1/↵̄t �

p
1/↵̄t+1

⌘
xt

+
⇣p

1/↵̄t+1 � 1�
p
1/↵̄t � 1

⌘
✏✓(xt, t)

i

(10)

C. Basic Framework

We display in Figure 2 the whole framework of DiffAttack,
where we adopt the open-source Stable Diffusion [30] that
pretrained on extremely massive text-image pairs. Since adver-
sarial attacks aim to fool the target model by perturbing the
initial image, they can be approximated as a special kind of real

image editing. Similar to recent diffusion editing approaches
[50], [46], [45], our framework leverages the DDIM Inversion
technology [47], where the clean image is mapped back into the
diffusion latent space by reversing the deterministic sampling
process:

xt = Inverse(xt�1) = Inverse � · · · � Inverse| {z }
t

(x0) (11)

where Inverse(·) denotes the DDIM Inversion operation (Please
see Section III-B for details. In Eq. 11, we ignore the
autoencoder stage of the Stable Diffusion [30] for simplicity).
We apply the inversion for several timesteps from x0 (the initial
image) to xt. A high-quality reconstruction of x0 can then be
expected if we conduct the deterministic denoising process
from xt [51], [47].

Many of the existing image editing approaches [50], [46]
proposed to modify text embeddings for image editing, through
which way, the image latent xt can gradually shift to the target
semantic space during the iterative denoising process with the
text guidance. However, in our explorations (see Section IV-D),
we found that the perturbations on the guided text embeddings
would be hard to work on the other black-box models, leading
to weak transferability. Therefore, different from the editing
approaches, we here propose to directly perturb the latent xt:

argmin
xt

Lattack = �J(x0, y;G�) (12)

x0 = x0
0 = Denoise � · · · �Denoise| {z }

t

(xt) (13)

where J(·) is the cross-entropy loss and Denoise(·) denotes
the diffusion denoising process. An initial concern might arise
regarding the potential generation of unnatural results using this
straightforward method. However, we can observe in Figure
I that the difference is almost indistinguishable between the
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image reconstructed from the perturbed latent and the initial
clean one. Furthermore, we can notice that the difference image
encapsulates numerous high-level semantic cues, as opposed
to the high-frequency noise typically associated with pixel-
based attacks. We attribute this phenomenon to the denoising
process of the diffusion model, which effectively reduces
perceptible high-frequency noise. These perturbations on high-
level semantics not only enhance imperceptibility but also
improve the attack’s transferability [26].

D. “Deceive” Diffusion Model

According to the research by [27], the denoising process
of the diffusion model is a strong adversarial purification
defense. Thus, our perturbed latent will experience purification
before being decoded to the final image, which then ensures
the naturalness of crafted adversarial examples and also the
robustness towards other purification denoises (see Section
IV-B2). In addition to leveraging the denoising component, we
here go a further step to enhance our attack’s transferability,
by leveraging cross-attention maps within the diffusion model.

For a text-to-image diffusion model, such as Stable Diffusion,
the noise prediction model transitions from ✏✓(xt, t) in Eq. 6 to
✏✓(xt, t, C), incorporating an additional guidance text prompt
C. Information from the guidance text is integrated into the
normal U-Net flow with cross-attention layers. Specifically, for
a latent representation xt and a guidance text C, we obtain
the deep features �(xt) 2 RN⇥N⇥d� of the latent in the U-
Net structure and the text embeddings  (C) 2 RM⇥d of the
text. These are projected to Q and K matrices with linear
projection matrices WQ 2 Rd�⇥d and WK 2 Rd ⇥d. The
fusion of information then proceeds as follows:

A = softmax(
QKT

p
d

) = softmax(
(�(xt)WQ)( (C)WK)Tp

d
)

(14)
where the resulted attention map A 2 RN⇥N⇥M . Since M
corresponds to the number of text tokens, a specific word’s
matched attention map Am 2 RN⇥N can be easily queried
from A.

Utilizing the aforementioned cross-attention layers, we can
easily extract attention maps by pairing the inversed latent of
an input image with words from its corresponding caption.
As depicted in Figure 3, the cross-attention maps derived
from the reconstruction (denoising) process of the inversed
latent exhibit a strong correlation between the guided text
and image pixels. This correlation underscores the recognition
potential of pre-trained diffusion models, corroborated by Hertz
et al. [52]. Recent studies [31], [32] have capitalized on this
recognition capability for downstream tasks. Thus, we posit that
the diffusion model, trained extensively on text-image paired
data, can be approximated as an implicit recognition model.
Given the widespread text-image paired training data, Stable
Diffusion can synthesize a wide range of objects, demonstrating
its effective image-text data representation [32], which is closely
tied to its object recognition capability [31]. Thus, the implicit
recognition capability of Stable Diffusion should generalize
well across most object classification scenarios. Our aim lies
in exploiting this model by enabling our crafted attacks to

“An image of bananas 
and a pineapple”

Self Attention

“bananas”： “pineapple”：

Cross Attention

Fig. 3. Visualization of cross- and self- attention maps. There is a strong
relationship between text and pixels in cross-attention, while self-attention can
well reveal structure.

“deceive” it, potentially enhancing their transferability to other
black-box models.

Denote C as the caption of the clean image, which we set to
the groundtruth category’s name (we can also simply use the
predicted category of G�, and thus not rely on true labels). We
accumulate the cross-attention maps between image pixels and
C in all the denoising steps and get the average. To “deceive”
the pretrained diffusion model, we propose to minimize the
following formula:

argmin
xt

Ltransfer = Var(Average(Cross(xt, t, C; SDM)))

(15)
where Var(·) calculates the input’s variance, Cross(·) denotes

the accumulation of all the cross-attention maps in the denoising
process, and SDM is the Stable Diffusion. The insight is
to distract the diffusion model’s attention from the labeled
objects. By evenly distributing attention to each pixel, we can
disrupt the original semantic relationship, ensuring that our
crafted adversarial examples well “deceive” the diffusion model.
With such a design, DiffAttack exhibits an implicit ensemble

characteristic. Note that it differs significantly from typical
explicit ensemble attacks [53], about which we give a detailed
analysis in Section IV-E.

E. Preserve Content Structure

As mentioned in Section III-C, our unrestricted attack can
be approximated as an image editing approach, thus the change
of the content structure is unavoidable. If the degree of the
changes is not under control, the resulting adversarial examples
may lose most semantics of the initial clean image (see Figure
6), which loses the significance of the adversarial attacks and
is not what we want. Therefore, we here preserve the content
structure mainly from two perspectives.

Self-Attention Control. Early work by [54] revealed that
self-similarly-based descriptors can capture structural infor-
mation while disregarding image appearance. In this study,
we investigate whether the self-attention map within the U-
Net structure of Stable Diffusion possesses similar structure
extraction capabilities. Unlike cross attention (as illustrated
in Eq. 14), self-attention maps are computed between the
latent feature �(xt) and itself. Specifically, in the self-attention
calculation, WK 2 Rd�⇥d and K = �(xt)WK , resulting
in self-attention maps S 2 RN⇥N⇥N2

. Examining several
self-attention maps from the reconstruction process of the
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inversed latent, Figure 3 reveals that self-attention in diffusion
models also possesses inherent structure extraction properties.
In contrast to cross attention, which focuses on high-level
semantics, these self-attention maps excel at extracting the
input image structure. Therefore, we propose to leverage the
self-attention maps for structure retention. We set a copy xt(fix)

of the inversed latent which is fixed without perturbations. By
respectively calculating the self-attention maps (denoted as
St(fix) and St) of xt(fix) and xt, we force St to get close to
St(fix) as follows:

argmin
xt

Lstructure = kSt � St(fix)k22 (16)

Similar to Eq. 15, we here apply the self-attention constraint
to all the denoising steps. Since xt(fix) reconstructs the initial
clean image well [47], we can in this way preserve the structure.

Inversion Strength Trade-off. With DDIM Inversion
strength increased, the latent xt will get closer to pure Gaussian
distribution and the perturbations on it may cause serious
distortion due to influence on more denoising steps (see Figure
6). Whereas, a limited inversion cannot provide enough space
for attacking, since the latent image prior is too strong. The
inversion strength is a trade-off between imperceptibility and
the attack success. Recent work [55] has found that the diffusion
models tend to add coarse semantic information (e.g., layout)
in the early denoising steps while more fine details in the
later steps. Thus, we control the inversion at the back of the
denoising process for retention of high-level semantics, and
reduce the total DDIM sample steps for more editing space.

Besides the above operations, we also adopt the approach
of [46] to get a good initial reconstruction by optimizing
unconditional embeddings. Details can be found in their source
paper.

In general, the final objective function of DiffAttack is as
follows, where ↵, �, and � represent the weight factors of
each loss:

argmin
xt

L = ↵Lattack + �Ltransfer + �Lstructure (17)

IV. EXPERIMENTS

A. Experimental Setup

Datasets. Following the previous methods [19], [29], we
evaluate the performance of our attack on the development
set of ImageNet-Compatible Dataset1, which consists of 1,000
images with size 299⇥299⇥3. Considering that the Stable
Diffusion cannot handle the original input size of the ImageNet-
Compatible Dataset, we focused on a resized version of
224⇥224⇥3 in all the experiments. DiffAttack also generalizes
well to other datasets. Please refer to Section IV-B5 where
we conduct further experiments on CUB-200-2011 [56] and
Stanford Cars [57].

Models. We evaluate the transferability of the attacks across
a variety of network structures, including CNNs, Transformers,
and MLPs. For CNNs, we adopt normally trained models
including ConvNeXt [58], ResNet-50 (Res-50) [59], VGG-19

1https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans v3.1.
0/examples/nips17 adversarial competition/dataset.

