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Abstract—Despite the success of deep learning-based change
detection methods, their existing insufficiency in temporal (chan-
nel, spatial) and multi-scale alignment have rendered them
insufficient capability in mitigating external factors (illumination
changes and perspective differences, etc.) arising from different
imaging conditions during change detection. In this paper, a Bi-
temporal Feature Alignment (BiFA) model is proposed to produce
a precise change detection map in a lightweight manner by reduc-
ing the impact of irrelevant factors. Specifically, for the temporal
alignment, the Bi-temporal Interaction (BI) module is proposed to
realize the alignment of the bi-temporal image channel level. Our
intuition is introducing the bi-temporal interaction in the feature
extraction stage may benefit suppressing the interference, such
as illumination changes. Simultaneously, the Alignment module
based on Differential Flow Field (ADFF) is proposed to explicitly
estimate the offset of the bi-temporal image and realize their
spatial level alignment to mitigate the inadequate registration
resulting from different perspectives. Furthermore, for the multi-
scale alignment, we introduce the Implicit Neural alignment De-
coder (IND) to produce more refined prediction maps achieving
precise alignment of multi-scale features by learning continuous
image representations in coordinate space. Our BiFA outperforms
other state-of-the-art methods on six datasets (such as the F1/IoU
scores are improved by 2.70%/3.91%, 2.01%/2.94% on LEVIR+-
CD and SYSU-CD, respectively) and displays greater robustness
in cross-resolutions change detection. Our code is available at
https://github.com/zmoka-zht/BiFA.

Index Terms—Change detection (CD), high-resolution optical
remote sensing image, feature alignment, bi-temporal interaction,
flow field, implicit neural representation.

I. INTRODUCTION

CHANGE detection (CD) is designed to monitor changes
occurring in the same region at different times. With the

increasing accessibility of remote sensing data, many multi-
temporal high-resolution remote sensing images are used for
urban expansion surveys [1–4], land management [5–7], and
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damage assessment [8], as comprehensively summarized in
[9]. However, acquiring multi-temporal images may result in
irrelevant interference due to variations in imaging conditions,
which manifest as color differences arising from disparities in
illumination intensity or building renovation and inadequate
registration caused by variations in imaging perspectives.
Consequently, effectively utilizing these images to accurately
detect change regions becomes challenging.

Till now, the investigation of conventional change de-
tection techniques, including algebra-based, transformation-
based, and classification-based methods, has been extensive.
The algebra-based methods utilize arithmetic operations, such
as image rationing [10], image differencing [11], and im-
age regression [12], and image adaptive region measuring
[13, 14], to generate a change map by directly comparing
the pixel values of bi-temporal images. The transformation-
based approaches, such as principal component analysis (PCA)
[15], tasselled cap transformation [16], and change vector
analysis [17], employ feature space mapping to distinguish
change information. The classification-based methods, such as
k-nearest neighbors [18] and support vector machines [19],
distinguish changing pixels by spatiotemporal or differential
features. Nonetheless, these techniques are heavily dependent
on empirical design. They are susceptible to noise interfer-
ence, particularly for high-resolution remote sensing images
with intricate texture features and fine image details.

With the continuous development of deep learning-based
methods in computer vision, remote sensing communities
have noticed the significant feature extraction capability of
convolutional neural networks (CNN), such as FCN [20] and
U-Net [21], and effectively applied them to CD tasks. Peng
et al. [22] proposed a U-Net++ network based on multilateral
branch fusion. Fang et al. [23] combined the Siamese network
and NestedUNet to build SNUNet. Daudt et al. [24] proposed
three kinds of fully convolutional networks established on U-
Net, the image-level-based FC-Siam-Conc and the feature-
level-based FC-EF, FC-Siam-Diff. While the feature-level-
based technique utilizes two weighted shared networks to
learn single-temporal features individually, image-level-based
networks input bi-temporal images as an entire set. Subse-
quently, the majority of techniques have adhered to these two
approaches for extracting bi-temporal image features [25–30].
Recently, some researchers have introduced specific attention
mechanisms to obtain more discriminative differential fea-
tures. For example, spatial attention [31, 32], self-attention
[29, 33, 34], and cross-attention [27, 28, 30], are utilized
for spatial alignment between bi-temporal features. In [30], a
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CD network is proposed for intra-scale interaction and inter-
scale feature fusion. Chen et al. [34] propose the bi-temporal
image transformer module (BIT) to realize spatial-temporal
alignment through the Transformer encoder and Transformer
decoder. In addition, many recent CD models employ bilinear
interpolation or deconvolution methods to attain multi-scale
feature alignment and aggregate high-level semantic and low-
level detail information (such as low-resolution depth features
and high-resolution shallow features) to achieve precise detec-
tion [28, 30].