[60], Inception-v3 (Inc-v3) [61], and MobileNet-v2 (Mob-v2)
[62]. For Transformers, we consider normally trained ViT-B/16
(ViT-B) [63], Swin-B [64], DeiT-B and DeiT-S [65]. For MLPs,
we adopt normally trained Mixer-B/16 (Mix-B) and Mixer-L/16
(Mix-L) [66]. Furthermore, we also consider various defense
methods, including DiffPure [27], SR [67], R&P [68], HGD
[69], NIPS-r3 [70], NRP [28], and adversarially trained models
(Adv-Inc-v3 [71], Inc-v3ens3, Inc-v3ens4, and IncRes-v2ens

[53]).
Implementation Details. We leverage DDIM [47] as the

sampler of the Stable Diffusion [30]. The number of steps is set
to 20 and we apply 5 DDIM Inversion steps of the initial clean
image. In the inversion process, the guidance scale is set to 0,
while in the denoising process, we set it to 2.5. For optimizing
the latent xt, we adopt AdamW [72] with the learning rate
set to 1e�2 and the iterations set to 30. The weight factors
↵, �, � in Eq. 17 are set to 10, 10000, 100 respectively. All
experiments are run on a single RTX 3090 GPU.

Evaluation Metrics. We adopt top-1 accuracy to evaluate
the performance of the attack methods and leverage Frechet
Inception Distance (FID) [73] as the indicator of the human
imperceptibility of the crafted adversarial examples. A full-
referenced metric, LPIPS [74], is also used to assess the
perceptual differences.

B. Comparisons

1) Results on Normally Trained Models: Here, we compared
the performance of DiffAttack on normally trained models with
other transfer-based black-box attacks. We select four pixel-
based attacks (DI-FGSM [20], TI-FGSM [21], PI-FGSM [75],
S2I-FGSM [19]) and three unrestricted attacks (ReColorAdv
[76], cAdv [37], NCF [29]). Except that the resolution is
changed to 224⇥224⇥3, the implementations of these methods
follow their original optimal settings. All I-FGSM-based ones
[20], [21], [75], [19] are constrained by Linf with steps set
to 10, maximum perturbation set to 16, and step size set to
1.6. For DI-FGSM, we set its transformation probability to
0.5. For TI-FGSM, we set its kernel size to 7. For PI-FGSM,
we set its amplification factor to 10. For S2I-FGSM, we set
its inner iteration number to 20, its tuning factor to 0.5, and
its standard deviation to 16. As for the unrestricted attacks
[76], [37], [29], we set ReColorAdv’s minimum and maximum
iteration numbers to 50 and 100, respectively, and removed its
constraint of upper bound to adapt it to an unrestricted attack.
For cAdv, we set the cluster number to 8. For NCF, we set
its random search number to 50, neighborhood search number
to 15, reset number to 10, and step size to 0.013. We craft
the adversarial examples via Res-50, VGG-19, Mov-v2, Inc-
v3, ConvNeXt, and Swin-B (Performance on more surrogate
models can be found in Appendix D). The transferability of
different attack methods is displayed in Table I.

From the results, we can observe that DiffAttack can achieve
the best transferability across a variety of model structures,
while other unrestricted attacks (ReColorAdv, cAdv and NCF)
usually fail to compete with pixel-based attacks. In some
architectures such as VGG-19 and Mob-v2, our method can
even outperform the second-best method by nearly 10 points

https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/nips17_adversarial_competition/dataset
https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/nips17_adversarial_competition/dataset
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TABLE I
TRANSFERABILITY AND IMPERCEPTIBILITY COMPARISONS ON NORMALLY TRAINED MODELS. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD.
“S.” DENOTES SURROGATE MODELS WHILE “T.” DENOTES TARGET MODELS. FOR WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET), WE SET

THE BACKGROUND TO GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE MODELS EXCEPT THE ONE THAT SAME AS THE
SURROGATE. “FID” IS CALCULATED BETWEEN THE 1,000 IMAGES OF THE IMAGENET-COMPATIBLE DATASET WITH THE IMAGENET VALIDATION SET. THE

BEST RESULT IS BOLDED, AND THE SECOND-BEST RESULT IS UNDERLINED.

S.
T. Attacks

CNNs Transformers MLPs AVG#
(w/o self) FID# LPIPS#

Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Clean 92.7 88.7 86.9 80.5 97.0 93.7 95.9 94.5 94.0 82.5 76.5 89.4 57.8 —

Res-50

DI-FGSM 0 21.2 20.5 34.5 71.6 82.0 75.3 80.5 76.0 61.3 56.8 58.0 85.3 0.143
TI-FGSM 0 42.4 37.1 46.0 83.6 81.6 83.7 84.5 79.0 66.0 61.7 66.6 66.0 0.139
PI-FGSM 0 14.1 15.0 24.0 72.5 65.3 77.5 76.7 65.0 50.5 43.8 50.5 97.9 0.356

S2I-FGSM 0 9.2 6.6 18.6 44.1 63.9 52.0 65.9 59.0 45.6 44.3 40.9 79.8 0.157
ReColorAdv 0.8 42.4 36.2 52.1 71.4 68.3 71.9 73.2 67.7 63.5 59.2 60.6 63.4 0.154

cAdv 2.4 51.8 42.5 53.2 79.0 63.1 75.3 68.3 62.3 51.7 44.0 54.0 65.7 0.186
NCF 11.3 30.5 30.3 52.6 78.3 65.7 76.8 75.1 67.0 53.7 47.6 57.8 70.9 0.383

DiffAttack(Ours) 3.7 24.4 22.9 31.0 41.0 48.8 43.8 49.5 45.0 42.9 42.2 39.2 62.6 0.137

VGG-19

DI-FGSM 32.2 0 23.9 46.5 67.2 84.7 71.9 84.8 80.0 65.7 60.9 61.8 70.9 0.152
TI-FGSM 44.5 0 32.8 47.4 77.8 81.4 79.3 83.6 79.0 64.9 60.3 65.1 66.6 0.154
PI-FGSM 22.7 0 16.4 29.8 68.3 68.0 75.7 79.5 68.0 50.9 41.8 52.1 96.4 0.367

S2I-FGSM 17.9 0 11.3 31.8 49.5 74.1 57.9 76.0 68.0 52.6 50.8 49.0 82.9 0.155
ReColorAdv 41.4 0.4 35.5 54.3 74.1 73.2 72.3 79.6 71.3 65.5 61.3 62.9 64.3 0.174

cAdv 49.0 2.5 39.9 49.2 77.4 61.9 70.4 68.6 60.1 51.5 44.4 57.2 69.8 0.234
NCF 38.3 6.8 31.5 52.4 80.5 67.5 77.6 77.4 71.0 53.5 47.2 59.7 70.4 0.392

DiffAttack(Ours) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9 0.150

Mob-v2

DI-FGSM 28.7 18.9 0 33.9 73.4 79.9 71.4 79.6 75.0 57.7 57.1 57.6 78.6 0.141
TI-FGSM 47.2 37.9 0 45.2 83.0 79.9 80.9 81.8 76.0 61.7 58.3 65.1 65.6 0.140
PI-FGSM 21.1 13.3 0 27.6 74.4 65.3 77.0 77.4 66.0 49.7 41.5 51.4 98.7 0.367

S2I-FGSM 21.0 13.4 0 27.2 64.3 74.1 62.6 75.2 68.0 51.4 48.3 50.5 79.4 0.157
ReColorAdv 39.6 39.7 0.2 51.2 74.8 67.2 69.9 74.6 66.3 62.5 58.6 60.4 63.3 0.157

cAdv 49.5 47.3 3.4 50.5 78.3 60.2 72.3 69.2 60.7 52.1 43.5 58.4 68.6 0.211
NCF 36.0 29.4 7.4 51.9 77.4 67.2 76.1 76.1 68.0 54.9 48.3 58.6 69.7 0.387

DiffAttack(Ours) 23.6 23.4 1.8 31.6 50.3 51.4 45.8 53.4 46.0 38.5 40.8 40.5 62.9 0.138

Inc-v3

DI-FGSM 61.7 57.4 51.9 0.2 89.9 84.6 86.8 86.7 82.0 68.4 62.3 73.2 67.1 0.131
TI-FGSM 76.0 70.1 66.7 0.1 93.8 88.7 91.2 89.7 88.0 73.8 66.8 80.5 62.8 0.129
PI-FGSM 37.9 22.4 28.4 0 81.0 74.3 83.0 81.9 72.0 57.1 45.8 58.4 92.5 0.368

S2I-FGSM 52.3 47.8 43.3 0 86.3 80.8 84.1 83.8 78.0 63.5 57.3 67.8 72.5 0.137
ReColorAdv 68.4 64.2 60.7 1.6 88.5 80.9 85.0 85.3 80.4 73.4 67.4 75.4 63.3 0.141

cAdv 76.9 72.3 70.3 8.3 91.1 81.4 85.7 84.1 79.7 64.8 58.8 76.5 62.6 0.155
NCF 52.6 45.8 46.2 17.4 85.7 75.9 83.4 82.7 76.0 61.1 52.9 66.2 66.7 0.343

DiffAttack(Ours) 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3 0.126

ConvNeXt

DI-FGSM 33.6 24.3 29.8 46.6 0 71.0 18.8 62.2 64.0 49.6 46.7 44.6 79.6 0.156
TI-FGSM 50.7 37.3 41.1 51.8 0 70.9 38.8 68.6 69.0 52.3 47.2 52.7 73.5 0.158
PI-FGSM 23.6 14.2 17.1 22.4 0 43.0 37.2 48.7 43.0 33.2 31.7 31.4 101.8 0.359

S2I-FGSM 13.6 9.6 11.9 20.2 0 35.4 4.2 31.0 31.0 23.2 25.6 20.5 99.4 0.159
ReColorAdv 52.0 49.4 44.8 53.1 0.7 59.1 39.0 57.7 56.6 55.6 48.3 51.6 75.1 0.158

cAdv 36.2 38.0 36.7 43.0 1.1 37.3 34.0 38.4 36.7 31.8 30.3 36.2 75.9 0.244
NCF 47.1 41.4 39.2 54.7 41.4 61.6 63.9 64.8 62.0 52.2 47.8 53.5 67.0 0.360

DiffAttack(Ours) 20.9 24.8 21.8 25.8 1.9 26.7 11.4 21.6 24.0 21.7 24.0 22.2 73.3 0.154

Swin-B

DI-FGSM 52.7 43.0 44.5 56.4 33.9 66.6 2.7 57.2 58.0 52.4 50.8 51.5 65.7 0.138
TI-FGSM 71.9 61.7 56.9 60.2 66.0 76.3 1.9 72.2 72.0 61.2 56.9 65.6 65.9 0.142
PI-FGSM 38.3 21.6 25.8 35.7 54.8 48.4 0.6 52.4 47.0 43.5 38.5 40.6 89.7 0.358

S2I-FGSM 47.4 37.8 35.4 45.3 26.8 48.5 1.0 46.2 45.0 39.3 39.0 41.1 68.2 0.134
ReColorAdv 63.5 61.4 57.9 62.4 62.8 64.8 0.9 62.7 64.8 60.8 55.2 61.6 65.7 0.147

cAdv 59.1 59.1 53.9 56.8 62.4 48.3 1.6 46.6 46.6 46.0 41.1 52.0 67.4 0.191
NCF 49.5 44.9 44.9 60.5 70.1 63.7 36.9 66.0 63.0 51.7 49.1 56.3 65.5 0.346

DiffAttack(Ours) 43.5 42.1 40.7 41.4 34.0 39.0 9.9 35.0 37.0 37.7 37.4 38.8 65.5 0.138

(38.2% vs. 49.0%, 40.5% vs. 50.5%). While our method may
not surpass PI-FGSM (S2I-FGSM) in attack performance under
the Inc-v3 (ConvNeXt) structure, the FID and LPIPS results
reveal a substantial advantage over these methods. Specifically,
our approach exhibits scores more than 20 points lower on
FID compared to PI-FGSM and S2I-FGSM.

Regarding the imperceptibility of the crafted adversarial
examples, our method consistently achieves the best perfor-
mance. In Figure 4, we visualize adversarial examples crafted
by different attack approaches. It’s evident that our attack is
significantly more imperceptible compared to DI-FGSM, TI-
FGSM, PI-FGSM, and S2I-FGSM, which exhibit noticeable

high-frequency noise. Furthermore, compared to ReColorAdv,
cAdv, and NCF, DiffAttack demonstrates a more natural color
space. These observations confirm the superiority of our method.
Additional visualizations can be found in Appendix H.

2) Results on Defense Approaches: To further verify the
robustness of each attack method, we evaluate the performance
of the crafted adversarial examples on defense approaches.
Following [29], [19], we consider both input preprocessing
defenses [67], [68], [69], [70], [28] and adversarially trained
models [71], [53] (see Section IV-A). We further consider
the recent DiffPure defense [27] to better demonstrate our
superiority. We take Inc-v3 as an example surrogate model
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Clean DI-FGSM TI-FGSM PI-FGSM NCFS2I-FGSM OursReColorAdv cAdv

Fig. 4. Visual comparisons among different attacks. Please zoom in for a better view.

TABLE II
ROBUSTNESS ON DEFENSE APPROACHES. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD. “A.” DENOTES ATTACK METHODS WHILE “D.” DENOTES
DEFENSE APPROACHES. “INC-V3normal” DENOTES THE ACCURACY ON NORMALLY TRAINED INC-V3. FOR SR, NRP, AND DIFFPURE, WE DISPLAY THE

ACCURACY DIFFERENCES AFTER THE DEFENSE. THE BEST RESULT IS BOLDED, AND THE SECOND-BEST RESULT IS UNDERLINED.

A.
D. HGD R&P NIP-r3 Adv-Inc-v3 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Inc-v3normal SR NRP DiffPure

DI-FGSM 80.5 83.8 79.4 64.2 58.5 61.5 74.9 0.2 +42.9 +22.9 +52.4
TI-FGSM 84.7 86.1 87.0 66.1 62.4 64.5 76.8 0.1 +59.6 +25.8 +55.5
PI-FGSM 73.4 68.6 57.2 42.3 45.0 44.6 62.0 0 +44.2 +7.7 +21.5

S2I-FGSM 72.5 76.5 73.3 51.8 47.0 52.2 67.7 0 +47.1 +3.2 +47.0
ReColorAdv 89.1 91.9 88.4 70.0 67.4 67.5 81.2 1.6 +67.5 +41.0 +47.8

cAdv 87.4 88.3 83.1 69.0 62.6 63.6 76.8 8.3 +61.8 +38.3 +39.2
NCF 71.1 66.4 74.6 48.8 47.2 49.0 60.5 17.4 +33.9 +11.0 +14.8

DiffAttack(Ours) 62.0 65.5 70.0 46.0 43.8 43.1 58.3 13.9 +28.5 +2.3 +13.9

Table values represent the top-1 classification accuracy of the classifier, where lower values indicate superior attack performance against defensive
approaches.

and all the adversarial examples are crafted from it. For SR,
NRP and DiffPure, we set the target model as Inc-v3 itself,
thus better revealing the robustness. For other defenses, the
target models are the same as the official papers. We display
the results in Table II.

From the results, we can see that our method can achieve
good robustness and outperform other methods when defenses
are applied. For the adversarial purification defenses, it can be
seen that the attack success of our attack has the least change
compared with other ones, which does verify the robustness
of DiffAttack and the effectiveness of our designs.

3) Comparisons with GAN-Based Attack Methods: The
attacks compared in Table I are all iterative approaches,
involving multiple optimization steps for generating adversarial
perturbations. However, another category of attacks, known as

GAN-based attacks [77], takes a different approach. Instead
of directly optimizing perturbations, these attacks focus on
training a GAN generator to produce the final perturbation.
Considering that both GAN-based attacks and our DiffAttack

utilize generative models (although DiffAttack fundamentally
follows an iterative optimization approach), we undertake a
comprehensive comparison with these GAN-based attacks. This
expansion aims to enhance the inclusivity of our experiments
and further underscore the advantages of DiffAttack.

Here, we consider four GAN-based attacks: GAP [77],
CDA [36], BIA [78], and TSAA [79]. All these compared
methods have their code open-source and our experiments are
based on that. For BIA [78], we directly use their provided
pretrained generator (for VGG-19) to generate adversarial
examples. The variants of it (BIA+DA and BIA+RN) have
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TABLE III
COMPARISONS WITH GAN-BASED ATTACK METHODS. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD. WE CRAFT ADVERSARIAL EXAMPLES
EITHER ON VGG-19 OR RES-50. FOR THE WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET ONE), WE SET THEIR BACKGROUND TO GRAY.

“AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT SAME AS THE SURROGATE ONE. THE BEST
RESULT IS BOLDED, AND THE SECOND-BEST RESULT IS UNDERLINED.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG#
(w/o self) FID# LPIPS#

clean 92.7 88.7 86.9 80.5 97 93.7 95.9 94.5 94 82.5 76.5 89.4 57.8 —

GAP (universal) 56.9 12.4 20.6 56.9 92.2 92.1 91.3 91.1 88.0 65.1 57.5 71.2 100.6 0.178
GAP(image dependent) 70.1 9.5 35.6 60.2 79.4 89.6 89.1 88.6 83.6 66.1 55.2 71.8 108.0 0.164

CDA 23.0 0.2 16.5 48.6 45.2 89.1 80.7 86.0 82.4 62.7 54.1 58.8 131.8 0.174
BIA 25.2 1.8 10.5 38.6 58.8 83.2 75.6 82.9 80.3 54.3 47.6 55.7 200.3 0.252

BIA+DA 16.3 1.6 7.6 33.1 44.0 85.1 74.8 84.5 80.4 55.7 49.8 53.1 246.0 0.247
BIA+RN 14.7 1.4 5.8 28.6 52.2 79.7 70.0 80.7 77.4 48.9 44.1 50.2 246.7 0.275

DiffAttack(Ours) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9 0.150

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG#
(w/o self) FID# LPIPS#

clean 92.7 88.7 86.9 80.5 97 93.7 95.9 94.5 94 82.5 76.5 89.4 57.8 —

GAP (universal) 35.6 34.0 34.3 55.3 88.8 87.0 91.9 91.4 85.8 64.7 57.4 69.1 89.7 0.248
GAP(image dependent) 42.9 21.7 25.4 55.6 87.1 88.5 89.5 88.1 84.4 62.3 55.8 65.8 102.6 0.147

TSAA (dense) 15.4 16.4 22.2 52.0 74.3 87.4 89.2 90.4 86.3 66.6 61.8 64.7 105.6 0.261

DiffAttack(Ours) 3.7 24.4 22.9 31.0 41.0 48.8 43.8 49.5 45.0 42.9 42.2 39.2 62.6 0.137

TABLE IV
COMPARISON WITH THE COMBINATION OF MULTIPLE ATTACK APPROACHES. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD. FOR THE

WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET ONE), WE SET THEIR BACKGROUND TO GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE
ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT SAME AS THE SURROGATE ONE. THE BEST RESULT IS BOLDED.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG#
(w/o self) FID# LPIPS#

S2I-FGSM 17.9 0 11.3 31.8 49.5 74.1 57.9 76.0 68.0 52.6 50.8 49.0 82.9 0.155
S2I-MI-FGSM 6.2 0 3.6 14.5 30.1 51.4 41.1 54.3 45.7 34.5 33.0 31.4 100.0 0.286

S2I-DI-MI-FGSM 3.6 0 2.3 9.2 24.6 44.7 33.3 49.2 38.2 28.2 29.1 26.2 104.5 0.295
S2I-TI-DI-MI-FGSM 5.2 0 3.1 7.8 40.0 35.9 46.0 49.3 36.8 27.5 27.1 27.9 104.9 0.310

S2I-SI-TI-DI-MI-FGSM 5.5 0 4.1 7.7 45.4 34.4 47.5 49.5 36.4 27.0 26.3 28.4 114.7 0.299

DiffAttack(Ours) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9 0.150
DiffAttack(w/o Structure Controls) 19.7 3.9 15.5 19.9 32.2 35.0 28.8 30.8 30.1 20.7 21.8 25.5 96.2 0.279

Fig. 5. Visualization Comparisons with GAN-Based Attacks. Please zoom
in for a better view.

also been considered for comparisons. For CDA [36], we
utilize their pretrained generator (for VGG-19) to generate
adversarial examples. We also take recent TSAA [79] into

account. Considering the original TSAA is a sparse attack, we
directly remove its last layer’s mask mechanism to allow it to
attack the whole image. As TSAA does not provide pretrained
weight for VGG-19 but provides for Res-50, we compare
DiffAttack with it on Res-50. For GAP [77], since it does not
provide any pretrained weight, we strictly follow their provided
training code and train the generator for VGG-19 and Res-50
ourselves. As GAP has two kinds of generator (universal and
image dependent), we trained a total of four generators. All of
these methods’ maximum perturbation is set to 10, which is
aligned with their source paper (we also tried 16, but it will
massively distort the image and lead to a quite high FID and
LPIPS). The input resolution of these methods is 224⇥224⇥3,
which also strictly follows their papers and is the same as our
previous settings.