Despite the aforementioned methods have achieved promis-
ing performance, they still exhibit certain limitations in tempo-
ral (channel, spatial) and multi-scale alignment. For the tem-
poral alignment, firstly, the aforementioned methods exhibit
a deficiency in realizing bi-temporal interaction during the
feature extraction stage. Specifically, in the feature extraction
stage, image-level methods are deficient in fully leveraging
the distinctive attributes of the change detection task and in
profound feature interaction (e.g., by solely concatenating
images). On the other hand, the methods at the feature level ab-
sent bi-temporal feature interaction (bi-temporal image feature
extraction and bi-temporal feature interaction are separated).
Consequently, these methods may be difficult to suppress
the interference of unrelated factors such as illuminative and
seasonal variation. Secondly, the majority of previous models
utilized attention-based approaches (such as spatial attention,
self-attention, etc.) to achieve spatial alignment without a dedi-
cated emphasis on predicting pixel-level offsets. Consequently,
these methods failed to explicitly represent the precise pixel
offset. This limitation poses a challenge in addressing the issue
of insufficient registration resulting from variations in perspec-
tive. For the multi-scale alignment, the off-the-shelf methods
usually utilize bilinear interpolation or deconvolution to align
feature maps of different scales. However, the utilization of
bilinear interpolation may result in a loss of precision in the
contextual information, while the implementation of decon-
volution introduces additional parameters, thereby raising a
challenge to the attainment of precise alignment of multi-scale
features in a lightweight manner.

In response to the limitations of the aforementioned meth-
ods, we present the BiFA that addresses the inadequacy
of bi-temporal feature alignment by incorporating temporal
alignment (channel, spatial), and multi-scale alignment. The
network comprises three critical modules, namely the bi-
temporal interaction (BI) module, the alignment module based
on differential flow field (ADFF), and the implicit neural
alignment decoder (IND). For temporal alignment, the BI
module has been developed to address requiring deep bi-
temporal feature interaction during the feature extraction stage.
The incorporation of feature interaction into the backbone
network facilitates the achievement of channel alignment for
bi-temporal image features. In our intuition, with the guidance
of another temporal feature, it can suppress the interfer-
ence of unrelated factors, such as illuminative and seasonal
changes, and extract more robust features. The ADFF module
is employed to address the issue of inadequate registration
that arises due to divergent perspectives and explicitly esti-
mates pixel-level offset between bi-temporal images to achieve

spatial alignment of bi-temporal images, thereby mitigating
erroneous detections due to offset. For multi-scale alignment,
the IND, which aims to acquire a continuous representation
of images within the coordinate space, is utilized to solve
the problem of multi-scale feature alignment and achieve
the precise alignment between multi-scale features through a
lightweight approach for facilitating the performance of CD.

The contribution of our work can be summarized as follows:
• A novel CD method BiFA is proposed, which realizes

bi-temporal feature alignment at the temporal (channel,
spatial), and multi-scale levels, respectively, to identify
the changes of interest and exclude extraneous changes
achieving more accurate detection.

• For temporal alignment, we propose the BI module and
ADFF, the former is utilized to perform deep interaction
of bi-temporal features (channel alignment) to suppress
interference of irrelevant factors, and the latter is em-
ployed to explicitly estimate pixel-level offset between
bi-temporal images (spatial alignment) to alleviate the
problem of insufficient registration caused by the different
perspectives.

• For multi-scale alignment, we incorporate the implicit
neural representation learning method into the CD task.
By acquiring the continuous representation of images
within the coordinate space, it realizes the accurate align-
ment of multi-level bi-temporal differential feature maps
in a lightweight manner.

• Qualitative and quantitative studies on six datasets show
that our proposed BiFA outperforms state-of-the-art
methods. Further, our experiments show that BiFA has
advantages over other methods in cross-resolution CD
tasks.

The rest of this paper is organized as follows. Section II
describes the related work. Section III gives the details of our
proposed method. Some experimental results are reported in
section IV. And the conclusion is made in Section V.