From the results in Table III, it is amazing to see that our
DiffAttack can surpass other GAN-based attacks by a large
margin on transferability (AVG w/o self), while also keeping
quite better imperceptibility (FID and LPIPS). The GAN-based
attacks tend to produce more distorted images, as evidenced by
their higher FID and LPIPS values. In Figure 5, we visualize
adversarial examples generated by GAN-based methods. We
observe that these methods create perturbations with more
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TABLE V
COMPARISONS ON CUB-200-2011 DATASET AND STANFORD CARS DATASET. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD. “S.” DENOTES

SURROGATE MODELS WHILE “T.” DENOTES TARGET MODELS. FOR THE WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET ONE), WE SET THEIR
BACKGROUND TO GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT SAME AS THE

SURROGATE ONE. THE BEST RESULT IS BOLDED, AND THE SECOND-BEST RESULT IS UNDERLINED.

CUB-200-2011 Stanford Cars

Attacks Res-50 SENet154 SE-Res101 AVG (w/o self)# FID# LPIPS# Res-50 SENet154 SE-Res101 AVG (w/o self)# FID# LPIPS#

S.
T.

clean 75.7 80.5 76.6 77.6 11.1 - 73.9 76.4 74.4 74.9 11.6 -

DI-FGSM 0.3 42.7 33.8 38.3 20.9 0.155 0.1 33.3 29.3 31.3 28.7 0.097
TI-FGSM 2.8 50.6 43.9 47.3 21.1 0.136 0.1 46.9 41.0 44.0 23.2 0.097
PI-FGSM 9.1 35.2 26.2 30.7 34.8 0.355 1.5 31.5 23.2 27.4 53.2 0.310

S2I-FGSM 0.7 35.1 28.1 31.6 24.3 0.196 0.1 25.7 24.4 25.1 34.4 0.134
ReColorAdv 0.1 42.0 33.4 37.7 23.2 0.215 0.0 42.6 35.1 38.9 22.9 0.164

cAdv 25.0 40.0 36.3 38.2 21.3 0.129 38.1 64.7 60.9 62.8 19.7 0.117
NCF 0.2 22.7 13.9 18.3 35.2 0.335 6.6 46.0 38.4 42.2 24.1 0.302

Res-50

DiffAttack(Ours) 3.3 19.3 16.7 18.0 20.6 0.122 0.1 15.1 13.1 14.1 17.8 0.112

DI-FGSM 54.5 0.2 48.9 51.7 23.5 0.158 45.6 0.1 45.5 45.6 29.1 0.096
TI-FGSM 60.1 0.3 56.2 58.1 20.8 0.137 54.1 0.1 53.2 53.7 23.0 0.095
PI-FGSM 30.5 0.0 33.1 31.8 46.5 0.403 21.9 0.0 26.3 24.1 59.6 0.333

S2I-FGSM 43.2 0.0 34.0 38.6 25.4 0.164 27.7 0.0 25.7 26.7 33.6 0.108
ReColorAdv 55.2 4.3 48.9 52.1 22.4 0.153 44.7 0.0 42.9 43.8 21.3 0.130

cAdv 31.0 5.7 31.3 31.2 20.4 0.118 63.3 20.2 60.1 61.7 17.8 0.102
NCF 13.5 6.8 17.6 15.5 35.0 0.314 38.5 20.7 41.6 40.1 23.3 0.279

SENet154

DiffAttack(Ours) 53.8 2.5 51.3 52.6 17.9 0.104 37.3 0.9 32.5 34.9 16.2 0.095

DI-FGSM 39.4 38.0 0.2 38.7 23.5 0.165 28.1 29.3 0.2 28.7 28.5 0.106
TI-FGSM 53.4 55.3 0.2 54.4 21.8 0.136 48.7 49.8 0.0 49.3 22.5 0.096
PI-FGSM 21.7 29.8 0.0 25.8 45.5 0.403 18.5 29.3 0.0 23.9 59.9 0.331

S2I-FGSM 30.4 31.5 0.0 31.0 26.7 0.195 20.5 17.1 0.1 18.8 36.9 0.142
ReColorAdv 41.6 42.2 0.6 41.9 27.0 0.198 36.8 41.5 0.0 39.2 23.2 0.155

cAdv 33.1 33.8 10.5 33.5 22.7 0.125 62.4 62.7 22.5 62.6 18.5 0.119
NCF 9.4 20.2 3.1 14.8 33.3 0.316 33.4 46.8 12.1 40.1 24.0 0.298

SE-Res101

DiffAttack(Ours) 27.0 23.5 3.9 25.3 22.4 0.121 17.5 16.0 0.3 16.8 18.0 0.114

noticeable patterns compared to those produced by iterative
optimization methods, as shown in Figure 1. This difference
may stem from the nature of the GAN-based approach, which
requires a generator capable of attacking random input images
in a single step, as opposed to iterative optimization attacks
that can fine-tune on a specific input image over multiple steps.
Consequently, to achieve effective attacks, the GAN-based
generator must introduce more distortions to the input image.
These experiments not only enhance the comprehensiveness of
our findings but also underscore the effectiveness of DiffAttack.

4) Comparisons with a Combination of Multiple Attack

Approaches: Many recent Lp-norm-based attacks enhance their
efficacy by combining with other attack strategies. For instance,
the S2I-SI-TI-DIM [19] approach integrates five attack methods
(MI-FGSM [16], DI-FGSM[20], TI-FGSM[21], SI-FGSM[15],
and their own S2I-FGSM). While it is unfair to compare a single
DiffAttack against an ensemble of these attack strategies, we
still perform such comparisons in Table IV to better elucidate
the capabilities of DiffAttack. The adversarial examples are
crafted on VGG-19, with the powerful S2I-SI-TI-DIM attack
serving as the reference.

The results indicate that S2I-based methods exhibit improved
transferability when combined with other attacks, albeit at the
cost of increased distortion. Our original DiffAttack cannot
surpass the performance achieved by the combination of
multiple attack approaches. Nevertheless, when structural
controls are eliminated (as discussed in Section III-E) to align
the FID and LPIPS values for fair comparisons, DiffAttack

once again showcases superior performance.
5) Performance on More Datasets: In Section IV-B1, our

comparative experiments are exclusively conducted on the

ImageNet-Compatible Dataset. To bolster the credibility of Dif-

fAttack’s performance and its applicability, we have expanded
our evaluation to encompass two additional datasets: CUB-200-
2011 [56] and Stanford Cars [57]. Aligning with the ImageNet-
Compatible dataset, we randomly selected 1,000 samples
from both the CUB-200-2011 and Stanford Cars datasets,
respectively, for crafting adversarial examples. For normally
trained models, we employed three models: ResNet50 (R-50)
[59], SENet154 (S-154), and SE-ResNet101 (SR-101) [80],
all initialized with pretrained weights provided by [78]. The
results in Table V highlight DiffAttack’s strong generalization
across diverse datasets.

It is also worth noting that color-based unrestricted attacks
like NCF [29] achieve significantly higher attack success rates
on the CUB-200-2011 dataset compared to the other two
datasets (ImageNet and Stanford Cars). Upon analysis, we
found that this discrepancy is primarily due to the fact that
many bird categories in CUB-200-2011 are distinguished by
color, such as the “Clay-colored Sparrow” and “Black-throated
Sparrow”. Consequently, when the NCF attack modifies the
colors of clean images, it alters the birds’ ground-truth
attributes, inflating the observed attack success rates.

Additionally, to further verify the generalization of our
method to new datasets and model types, we present further
explorations in Appendix E.

C. Ablation Studies

1) Design Ablation: In Table VI, we ablate the designs
mentioned in Section III-D. The adversarial examples are
crafted on Inc-v3. We can observe that with the loss in Eq.
15 added, the attack success improves, verifying our design’s
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Clean
⚫ DDIM Inversion 10 steps
⚫ w/o self-attention control
⚫ w/o initial reconstruction

⚫ DDIM Inversion 5 steps
⚫ w/o self-attention control
⚫ w/o initial reconstruction

⚫ DDIM Inversion 5 steps
⚫ w/ self-attention control
⚫ w/o initial reconstruction

⚫ DDIM Inversion 5 steps
⚫ w/ self-attention control
⚫ w/ initial reconstruction

(final)

Fig. 6. Visualization of design ablations for imperceptibility. Please zoom in for a better view.

TABLE VI
ABLATION STUDY OF DESIGNS FOR TRANSFERABILITY.

Prompt Guidance Diffusion Deception
(Ltransfer)

AVG#
(w/o self)

7 7 70.0
3 7 66.5
3 3 65.4

TABLE VII
ABLATION STUDY OF DESIGNS FOR IMPERCEPTIBILITY.

DDIM Inversion
Step Number

Self-Attention
Control (Lstructure)

Initial
Reconstruction FID# LPIPS#

10 7 7 97.9 0.372
5 7 7 66.7 0.142
5 3 7 63.5 0.131

5 3 3 62.3 0.126

effectiveness. It can also be noted that prompt guidance is
important for transferability, which we attribute to the fact
that prompts can help guide the attack on the target objects.
Results in Table VII verify the effectiveness of our designs
for structure retention. With the inversion strength and self-
attention controlled, the FID and LPIPS results gradually
improve. We also visualize the structure ablation in Figure
6, which can display the visual improvement obviously. It
can be seen that the control of inversion strength helps a lot
preserve the structure, and the usage of self-attention maps can
ensure better texture.

Moreover, as highlighted in Section I, the transferability
of DiffAttack is not solely attributed to Ltransfer, but also
originates from our latent space perturbation and the denoising
process intrinsic to the diffusion model itself. In other words,
the diffusion model’s structure and mechanisms inherently

contribute to improving transferability.
To empirically validate this point, we conducted an ablation

study by eliminating the diffusion model and directly perturbing
the image pixels. This resulted in a pixel-based attack similar
to I-FGSM [81]. We aligned the number of iterations with
DiffAttack and, to mitigate the generation of unnatural high-
frequency noise inherent in pixel-based attacks (as illustrated
in Figure 1), we adopted settings from Lp-norm-based trans-
ferable attacks, limiting the maximum perturbation to 16. To
effectively illustrate the influence of the diffusion model itself
on transferability, particularly the latent space perturbation
and denoising process, we compared this modified degradation
model with an adapted DiffAttack (without Ltransfer). We
evaluated performance on both normally trained models and
four defensive models (Adv-Inc-v3, Inc-v3ens3, Inc-v3ens4,
and IncRes-v2ens), yielding the results in Table VIII.

The presented results demonstrate that the diffusion model
itself can enhance the transferability of adversarial examples,
not only on traditionally trained models but also on defensive
models. This strongly supports our assertion that the latent
space perturbation and defensive denoising process in Dif-

fAttack contribute to improved transferability. Additionally,
with the diffusion model, the adversarial examples exhibit
lower perceptibility (as indicated by FID and LPIPS scores),
further substantiating the motivations outlined in Section I and
reinforcing the contributions of our work.

2) Parameter Settings: We here reveal more experimental
results about the parameter settings.

Settings of Guidance Scale. From Figure 7, it can be ob-
served that with the guidance scale increased, the transferability
improves while the imperceptibility deteriorates. We infer this
is because larger guidance scales will tend to change the latent
more and thus potentially generate more perturbations. Since
there is a large gap in the attack success between the guidance
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TABLE VIII
DEMONSTRATION OF THE EFFECT OF THE DIFFUSION MODEL ITSELF IN ENHANCING TRANSFERABILITY. WE REPORT TOP-1 ACCURACY(%). WE

CRAFT ADVERSARIAL EXAMPLES ON INC-V3. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONES
THAT HAVE A GRAY BACKGROUND. THE BEST RESULT IS BOLDED. THE FIRST TABLE DISPLAYS THE PERFORMANCE ON NORMALLY TRAINED MODELS,

WHILE THE SECOND ONE ON DEFENSIVE MODELS.

CNNs Transformers MLPs
Ablation Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG#
(w/o self)

w/o Diffusion Model 62.5 60.3 56.9 0 88.3 85.9 87.6 88.2 84.8 68.0 62.8 74.5
w/o Ltransfer 60.6 59.2 57.4 10.9 77.9 75.1 74.4 75.2 71.9 58.6 54.7 66.5

Ablation
Defensive Models

AVG# FID# LPIPS#
Adv-Inc-v3 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

w/o Diffusion Model 66.4 62.7 63.7 79.1 68.0 69.2 0.154
w/o Ltransfer 45.0 43.0 42.3 57.1 46.9 61.6 0.125

Fig. 7. The effect of different parameter settings. We conduct a quantitative study on the parameter settings of the guidance scale, iterations, DDIM steps,
and weight factors of each loss. “AVG(w/o self)” denotes the average accuracy on all the target models except the one that same as the surrogate one.

scale set to 1.0 and 2.5, but a slight change of the FID and
LPIPS value, we set the guidance scale to 2.5 finally.

Settings of Iterations. We can notice from Figure 7 that
more iterations will sacrifice image quality for the attack
success. As more iterations will consume longer optimization
time, we here set the number of iterations to 30, which strikes
a balance between time-consuming, image quality, and attack
robustness.

Settings of DDIM Steps. In Figure 7, we keep the DDIM
Inversion steps the same (5 inversion steps), to see the effect
of different DDIM full sample steps. We do not show here the
results for the step number set to 10 because the image quality
is rather poor and the structure is completely changed. From
the results, we can see that the step number does impact a lot
both the transferability and the imperceptibility. Here we set
the number of DDIM sample steps to 20, which can produce

perceptually invisible adversarial samples with stronger attack
robustness.

Settings of Weight Factor for Loss. We also conduct
quantitative studies on the weight factor settings in Eq.
17. From Figure 7, it can be noticed that our designs of
Ltransfer and Lstructure do make sense for improving the
attack’s transferability and preserving the content structure. For
Lattack, we can see from the results that there is a negligible
performance improvement when ↵ is increased to a certain
extent, thus we set ↵ to 10. For Ltransfer and Lstructure, to
balance both the transferability and the imperceptibility, we
set them to 10000 and 100 respectively.

D. Exploration of Perturbation on Guided Text Embeddings

As mentioned in Section III-C, we choose to perturb the
latent xt but not the guided text C, which is different from
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TABLE IX
COMPARISONS OF PERTURBATIONS ON THE LATENT AND TEXT. “S.” DENOTES SURROGATE MODELS WHILE “T.” DENOTES TARGET MODELS. FOR THE
WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET ONE), WE SET THEIR BACKGROUND TO GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE

ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT SAME AS THE SURROGATE ONE. THE BEST RESULT IS BOLDED.

S.
T. CNNs Transformers MLPs AVG#

(w/o self) FID# LPIPS#
Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Clean 92.7 88.7 86.9 80.5 97.0 93.7 95.9 94.5 94.0 82.5 76.5 89.4 57.8 —

Text Perturbation 79.6 73.3 74.7 13.4 91.3 85.9 86.9 87.9 86.0 71.6 63.8 80.1 58.8 0.108
Latent Perturbation 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3 0.126

TABLE X
COMPARISONS WITH EXPLICIT ENSEMBLE ATTACKS USING A ZERO-SHOT CLIP CLASSIFIER. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD.

WE CRAFT ADVERSARIAL EXAMPLES ON VGG-19 AND CLIP. FOR THE WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET ONE), WE SET THEIR
BACKGROUND TO GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT SAME AS THE

SURROGATE ONE. THE BEST RESULT IS BOLDED, AND THE SECOND-BEST RESULT IS UNDERLINED.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG#
(w/o self) FID# LPIPS#

PI-FGSM (VGG-19) 22.7 0 16.4 29.8 68.3 68.0 75.7 79.5 67.6 50.9 41.8 52.1 96.4 0.367
PI-FGSM (VGG-19+CLIP) 40.2 21.6 26.2 33.5 79.5 57.1 78.6 71.1 59.7 49.0 39.2 53.4 89.5 0.359

S2I-FGSM (VGG-19) 17.9 0.0 11.3 31.8 49.5 74.1 57.9 76.0 68.0 52.6 50.8 49.0 82.9 0.155
S2I-FGSM (VGG-19+CLIP) 16.1 0.4 9.6 26.4 46.8 58.8 50.3 63.2 56.3 44.5 42.3 41.4 84.6 0.165

NCF (VGG-19) 38.3 6.8 31.5 52.4 80.5 67.5 77.6 77.4 70.6 53.5 47.2 59.7 70.4 0.392
NCF (VGG-19+CLIP) 39.9 9.9 32.0 53.7 79.3 66.2 78.5 77.5 68.4 54.1 48.4 59.8 70.4 0.384

DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9 0.150
DiffAttack (VGG-19+CLIP, w/o Ltransfer) 27.2 10.0 24.1 29.4 44.1 46.1 41.5 45.1 39.7 38.7 36.9 37.3 64.6 0.151

TABLE XI
LEVERAGING DIFFATTACK FOR ENSEMBLE ATTACKS. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD. WE CRAFT ADVERSARIAL EXAMPLES ON

VGG-19 AND CLIP. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONES THAT HAVE A GRAY
BACKGROUND. THE BEST RESULT IS BOLDED.

CNNs Transformers MLPs
Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

AVG#
(w/o self) FID# LPIPS#

S2I-FGSM(VGG-19+Res-50) 1.5 0.0 4.5 14.8 28.8 57.7 40.4 61.0 54.0 41.2 39.2 38.0 84.7 0.163
DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 40.1 63.9 0.150

DiffAttack(VGG-19+Res-50,w/o Ltransfer) 3.8 3.8 11.6 20.0 24.0 36.3 26.3 34.0 30.6 30.9 30.5 27.1 62.1 0.151

S2I-FGSM(VGG-19+Swin-B) 14.5 0.3 9.5 25.8 27.2 51.3 15.4 52.5 48.1 41.8 39.0 34.4 83.1 0.152
DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 37.8 63.9 0.150

DiffAttack(VGG-19+Swin-B,w/o Ltransfer) 19.3 6.9 19.4 26.0 27.6 33.5 15.6 30.4 30.1 30.7 31.4 27.6 64.2 0.151

S2I-FGSM(VGG-19+Mix-L) 17.5 0.3 12.0 27.9 43.8 58.0 46.2 56.1 51.4 24.6 10.8 37.5 83.9 0.156
DiffAttack(VGG-19) 21.1 2.7 19.4 29.7 43.1 52.9 41.6 51.3 45.0 39.6 38.5 38.2 63.9 0.150

DiffAttack(VGG-19+Mix-L,w/o Ltransfer) 22.7 4.2 20.5 31.2 40.7 43.9 36.8 43.1 40.4 27.5 25.8 34.1 64.3 0.153

S2I-FGSM(Res-50+ViT-B) 1.1 7.7 5.9 17.5 39.3 10.9 40.5 26.7 20.3 27.2 29.6 23.9 79.6 0.165
DiffAttack(Res-50) 3.7 24.4 22.9 31.0 41.0 48.8 43.8 49.5 45.0 42.9 42.2 38.1 62.6 0.137

DiffAttack(Res-50+ViT-B,w/o Ltransfer) 6.3 18.8 18.7 24.6 27.7 12.9 26.4 24.2 21.1 26.5 27.8 24.0 63.6 0.150

the mainstream image editing approaches [50], [46], [45]. The
reason is that text perturbation will be hard to transfer to other
black-box models. In the following, we display the details of
text perturbation designs and some necessary experiments and
analyses.