II. RELATED WORK

A. Deep Learning based Remote Sensing Image Change De-
tection

According to the characteristics of bi-temporal input in CD
tasks, the existing deep learning methods can be roughly di-
vided into image-level and feature-level categories. The image-
level method directly concatenates the bi-temporal images in
the channel dimension, which are sent into a single segmen-
tation network for detection [22–24, 26, 35–38]. Alcantarilla
et al. [38] first concatenate bi-temporal street view images
with three channels into one image with six channels. Then,
the six-channel image is input into FCN to realize street
view image change detection. Peng et al. [22] utilize the
same concatenation method to obtain a binary change map
by the U-net++ network with multi-side branch fusion. Fang
et al. [23], based on previous work, employ dense connections
between encoders and decoders to supplement the middle
layer information while adding channel attention to enhance
distinguishable features. Jiang et al. [37] propose a weighted
rich-scale inception coder network that dynamically assigns
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Fig. 1. The architecture of the proposed BiFA. The bi-temporal images T1 and T2 are initially fed to Temporal Alignment (TA) Bolcks, which mainly
comprise the Bi-temporal Interaction (BI) module and the alignment module based on differential flow field (ADFF), to realize the channel-level and spatial-
level alignment and produce multi-stage differential features. Subsequently, the multi-stage differential features are sent to the implicit neural alignment decoder
(IND) and aligned in a lightweight manner by learning the continuous representation of the images in the coordinate space to generate accurate prediction
maps. The red point refers to a query coordinate, and the green point is the nearest coordinate from the query coordinate on the feature.

appropriate weights to features of different scales to achieve
accurate detection.

The feature-level approach utilizes a pair of weight-shared
networks to acquire single-temporal features independently
[1, 24, 27, 28, 30, 33, 34, 39–42]. Zhan et al. [39] use the
Siamese network combining measurement learning strategies
to update the initial results of threshold segmentation through
the k-nearest neighbor method. Daudt et al. [24] propose the
U-Net based fully convolutional networks for CD. On the basis
of the work [24], Guo et al. [43] improve the performance by
combining the fully convolutional Siamese network with con-
trast loss. Shi et al. [40] impose constraints on the differential
features of the output at each stage of the encoder to produce
a finer representation. Li et al. [33] propose the dense skip
connection module to realize multi-level feature aggregation
between encoders and decoders. Some methods introduce
the Transformer module, which exhibits solid aptitude in
modeling global relationships, to address the limited capacity
of CNN models to capture long-term dependencies. Zhang et
al. [44] employ many Swin-Transformer blocks to construct
a pure Transformer Siamese CD network. Feng et al. [30]
have presented a novel approach for feature fusion in intra-
scale and inter-scale, utilizing the Transformer module. The
methodology employs two weight-shared backbones to extract
distinct features from two images. Subsequently, it facilitates
information aggregation between different backbone features
and scale features based on single temporal features. Chen

et al. [34] propose a bi-temporal image transformer (BIT)
composed of one Transformer encoder and two Transformer
decoders to capture temporal and spatial context.

However, the aforementioned model exhibits a deficiency
in bi-temporal feature interaction during feature extraction.
This limitation may result in the model having difficulty
suppressing the interference from irrelevant factors such as
illuminative and seasonal change and ignoring the critical
change information. The objective of this study is to improve
the capacity of feature resistance against interference by in-
corporating feature information from the other phase during
the feature extraction stage. To achieve this, a bi-temporal
interaction (BI) module is proposed.

B. Optical Flow
Optical Flow is widely used in video processing tasks [45]

to represent the pattern of apparent motion of objects, surfaces,
and edges in a visual scene caused by relative motion. Gadde
et al. [46] realize video semantic segmentation by warping the
internal features of the network. Nilsson et al. [47] wrap the
features of adjacent frames along the optical flow to predict
the final segmentation map. Simonyan et al. [48] employ
continuous multi-frame optical flow stacking for video action
recognition. Furthermore, the idea of optical flow has also
been incorporated into the image semantic segmentation task.
Li et al. [49] propose the concept of semantic flow to align
feature maps of different levels. In [50], the flow field is
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learned to warp image features and enhance the consistency
of object features. Very recently, the optical flow has been
applied in remote sensing CD task [29, 51]. For instance, Liu
et al. [29] introduce it to develop a prior feature extraction
module utilizing the flow field. The module is applied to the
single-temporal image during feature extraction to enhance the
structure prior.

Different from existing methods that only enhancement
of individual temporal features by optical flow, we believe
that pixel-level registration of bi-temporal images can be
represented by the “motion” of each pixel from one phase to
another. We call the field describing this motion the differential
flow field. Then, an alignment module based on the differential
flow field (ADFF) is proposed to explicitly estimate the
pixel-level offset between bi-temporal images to alleviate the
problem of insufficient registration caused by the difference in
perspective.