1) Design Details: Here we first define two text prompts:
C1, C2, which are the first and second most possible categories
predicted by the classifier. We leverage C1 for the optimization
of unconditional embeddings mentioned in Section III-E. Then,
we replace C1 with C2 which follows [46], [52] and can
expect the changes of object semantics in the image. For the
loss functions, we remove Ltransfer in Eq. 17, and modify
Lattack as follows:

argmin
C2

Lattack = J(x0, C2;G�) (18)

The equation above is similar to the objective function of
targeted attacks, and the insight is to trick the classifier into
predicting the nearest wrong label. Other implementation details
are the same as Section IV-A.

2) Experiments and Analysis: In this subsection, we com-
pare the results between the text perturbation and the latent
perturbation. From Table IX, we can observe that although
the text perturbation has a slightly higher attack success in
a white-box way (0.5 point accuracy lower on Inc-v3), the
attack itself is hard to work on the other black-box models,
thus not competitive with the latent perturbations. We attribute
this phenomenon to the fact that the text perturbation is more
high-level than the latent perturbation, due to text semantics.
Therefore, it will tend to generate more realistic results (lower
FID and LPIPS in Table IX), but has limited control over the
local area, while the latent perturbation does the opposite.

E. Discussions about DiffAttack’s Relationship with Ensemble

Attacks

1) DiffAttack as an “Implicit” Ensemble Attack: DiffAttack

can be considered as an “Implicit” ensemble attack. The loss
function Ltransfer in Eq. 15 functions to divert the intermediate
2D cross-attention maps. This resembles the role of a zero-shot
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CLIP classifier [82], which aims to align the image’s features
with its corresponding text embedding. From this perspective,
DiffAttack can be viewed as an ensemble adversarial attack,
targeting both a zero-shot CLIP classifier and a surrogate
classifier.

However, it’s essential to highlight that, unlike explicit en-
semble attacks involving multiple surrogate models behind the
final output adversarial examples [53], DiffAttack’s ensemble
characteristic is “implicit”. Ltransfer is designed to perturb the
intermediate 2D cross-attention maps of the diffusion model
rather than attacking the final similarity results of an explicit
CLIP classifier. This design avoids the need for an additional
image classifier to generate adversarial examples, resulting in
no additional memory overhead.

In summary, DiffAttack exhibits an “implicit ensemble
characteristic” but differs significantly from typical explicit
ensemble attacks.

2) Comparisons with Explicit Ensemble Attacks Using a

Zero-shot CLIP Classifier: To ensure the comprehensiveness
of our experiments, we have included comparisons with
ensemble attacks employing an additional explicit zero-shot
CLIP classifier. Also, we adapted the original DiffAttack into
an explicit ensemble attack by substituting Ltransfer with an
explicit CLIP surrogate model.

We display the compared results in Table X. The base
surrogate model is VGG-19 and we consider comparisons
with three recent attack methods [75], [19], [29]. For the
zero-shot CLIP classifier, we utilized the pretrained ViT-B/32
weights provided by OpenAI. Based on the results obtained,
our original DiffAttack consistently outperforms other methods
in terms of both transferability and imperceptibility, even when
those methods attack an additional CLIP classifier. As for our
adapted ensemble DiffAttack, which replaces Ltransfer with
an explicit CLIP classifier, we observed an improvement in
transferability but a reduction in imperceptibility. It’s worth
noting again that, unlike the explicit CLIP classifier, Ltransfer

utilizes intermediate cross-attention maps during the denoising
process, incurring no additional memory costs.

3) Leveraging DiffAttack for Ensemble Attacks: Here, we
unveil another remarkable potential of diffusion models in
crafting adversarial examples: Ensemble attacks founded on
diffusion models can significantly outperform conventional
ensemble attacks [53].

To demonstrate this, we conducted a comparison between
DiffAttack and Lp-norm-based attacks involving multiple surro-
gate models, using S2I-FGSM [19] as an example. Adversarial
examples were generated to target various model structures.

The results in Table XI indicate that our original DiffAttack,
which targets a single model structure, falls short when
compared to ensemble attacks that target two model structures
explicitly. The reason is evident: when more model structures
are explicitly attacked, the generated adversarial examples
exhibit superior transferability across these surrogate structures.
It’s important to note that the diffusion model [30] we employ,
designed initially for image synthesis, fundamentally serves as
an “implicit” recognition model. Therefore, our deception loss
Ltransfer cannot be designed in the same manner as commonly
used attack losses (See Lattack in Eq. 12) that directly target

the classifier’s decision (the ultimate goal of the attack).
This limitation explains the original DiffAttack’s inability
to outperform ensemble attacks in terms of transferability,
although it still maintains superior imperceptibility.

However, when we employed an explicit ensemble attack
based on DiffAttack, while also removing Ltransfer for fairness,
DiffAttack achieved better (or competitive) results in both
transferability and imperceptibility, as evident in Table XI.
These findings underscore the potential of diffusion models as
a promising platform also for constructing ensemble attacks.

V. DISCUSSIONS AND OUTLOOKS

Besides the designs outlined in Section III, we have explored
other strategies to enhance imperceptibility and transferability
during the exploration of diffusion-based adversarial attacks.
While these exploratory endeavors yielded limited success, we
deem it valuable to provide an in-depth discussion, as they may
contribute to future research. Detailed insights are presented
in Appendices B and C.

We are also encouraged by the rapid growth of subsequent
research in diffusion-based attacks, some of which emerged
shortly after the initial public release of our work, highlighting
the potential of this field. To help readers stay abreast of
developments in this area, we briefly discuss these recent efforts.
Unlike our work, which focuses on creating imperceptible
and transferable adversarial attacks, Xue et al. [83] prioritizes
controllability and stealthiness, proposing Diff-PGD, a method
that combines PGD [11] with diffusion models to explore
its applicability across different attack types, including style-
guided and physical attacks. Wang et al. [84] also targets
unrestricted attacks and introduces a semantic transformation
and a latent masking technique to either fine-tune the diffusion
model or modify the latent space. Additionally, Chen et al.

[85] focuses on unrestricted adversarial attacks and integrates
the momentum concept [16] to enhance attack performance.

Furthermore, we offer insights into potential future direc-
tions for diffusion-based adversarial attacks. One avenue for
future research is to take diffusion models as a novel input
augmentation. Recently, there are many works [19], [20] that
enhance the attack’s transferability by applying differentiable
augmentations on the input image, in which way, the crafted
adversarial examples gain robustness under different scenarios.
In line with these approaches, we can also take diffusion models
as novel augmentations. By directly adding noise (or applying
DDIM Inversion), we first convert the input image into the
latent space, then we conduct the diffusion denoising process
to reconstruct images. This reconstruction process, with small
differences from the input image every time, can be seen as an
augmentation when we leverage stochastic sampling in each
step (the way like DDPM [48] but not deterministic DDIM
[47]). Therefore, we may expect good transferability in this
way.

Moreover, as the adversarial example crafted by diffusion
models has many semantic clues embedded in it (see Figure 1),
it is also interesting and worth exploring whether the accuracy
of clean images can be improved if we merge these examples
in the training dataset and whether such an adversarial training
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can enhance the robustness of the classifier without sacrificing
the clean image accuracy compared with previous attacks [81].

Additionally, we identify three crucial aspects of diffusion-
based attacks that merit further examination. First, the substan-
tial computational cost, arising from the iterative nature and
numerous parameters of diffusion models, potentially limits
their practicality in real-time or resource-constrained settings
(see Appendix G). Second, compared to pixel-based attacks,
DiffAttack struggles to achieve a 100% white-box attack success
rate, a phenomenon also observed in other generative-model-
based (GAN-based) attacks [77] and unrestricted attacks [37],
[29] (see Table I and Section IV-B3). Finally, in the transferable
targeted attack task (see Appendix F), DiffAttack, along with
other compared attacks, exhibits low transferability despite
strong performance in the untargeted attack task. These findings
also suggest promising avenues for future research.

VI. CONCLUSION

In this work, we explore the potential of diffusion models in
crafting adversarial examples and propose a powerful transfer-
based unrestricted attack. By leveraging the properties of
diffusion models, our approach achieves both imperceptibility
and transferability. Experiments across extensive black-box
models, defenses, and datasets have demonstrated our method’s
superiority. Furthermore, we have comprehensively discussed
the possible future work with diffusion models. We believe
our work can pave the way for imperceptible and transferable
adversarial attacks.
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APPENDIX A
OVERVIEW

In Appendix B and Appendix C, considering the possible
help for future research, we display our further trials (with little
success) on improving the imperceptibility and transferability
of the attacks. We present DiffAttack’s performance on more
surrogate models in Appendix D, as well as its application
to additional dataset and model type in Appendix E. Besides,
we give discussions about the DiffAttack’s performance on
the transferable targeted attack in Appendix F. Limitations of
computational cost are discussed in Appendix G. Finally, more
visualizations are shown in Appendix H.

APPENDIX B
TRIAL FOR BETTER IMPERCEPTIBILITY WITH “PSEUDO”

MASK

As mentioned in Section III-E in the main paper, for some
specific images, the adversarial examples crafted by DiffAttack

may distort a lot compared with the original ones. For better
control of the changes, we try to generate “pseudo” masks
with the cross attention. With these masks, we can then filter
out the background regions and only perturb the foreground
objects, thus achieving better human-imperception. However,
we found that although the results could more easily evade the
human eyes, their transferability dropped a lot. We infer this
may be because background information is also beneficial for
image recognition. More details about the implementation and
experiments of the trial can be found as follows. In practice, we
will weaken the inversion strength for overly distorted images.

A. Design Details

As mentioned in Section III-D in the main paper, there is
a strong relationship in the cross-attention maps between the
text prompt and the image pixels. Thus, we can make use of
this property to generate the true label’s “pseudo” mask:

P = Average(Cross(xt, t, C; SDM)) (1)

Msoft = Up(
P

Max(P )
) (2)

(Optional) Mhard =

(
1, Msoft > 0.5

0, Msoft  0.5
(3)

where Up(·) is an upsampling operation to resize the cross-
attention map (due to the existing downsamplings in the encoder

of the Autoencoder and U-Net). Max(·) is to extract the
maximum value and normalize the cross-attention maps P .
Since P � 0, the normalized Msoft 2 [0, 1]. Eq. 3 is optional
to get a hard mask. With the mask, we then filter out the
background area and only apply perturbations on the foreground
(area covered by true objects). The Eq. 12 in the main paper
is then changed as follows:

argmin
xt

Lattack = �J(x0 ⇥M + x⇥ (1�M), y;G�) (4)

The optimization details are the same as the implementation
details in Section IV-A in the main paper.

B. Experiments and Analysis

Here we conduct experiments to see the impact of different
upsampling strategies and different mask types. In Table I,
we display the performance when the mask is applied. It can
be perceived from the results that there is an obvious trade-
off between transferability and imperceptibility. The use of
masks lowers the FID and LPIPS value, yet also lowers the
attack success by a large margin. We infer that it is because the
recognition of an image is not only related to its foreground but
also its background [1]. Thus the attack success rate will drop
when the mask is applied. We also visualize the adversarial
example crafted by leveraging the mask in Figure 1, from
which we can see that the applied mask can better preserve
words on hot air balloon skin, and the hard mask tends to
generate blocky artifacts compared with soft-mask.

APPENDIX C
TRIAL ON FURTHER IMPROVING TRANSFERABILITY

We also explore further improving the transferability of
DiffAttack. For image classification, the classifier will output
each category’s confidence, and top1 is usually taken as the
final decision. We here try to also make use of the following
4 categories in top5 for better transferability. Specifically,
different from Section III-D in the main paper where we only
set the guided text to top1 category’s name, we here set the
text to a stack of the 5 categories’ names in top5 (sort by
confidence from largest to smallest). Then, we optimize xt to
reduce the intensity of cross attention between pixels and the
first category text and increase that between pixels and the
other four categories text. The motivation is that, the confidence
denotes, to some extent, the amount of related information
of the category in the image, thus it may be much easier to
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TABLE I
COMPARISONS OF DIFFERENT MASK TYPES AND UPSAMPLING STRATEGIES. FOR THE WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET

ONE), WE SET THEIR BACKGROUND TO GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT
SAME AS THE SURROGATE ONE. THE BEST RESULT IS BOLDED.

Mask Types Upsampling Strategy
CNNs Transformers MLPs AVG#

(w/o self) FID# LPIPS#
Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

None None 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3 0.126
hard nearest 71.4 67.9 64.8 17.8 85.2 80.9 82.9 80.3 81.0 68.2 60.2 74.2 59.1 0.064
hard bilinear 68.8 66.8 65.6 18.3 84.0 79.0 81.4 79.9 79.5 66.0 61.8 73.3 59.3 0.065
soft bilinear 73.9 69.4 66.9 18.4 88.2 82.7 86.5 84.8 82.0 68.5 62.0 76.5 58.8 0.064

Clean W/O Mask Soft + BilinearHard + BilinearHard + Nearest

Fig. 1. Visualization of the adversarial example crafted by leveraging the mask. The second and third rows denote the scaled-up regions in the first row.

deceive the classifier to the nearest category on the decision
plane. However, from our experiments, this trial fails to improve
the transferability and even hurts it. We attribute this to the
limitation of the search space. More details can be found as
follows.

A. Design Details

In Eq. 15 in the main paper, C =

“{True Label / Category 1st}” that the guided text
can be either the true label or the top1 predicted category. We
here extend the text to leverage more categories:

Cext =“{Category 1st}, {Category 2nd},
· · · , {Category Nth}”

(5)

where {Category Nth} denotes the name of the Nth most
possible category predicted by the classifier. Then, Eq. 12 in

the main paper is modified to:

Lattack = �J(x0,Category 1st;G�)

+ (J(x0,Category 2nd;G�) + · · ·+ J(x0,Category Nth;G�))| {z }
N�1

(6)
By minimizing the above equation, the adversarial examples are
crafted to lead the classification results towards the most error-
prone categories, which may have benefits on the transferability
(but failed through our experiments). We further add an extra
loss to force the perturbed xt to have lower cross-attention
intensity with {Category 1st} and higher with other text
prompts, which we expect can help deceive the diffusion
models:

Pi = Average(Cross(xt, t, Ci; SDM)) (7)

argmax
xt

Lext = Average(P2 + · · ·+ PN| {z }
N�1

)� P1 (8)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, AUGUST XXXX 3

TABLE II
EXPLORATIONS ON THE EFFECT OF DIFFERENT CATEGORIES AS TEXT PROMPTS. FOR THE WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS

TARGET ONE), WE SET THEIR BACKGROUND TO GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE
ONE THAT SAME AS THE SURROGATE ONE. THE BEST RESULT IS BOLDED.

top-N
CNNs Transformers MLPs AVG#

(w/o self) FID# LPIPS#
Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

1 59.5 55.6 55.4 13.9 76.9 75.2 72.8 74.0 71.0 58.9 54.7 65.4 62.3 0.126
2 67.0 63.7 61.2 9.1 81.7 77.1 77.5 79.1 76.4 64.0 56.8 70.4 60.9 0.132
5 64.4 61.0 59.2 5.9 81.4 78.8 78.0 77.5 75.9 61.0 54.0 69.1 62.8 0.133

TABLE III
COMPARISONS ON MORE SURROGATE MODELS. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD. “S.” DENOTES SURROGATE MODELS WHILE “T.”

DENOTES TARGET MODELS. FOR THE WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET ONE), WE SET THEIR BACKGROUND TO GRAY.
“AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT SAME AS THE SURROGATE ONE. THE BEST

RESULT IS BOLDED, AND THE SECOND-BEST RESULT IS UNDERLINED.

S.
T. Attacks

CNNs Transformers MLPs AVG#
(w/o self) FID# LPIPS#

Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Clean 92.7 88.7 86.9 80.5 97.0 93.7 95.9 94.5 94.0 82.5 76.5 89.4 57.8 —

PI-FGSM 34.2 27.7 23.6 31.5 66.9 0 56.5 25.6 17.0 29.7 26.3 33.9 91.2 0.360
S2I-FGSM 45.0 39.6 38.6 38.1 63.1 0.2 45.2 10.7 5.5 18.1 20.2 32.4 70.2 0.177

NCF 45.1 40.4 39.6 56.1 73.5 27.6 70.1 64.1 57.8 49.7 44.9 54.1 67.4 0.364ViT-B

DiffAttack(Ours) 39.4 40.5 36.1 34.7 41.7 4.7 30.3 22.4 19.9 27.2 30.0 32.2 66.4 0.152

PI-FGSM 33.8 19.4 22.8 30.6 64.7 22.5 54.5 0 16.7 32.6 28.9 34.4 92.1 0.362
S2I-FGSM 39.8 34.5 29.3 32.6 50.4 6.7 28.0 0.4 3.9 13.6 17.9 25.7 75.8 0.166

NCF 52.2 47.3 46.7 59.3 73.4 62.5 67.5 31.7 59.2 50.9 48.0 56.7 65.3 0.336DeiT-B

DiffAttack(Ours) 39.9 40.4 36.8 37.0 37.5 22.4 25.9 3.1 18.2 26.2 27.9 31.2 67.6 0.146

PI-FGSM 47.5 37.0 39.2 40.8 72.1 49.9 70.9 56.6 45.1 0 13.9 47.3 85.5 0.344
S2I-FGSM 60.6 52.4 47.8 52.1 72.6 48.4 58.4 43.9 40.7 1.6 8.9 48.6 66.4 0.154

NCF 55.0 47.5 49.6 61.1 81.8 71.1 77.5 75.6 71.1 10.0 35.0 62.5 65.2 0.326Mix-B

DiffAttack(Ours) 52.2 52.1 49.6 45.0 57.9 48.8 49.9 44.6 45.4 16.6 22.1 46.8 64.2 0.143

where Ci denotes Category ith, and Pi denotes the cross
attention between image pixels and Ci. Average(·) here
represents the averaging operation in pixel space. We then
add Lext to Eq. 17 in the main paper with a weight factor set
to 100.

B. Experiments and Analysis

We here analyze the impact of different numbers of cate-
gories leveraged as text prompts. From Table II, leveraging
more guided category texts failed to improve the attack’s
transferability, and even damage the performance. We infer that
it is because the search space of the attack is limited when we
force the adversarial examples to be classified as some specific
categories. When we set the category number from 2 to 5, we
can observe a slight increase in the attack success, while when
we set it to 1, we have no constraint on the predicted category,
and thus gain a large increase in the attack success.

APPENDIX D
PERFORMANCE ON ADDITIONAL SURROGATE MODELS

Besides the results in Table I in the main paper, we
supplement more experiments when the surrogate models are
Transformers or MLPs in Table III. Here, we further consider
ViT-B, DeiT-B, and Mix-B as the surrogate model. For brevity,
we only compare DiffAttack with those more recent attack
methods [2], [3], [4]. From the results, it is further verified
that DiffAttack generalizes well on various model structures,

achieving good performance on both imperceptibility and
transferability.

APPENDIX E
PERFORMANCE ON ADDITIONAL DATASET AND MODEL

TYPE

While the experiments presented in the main paper (Tables
I and V) demonstrate the effectiveness of our method across
various models and datasets, concerns may still arise regarding
the potential risk of overfitting to specific dataset types or
model architectures. This is because the data distribution of the
ImageNet, CUB-200-2011, and Stanford Cars datasets closely
resembles that of the Stable Diffusion training set. To more
thoroughly assess how well the adversarial examples generated
by our method perform against new models and datasets, we
supplemented our experiments with the UC Merced [5] remote
sensing scene classification dataset. Compared to the datasets
validated in the main paper, UC Merced has a data distribution
that diverges from the Stable Diffusion training data, making
it an ideal candidate for testing DiffAttack’s performance on a
new dataset.