C. Implicit Neural Representation

In recent 3D reconstruction methods, shapes, scenes, and
objects can be represented by a multi-layer perception (MLP)
that maps coordinate to signals, known as implicit neural rep-
resentation [52–55]. It is essentially a continuously differen-
tiable function that maps the properties of spatial points (e.g.,
amplitude, color, depth) to functions of related coordinates. For
example, DeepSDF [52] learns a group of continuous signed
distance functions for shape representation. NeRF [53] learns
the implicit representation of complex scenes to achieve view
synthesis.

Due to the notable advancements of implicit neural rep-
resentation in 3D tasks, many researchers have incorporated
this technique into 2D tasks [56–61]. Inspired by the implicit
neural representation, LIIF [56] designs a local implicit image
function to achieve continuous image superresolution, which
takes coordinates and nearby feature representations as inputs,
and outputs RGB values of corresponding positions. Chen et
al. [60] improve on this basis and propose a dual path decoder
based on the implicit function, which generates high-resolution
images by parsing coordinates of global and local levels to
achieve image super-resolution. IFA [57] proposes an implicit
feature alignment function and applies it to the alignment
of multilevel feature maps. Implicit PointRend [58] focuses
on instance segmentation with point supervision, where the
implicit function generates different parameters of the point
head for each object. Qi et al. [61] utilize implicit functions to
construct implicit 3D scene representation and realize semantic
segmentation from new views.

In contrast to the literature above, our study incorporates
implicit neural representation into the remote sensing CD
task. The attainment of precise multi-level differential feature
map alignment in a lightweight manner is made possible by
acquiring a continuous representation of images in coordinate
space.
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Fig. 2. Illustration of our Bi-temporal Interaction module (BI). T&R means
transpose and reshape operations. F1 and F2 represent bi-temporal features,
respectively.

III. BITEMPORAL FEATURE ALIGNMENT CHANGE
DETECTION MODEL

A. Overview

The architecture of the proposed BiFA is shown in Fig. 1,
which is mainly composed of the bi-temporal interaction (BI)
module, the alignment module based on differential flow field
(ADFF), and the implicit neural alignment decoder (IND).
Given the bi-temporal remote sensing images T1 and T2,
firstly, the multi-stage image feature

�
Ii1
 4

i=1
and

�
Ii2
 4

i=1
are extracted by the Temporal Alignment (TA) Blocks. It is
noteworthy that instead of using the original transformer-based
method [62], we added the BI module into Self-attention
and FFN. The bi-temporal features are sent to BI, and the
alignment of the bi-temporal feature channel level is achieved
by utilizing the guidance of the features from another phase
to counteract the impact of unrelated factors. Subsequently,�
Fi

1

 4

i=1
and

�
Fi

2

 4

i=1
, which are at channel-level alignment,

are transmitted to the ADFF. And the spatial alignment of bi-
temporal features is achieved by predicting the differential flow
field between

�
Fi

1

 4

i=1
and

�
Fi

2

 4

i=1
. Then, the bi-temporal

differential features of various stages {di↵}4i=1 are obtained
utilizing absolute subtraction. Finally, IND is employed to con-
vert the differential features of various stages into continuous
feature maps, thereby enabling the lightweight alignment of
the differential features of these stages and facilitating the
production of the precise prediction map.

B. Bi-temporal Interaction Module

Due to the different imaging periods of multi-temporal
images, it is easy to interfere with irrelevant factors such as
illuminative and seasonal changes. By aligning bi-temporal
features at the channel level, guided by the feature of another
phase in the feature extraction stage, we believe the impacts
above can be effectively mitigated. Therefore, the bi-temporal
interaction (BI) module is being proposed.
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Take F2 guiding F1 as an example (for convenience, stage
labeling is omitted), as shown in Fig. 2, given the bi-temporal
features F1 2 RL⇥C and F2 2 RL⇥C , where L = H⇥W rep-
resents the sequence length. In contrast to the previous spatial
alignment method using self-attention and cross-attention, our
approach is to achieve alignment of the bi-temporal feature at
the channel level. Therefore, F1 and F2 are linearly mapped
to different sub-spaces. Subsequently, they are transposed and
reshaped to obtain the query vectors Q 2 RNh⇥Cc⇥L, key
vectors K 2 RNh⇥Cc⇥L and value vectors V 2 RNh⇥Cc⇥L.
Nh represents the number of heads, and Cc is the channel
dimension of each head. Q and K calculate the correlation
scores between channels by scaled dot-product attention to
generate attention map. Then the attention map and V are
aggregated by matrix multiplication to obtain the feature
Falign, which means the bi-temporal image aligned in the
channel dimension. The calculation process is as follows:

Q = Transpose(Reshape(F1W
q)) (1)

K = Transpose(Reshape(F2W
k)) (2)

V = Transpose(Reshape(F2W
v)) (3)

Falign = Concat(head1, .., headh)W
O,

where headj = �

✓
QKT

p
Cc

◆
V

(4)

where Wq,Wk,Wv 2 RC⇥C are the learnable parameters
of three linear projection layers and C is the channel dimen-
sion. WO 2 RNhCc⇥C are the linear projection matrices. �
indicates the softmax operation.

Finally, Falign is restored to the size of L ⇥ C by trans-
posing, reshaping, and linear transformation, then it is added
to F1 by residual connection to carry out the next feature
extraction stage.

C. Alignment Module based on Differential Flow Field
Inspired by the optical flow, we describe the field that

illustrates the spatial offset between the bi-temporal features as
the differential flow field. To address the issue of inadequate
registration resulting from varying imaging perspectives, we
introduce the alignment module based on the differential flow
field, which facilitates the explicit acquisition of pixel-level
offset between bi-temporal images, as shown in Fig. 3.

Taking the first stage as an example, after obtaining the bi-
temporal features F1 and F2 (to simplify stage annotation),

they are sent into the FlowMix module composed of three
layers of convolution and GeLU to enhance the representation
ability of features. Then, the enhanced features are joined to-
gether and sent into a sub-network composed of a convolution
layer to generate the differential flow field �f 2 R2⇥H⇥W .
The process can be expressed as follows:

F
0

1 = FlowMix(F1) (5)

F
0

2 = FlowMix(F2) (6)

�f = Conv(C(F
0

1,F
0

2)) (7)

where C( · , · ) represents the concatenation operation and
Conv is a convolution layer with the kernel size of 3. �f
stores the offset of each position in the T1 phase (p1) on
the standard spatial grid. Then p1 is added to �f to get the
coordinates of the wrapped point p̂, and the missing points
due to the position offset are completed by a differentiable
bilinear sampling mechanism [63] to obtain the wrapped
feature F

0

warp, which enables explicit alignment at the pixel
level. Finally, F

0

warp and F
0

2 are absolute subtracted to obtain
the bi-temporal differential feature Fdiff .

F
0

warp(pw) =
X

p2N(p̂)

wpF
0

1(p) (8)

Fdiff = S(F
0

warp,F
0

2) (9)

where pw represents the position of the point in F
0

warp, N(p̂)
means the four neighborhood position of p̂ (top left, bottom
left, top right, bottom right), wp is bilinear kernel weights
on warped spatial gird, and S( · , · ) represents the absolute
subtracted.

D. Implicit Neural Alignment Decoder

In the task of CD, it is essential to integrate high-level se-
mantic information and low-level detail features. Hence, most
CD models employ bilinear upsampling or deconvolution to
integrate feature maps with different resolutions into the same
resolution to achieve multi-scale feature alignment. However,
the utilization of bilinear upsampling may blur the precise
information learned from feature maps, and deconvolution
incurs additional computational expenses. Therefore, we in-
troduce the implicit neural alignment decoder to realize the
accurate alignment of multi-level differential feature maps in
a lightweight way by learning the continuous representation
of images in coordinate space.

Implicit neural representation defines a decoding function
f✓ (typically an MLP) over a discrete feature map to get the
continuous feature map S. Taking a single feature map as an
example, in the discrete feature mapping stage, each feature
vector is regarded as an implicit code evenly distributed in 2D
spaces, and a spatial coordinate is assigned to each vector. The
feature of S at xi is defined as:

S(xi) = f✓(z
⇤, xi � x⇤) (10)

where z⇤ means the nearest implicit code to xi, x⇤ is the
coordinate value of implicitly code z⇤. In addition, to further
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improve the learning ability of the decoding function, learn-
able position coding is introduced [57]. Therefore, the final
definition of the implicit neural representation is:

S(xi) = f✓(z
⇤,�(xi � x⇤), xi � x⇤) (11)

where �(xi � x⇤) represents the positional coding of the
relative coordinates. To achieve the alignment of multilevel
differential feature maps, a continuous map S is defined on
multilevel discrete differential features with different resolu-
tions. In particular, the value of S at xi is defined as:

S(xi) = f✓({z⇤l }
4
l=1 , {�(�xl)}4l=1 , {�xl}4l=1) (12)

where l represents different levels, z⇤l means the nearest
implicit code of the L layer to xi, �xl indicates relative
position coordinates xi � x⇤

l , x⇤
l is the coordinates of z⇤l .

As shown in Fig.1, for a query coordinate (red point), we
obtain from each layer the nearest hidden code z⇤l (green
point), relative coordinate �xl, and the positional coding [57]
of the relative coordinates �(�xl). Then, they are joined
and input into the decoding function f✓, composed of three
layers of MLP. The f✓ decodes the features of each stage
and concurrently models the interconnections between various
stages. In this way, multilevel differential maps can be aligned
in a lightweight way to obtain high-quality prediction maps.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data description
Extensive experiments are conducted on six representative

CD datasets to verify the practical performance of the pro-
posed BiFA.

Wuhan University (WHU-CD) [64] is a building change
detection dataset containing a pair of aerial images with a
space size of 32507 ⇥ 15354 and the resolution of 0.2m/pixel.
Since no segmentation strategy is provided in [64], we cut the
image into a 256 ⇥ 256 size patch and randomly divided them
into 6096/762/762 for training/validation/testing.

Learning, VIsion, and Remote sensing (LEVIR-CD) [1]
and its recent extended version LEVIR+-CD are publicly
available datasets for buildings CD, containing 637 and 985
pairs of 1024 ⇥ 1024 remote sensing images with a 0.5m/pixel
resolution, respectively. Due to the limitation of GPU ca-
pacity, we divided the image into 256 ⇥ 256 patches in
a non-overlapping manner. Specifically, LEVIR-CD utilizes
7120/1024/2048 patches for training/validation/testing, and
LEVIR+-CD uses 10192/5568 patches for training/testing,
respectively.

Sun Yat-sen University Dataset (SYSU-CD) [40] is a
large dataset developed recently, including 20000 pairs of
images with a 0.5m/pixel resolution and a size of 256 ⇥
256. There are 8000/4000/8000 pairs of samples for train-
ing/validation/testing. Notably, the SYSU-CD dataset covers
buildings and many other types of targets, such as ships, roads,
and vegetation, which is a challenge for CD tasks.

Deeply supervised image fusion network (DSIFN-CD) [25]
is a publicly binary CD dataset. It includes six pairs of
2m/pixel resolution images of six major cities in China. The
dataset contains changes in various land cover objects, such

as buildings, roads, farmland, etc. According to the method
in [25], we cut the image into 512 ⇥ 512, with 3600/340/48
pairs of samples for training/validation/testing.

Cropland Change Detection dataset (CLCD) [65] consists
of 600 pairs of farmland transformation samples with a size
of 512 ⇥ 512 and a resolution of 0.5m/pixel-2m/pixel, in-
cluding buildings, roads, lakes, and bare land. According to
the method [65], we divided 320/120/120 pairs of samples for
training/validation/testing.

B. Experimental setup

1) Architecture details: In the temporal alignment stage,
we followed the setting of Segformer-B0 [62]. The four stages
were downsampled to 1/4, 1/8, 1/16, and 1/32 of the original
image size. The number of blocks in each stage Ni is set to
2, and the number of channels Ci is 32, 64, 160, and 256.
The number of channels in the FlowMix middle layer is 4 ⇥
Ci. Before sending the multilevel differential features into the
IND, the differential features at each stage are unified into 256
dimensions. The dimensions of the three layers in MLP that
make up IND are set to 512, 256, and 256.

2) Training details: The proposed BiFA model is imple-
mented based on the Pytorch framework and runs on an
NVIDIA RTX 3090ti. For optimization, we use the Adam
optimizer with an initial learning rate of 1e-4, �1 and �2 are
0.9, 0.999, respectively. The mini-batch size is set to 8. The
total training epochs are 200. The loss function is an addition
of the cross-entropy loss and the dice loss [66].

Ltotal = �1Lce + �2Ldice (13)

Lce = � 1

N

NX

i=1

yilog(ŷi) (14)

Ldice = 1�
2
PN

i=1 yiŷiPN
i=1 yi +

PN
i=1 ŷi

(15)

where �1 and �2 denote the coefficients of loss function, yi is
the ground truth in the ith pixel, ŷi represents the probability
in the ith pixel. N indicates the number of pixels.