In terms of model type selection, besides ResNet50, ViT-B,
and Swin-B, we included RSMamba [6], a model based on
the recently introduced Mamba [7] architecture. This addition
allows us to evaluate DiffAttack’s performance on a novel
model type. For this exploration, we randomly sampled 200
images from the UC Merced dataset and compared our results
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TABLE IV
EXPERIMENTS ON ADDITIONAL DATASET AND MODEL TYPE. WE REPORT TOP-1 ACCURACY(%) OF EACH METHOD. “S.” DENOTES SURROGATE MODELS
WHILE “T.” DENOTES TARGET MODELS. FOR THE WHITE-BOX ATTACKS (SURROGATE MODEL SAME AS TARGET ONE), WE SET THEIR BACKGROUND TO

GRAY. “AVG(W/O SELF)” DENOTES THE AVERAGE ACCURACY ON ALL THE TARGET MODELS EXCEPT THE ONE THAT SAME AS THE SURROGATE ONE. THE
BEST RESULT IS BOLDED.

Attacks Res-50 Swin-B ViT-B RSMamba-B AVG(w/o self)# FID# LPIPS#
S.

T.
clean 96.0 89.5 83.5 96.5 91.4 97.4 -

S2I-FGSM 0.5 78.0 68.0 85.5 77.2 141.6 0.119Res-50 DiffAttack(Ours) 44.5 60.5 59.0 67.0 62.2 136.8 0.116

S2I-FGSM 89.0 0 64.0 90.0 81.0 143.6 0.121Swin-B DiffAttack(Ours) 52.5 7.0 37.0 53.5 47.7 137.7 0.117

S2I-FGSM 90.5 78.0 18.0 95.0 87.8 141.5 0.125ViT-B DiffAttack(Ours) 90.0 76.5 40.5 93.5 86.7 133.4 0.120

S2I-FGSM 75.0 51.5 64.5 0 63.7 148.1 0.117RSMamba-B DiffAttack(Ours) 60.5 60.0 56.9 12.0 59.1 145.6 0.115

TABLE V
PERFORMANCE COMPARISONS ON TARGETED TRANSFERABLE ATTACKS. WE REPORT ATTACK SUCCESS RATE(%) OF EACH METHOD HERE. WE CRAFT
ADVERSARIAL EXAMPLES ON VGG-19. “SUCCESS RATE AVG(W/O SELF)” DENOTES THE AVERAGE ATTACK SUCCESS RATE ON ALL THE TARGET MODELS

EXCEPT THE ONES THAT HAVE A GRAY BACKGROUND. THE BEST RESULT IS BOLDED.

CNNs Transformers MLPs
Targeted Attacks Res-50 VGG-19 Mob-v2 Inc-v3 ConvNeXt ViT-B Swin-B DeiT-B DeiT-S Mix-B Mix-L

Success Rate
AVG (w/o self)" FID# LPIPS#

DI-FGSM 0.4 94.7 0.5 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 75.6 0.145
TI-FGSM 0.3 97.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 70.0 0.150
PI-FGSM 0.1 99.7 0.2 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.2 0.1 92.3 0.369

S2I-FGSM 2.0 91.4 1.9 0.5 0.8 0.0 0.3 0.1 0.0 0.0 0.0 0.6 82.9 0.156
ReColorAdv 0.1 59.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.8 0.169

cAdv 0.0 95.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 79.7 0.221

DiffAttack(1e�2) 0.3 61.4 0.3 0.0 0.2 0.1 0.2 0.0 0.2 0.0 0.0 0.1 74.7 0.143
DiffAttack(1e�1) 6.1 99.8 5.6 3.5 6.3 4.1 3.8 2.6 3.2 0.9 1.1 3.7 147.2 0.508

TABLE VI
LIMITATION IN TERMS OF TIME AND GPU MEMORY CONSUMPTION. WE REPORT THE TIME FOR CRAFTING ADVERSARIAL EXAMPLES OF DIFFERENT
ATTACK METHODS, TOGETHER WITH THE MAXIMUM MEMORY COST. FOR GAN-BASED METHODS (BIA), THE ADVERSARIAL EXAMPLES ARE CRAFTED BY
INFERENCING THE TRAINED GENERATOR. WHILE FOR OTHER METHODS, THE ADVERSARIAL EXAMPLES ARE ITERATIVELY OPTIMIZED WITH RES-50 AS

THE SURROGATE MODEL.

Attack DI-FGSM TI-FGSM PI-FGSM S2I-FGSM ReColorAdv cAdv NCF BIA DiffAttack

Mem(MB) 336 301 412 305 952 775 374 242 14083

Time(s) 0.2 0.2 0.6 5.5 2.9 5.3 18.6 0.01 29.9

with the S2I-FGSM attack method. The comparison results are
presented in Table IV.

From the experimental outcomes, it is evident that DiffAttack
generalizes well to both the new dataset and the new model type,
achieving satisfactory attack transferability and imperceptibility.
This further verifies the robustness and generalization capability
of our attack method.

APPENDIX F
DISCUSSIONS ON DIFFATTACK’S PERFORMANCE IN

TRANSFERABLE TARGETED ATTACK

In this section, we assess the performance of DiffAttack when
employed as a targeted attack method. Originally designed for
the untargeted attack, we adapt DiffAttack for the targeted
task by removing Ltransfer in Section III-D in the main
paper directly. To transform all compared methods in the main
paper into targeted attacks, we modify their loss functions by
reversing the sign of the classification loss to maximize the

logit for the target category. Notably, we exclude NCF due to
its extremely low success rate in targeted attacks. For target
categories, we employ the labels provided in the ImageNet-
Compatible Dataset. Adversarial examples are crafted using
VGG-19, and the results are presented in Table V. Differing
from the results presented in other tables, here we present
the attack success rate of the target attacks for clarity. The
attack success rate is essentially the complement of the top-1
accuracy, calculated as 100% minus the top-1 accuracy.

From the results, we observe that all models struggle to
achieve transferability to black models, a notable and promising
avenue for future research. Additionally, when compared to
pixel-based attacks, DiffAttack exhibits a lower success rate
on the targeted model. We attribute this difference to the
tendency of pixel-based attacks to overfit by introducing high-
frequency noise. In contrast, unrestricted attacks like DiffAttack
often emphasize large-scale patterns with high-level semantics,
making it challenging to achieve a high success rate in white-
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box attacks (this also occurs among those GAN-based attacks).
It’s worth noting that by increasing the learning rate from 1e�2

(our default setting) to 1e�1, DiffAttack can improve its white-
box attack success rate and also its transferability. However,
this enhancement comes at the cost of reduced fidelity which
may be less meaningful.

APPENDIX G
DISCUSSIONS ABOUT LIMITATION OF TIME AND MEMORY

COST

Due to the iterative characteristic and the substantial number
of parameters in diffusion models, DiffAttack has a limitation
in terms of time and memory consumption compared to other
attack methods. In Table VI, we display a comprehensive com-
parison of computational cost and runtime among DiffAttack,
pixel-based attacks, and GAN-based attacks.

The comparison is to process a 224⇥224 image on a
single RTX 3090 GPU. The results reveal that DiffAttack
consumes greater memory and generally takes longer to
generate adversarial examples. This could hinder its deployment
in resource-constrained settings, such as autonomous driving
and edge models, or for targeting real-time systems.

Notably, this is a common drawback shared by all approaches
relying on diffusion models. However, we hope to note that
due to the popularity of diffusion models these years, famous
communities such as PyTorch and Huggingface keep advancing
the efficiency and memory optimization of diffusion models
(like Pytorch 2.0 and Diffusers repository). Many recent works
[8], [9] have also been dedicated to accelerating diffusion
models and addressing memory costs. We firmly believe that
these efforts will help bridge the computational gap between
DiffAttack and other attack methods in the future, further
fostering research on diffusion-based attacks.

To better highlight this bottleneck and provide readers with
a clearer understanding of these constraints, as well as which
aspects can be improved in the future, we explored possible
strategies to speed up processing time. By testing on different
software and hardware environments, we found significant
improvements. The processing time of 29.9 seconds, shown in
Table VI, was measured using a 3090 GPU with Torch version
1.13. By upgrading to Torch version 2+ (tested on version
2.2), which includes optimizations for attention calculations
in diffusion models, the processing time was reduced to
approximately 24 seconds. This time can be further reduced
to less than 18 seconds when using the advanced 4090 GPU,
without any observed impact on the attack’s performance.

Another way to accelerate DiffAttack is by modifying the
internal optimization iterations. As mentioned in Section IV-A,
we use a default of 30 iterations for latent optimization. By
reducing this number to 25 or 20 iterations, we can achieve
faster processing speeds (from 29.9 seconds to approximately
24 and 20 seconds, respectively). Additionally, reducing the
number of DDIM inversion steps can speed up processing
(from 29.9 seconds to around 23 seconds) and lower memory
usage (from 14GB to approximately 12GB) when reducing
the steps from 5 to 4. However, these adjustments are double-
edged swords, as they can reduce the attack success rate (but

improve imperceptibility), as shown in Figure 7 in the main
paper. Therefore, when considering such optimizations, the
specific application scenarios should be carefully evaluated
to determine whether speed is more critical than the attack
success rate, unlike the more straightforward improvements
offered by software and hardware upgrades.

We also explored the use of mixed precision for potential
memory savings. However, due to the mechanism that stores
both weight tensors in FP32 and their variants cast to FP16,
and because DiffAttack processes a single sample at a time,
the mixed precision strategy did not yield significant benefits.
The memory consumed by the large weight tensors outweighed
the advantages gained from intermediate low-precision feature
maps.

APPENDIX H
MORE QUANTITIVE STUDIES AND VISUALIZATIONS

As a supplement to the experiments in Section IV in the main
paper, we here display more visual comparisons in Figure 2
and Figure 3, from which it can be observed that the adversarial
examples crafted by our attack are human-imperceptible and
hard to be perceived.
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Clean DI-FGSM TI-FGSM PI-FGSM NCFS2I-FGSM OursReColorAdv cAdv

Fig. 2. Supplement visualization of adversarial examples crafted by different attacks. Please zoom in for a better view.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, AUGUST XXXX 7
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Fig. 3. Supplement visualization of adversarial examples crafted by different attacks. Please zoom in for a better view.
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