3) Evaluation metrics: For the performance measurement
of similarity between the predictions and the ground truth,
we introduce seven metrics, including Precision (Pre.), Recall
(Rec.), F1-score (F1), Intersection over Union (IoU), overall
accuracy (OA), false alarm (FA) and Kappa. The metrics can
be individually defined as follows.

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1 =
2

Recall�1 + Precision�1
(18)

IoU =
TP

TP + FP + FN
(19)

OA =
TP + TN

TP + TN + FP + FN
(20)
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FA =
FP

TN + FP
(21)

Kappa =
OA� P

1� P
(22)

P =
(TP + FP )(TP + FN) + (TN + FN)(TP + TN)

(TP + FP + TN + FN)2
(23)

where TP, TN, FP, and FN represent the number of true
positives, true negatives, false positives, and false negatives,
respectively. P in Kappa denotes the hypothetical probability
of the chance agreement between reference and prediction.
It is worth noting that F1 and IoU can better reflect the
generalization ability of the model.

C. Performance comparison
To verify the validity of BiFA in the remote sensing CD

task, in this section, several state-of-the-art models are chosen
as the competitors, including three methods based on pure
convolution (FC-EF [24], FC-Siam-Diff [24], FC-Siam-Conc
[24]), two attention-based methods (IFNet [25] and SNUNet
[23]), two methods based on pure Transformer (SwinUnet
[44], Changeformer [67]), and some approaches combining
CNN and Transformer simultaneously (BIT [34], MSCANet
[65], Paformer [29], DARNet [33], ACABFNet [27], and
DMINet [28]).

1) FC-EF [24]: is a CD model based on the U-net [21],
which takes the concatenation of bi-temporal images
along the channel dimension as the input to the model.

2) FC-Siam-Diff [24]: is a variant of FC-EF that employs a
weight-shared Siamese architecture to extract multi-level
features, facilitating the fusion of bi-temporal information
through feature subtraction.

3) FC-Siam-Conc [24]: represents a variant of FC-EF, which
utilizes a weight-shared Siamese architecture to acquire
multi-level features and integrate bi-temporal information
through feature concatenation.

4) IFNet [25]: utilizes a weight-shared VGG-16 [68] to
extract multi-level features, integrating bi-temporal infor-
mation through a concatenation approach. Additionally,
spatial attention and channel attention are applied at each
stage of the decoder. Furthermore, deep supervision, such
as calculating supervised loss for each decoder level, is
employed to enhance the training of intermediate layers.

5) SNUNet [23]: employs a weight-shared NestedUNet [69]
to extract multi-level features, with channel attention
applied to features at various levels of the decoding stage.
Furthermore, deep supervision is also utilized to enhance
the training of intermediate layers.

6) SwinUnet [44]: uses a weight-shared SwinTransformer
[70] for the extraction of multi-level features, whereby
the features from the final layer are merged through
concatenation to integrate bi-temporal information before
being fed into the decoder. Simultaneously, an Unet-
like connection is established, facilitating the fusion of
the extracted multi-level features with those at the cor-
responding decoder layer through concatenation, further
enhanced through channel attention mechanisms.

7) Changeformer [67]: utilizes the weight-shared Segformer-
B1 to extract multi-level features. For each level, the
features undergo differencing and convolution operations
to facilitate bi-temporal feature fusion. Subsequently, the
differential features from various levels are concatenated
and input into a decoder comprised of fully connected
layers to achieve change detection.

8) BIT [34]: employs weight-shared ResNet18 to extract bi-
temporal features and uses the Semantic Tokenizer to
condense them into a reduced set of semantic tokens.
Subsequently, different tokens are concatenated and in-
put into a native Transformer Encoder/Decoder to learn
spatial-temporal relationships.

9) MSCANet [65]: utilizes weight-shared ResNet18 for
multi-level feature extraction. It integrates spatial atten-
tion and Transformer to establish multi-level spatial-
temporal relationships, with inter-level information fusion
achieved through concatenation. Finally, three decoders
are employed to process different-level features construct-
ing a multi-scale supervision framework.

10) Paformer [29]: employs weight-shared ResNet18 to ex-
tract bi-temporal shallow features and deep semantic
features. The bi-temporal shallow features are separately
fed into a prior interpreter composed of a flow field
to enhance the structural priors of a specific temporal,
followed by fusion through addition. Subsequently, the
fused shallow features and fused deep features by ad-
dition are jointly input into a Transformer Decoder for
change detection with structural prior awareness.

11) DARNet [33]: uses weight-shared convolutional networks
to extract multi-level features. Features from different
levels are utilized in conjunction with Transformers and
channel attention mechanisms to learn spatial-temporal
correlations. Additionally, features from different levels
undergo dense fusion with each other. Ultimately, de-
tection results are obtained through the deep supervision
approach.

12) ACABFNet [27]: employs different branches (ResNet34
and Transformer) for the extraction of multi-level fea-
tures. Simultaneously, axial attention is employed to fuse
the height (H) or width (W) dimensions of features with
the channel (C) dimension, enabling efficient learning of
spatial-temporal relationships in bi-temporal features.

13) DMINet [28]: utilizes weight-shared ResNet18 to extract
multi-level features. Subsequently, these features are con-
catenated along the channel dimension and fed into a
Transformer, utilizing shared queries, to learn multi-level
spatial-temporal relationships. Finally, different-level fea-
ture decoders are utilized to construct the multi-level
supervision mechanism.

14) Baseline: uses weight-shared Segformer-B0 to extract
multi-level features. Then, these features are processed
by absolute subtraction to generate multi-level differential
features. Finally, the multi-level differential features are
unified through concatenation and fed into the decoder
composed of fully connected layers to achieve change
detection.
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TABLE I
COMPARISON RESULTS ON THE THREE CD TEST SETS. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN, BLUE. ALL RESULTS ARE

DESCRIBED IN PERCENTAGE (%).

Backbone WHU-CD LEVIR-CD LEVIR+-CD
Pre. / Rec. / F1 / IoU / OA Pre. / Rec. / F1 / IoU / OA Pre. / Rec. / F1 / IoU / OA

FC-EF18 [24] UNet 92.10 / 90.64 / 91.36 / 84.10 / 99.32 90.64 / 87.23 / 88.90 / 80.03 / 98.89 76.49 / 76.32 / 76.41 / 61.82 / 98.08
FC-Siam-Diff18 [24] UNet 87.39 / 92.36 / 89.81 / 81.50 / 99.16 90.81 / 88.59 / 89.69 / 81.31 / 98.96 80.88 / 77.65 / 79.23 / 65.61 / 98.34
FC-Siam-Conc18 [24] UNet 86.57 / 91.11 / 88.78 / 79.83 / 99.08 91.41 / 88.43 / 89.89 / 81.64 / 98.98 81.12 / 77.16 / 79.09 / 65.42 / 98.33

IFNet20 [25] VGG16 91.51 / 88.01 / 89.73 / 81.37 / 99.20 89.62 / 86.65 / 88.11 / 78.75 / 98.81 81.79 / 78.40 / 80.06 / 66.76 / 98.41
SNUNet21 [23] NestedUNet 84.70 / 89.73 / 87.14 / 77.22 / 98.95 89.73 / 87.47 / 88.59 / 79.51 / 98.85 78.90 / 78.23 / 78.56 / 64.70 / 98.26

SwinUnet22 [44] Swin-T 92.44 / 87.56 / 89.93 / 81.71 / 99.22 89.11 / 86.47 / 87.77 / 78.21 / 98.77 77.65 / 78.98 / 78.31 / 64.35 / 98.22
BIT22 [34] ResNet18 91.84 / 91.95 / 91.90 / 85.01 / 99.35 92.07 / 88.08 / 90.03 / 81.87 / 99.01 80.50 / 81.41 / 80.95 / 68.00 / 98.43

ChangeFormer22 [67] SegformerB1 93.73 / 87.11 / 90.30 / 82.32 / 99.26 90.68 / 87.04 / 88.83 / 79.90 / 98.88 77.32 / 77.75 / 77.54 / 63.31 / 98.16
MSCANet22 [65] ResNet18 93.47 / 89.16 / 91.27 / 83.94 / 99.32 90.02 / 88.71 / 89.36 / 80.77 / 98.92 76.92 / 83.69 / 80.16 / 66.89 / 98.31
Paformer22 [29] ResNet18 94.28 / 90.38 / 92.29 / 85.69 / 99.40 91.34 / 88.07 / 89.68 / 81.29 / 98.96 79.89 / 82.96 / 81.40 / 68.63 / 98.45
DARNet22 [33] - 91.99 / 91.17 / 91.58 / 84.46 / 99.33 92.19 / 88.99 / 90.56 / 82.76 / 99.05 77.84 / 78.42 / 78.13 / 64.11 / 98.21

ACABFNet23 [27] ResNet34 91.57 / 90.86 / 91.21 / 83.84 / 99.31 90.11 / 88.27 / 89.18 / 80.48 / 98.91 72.85 / 80.91 / 76.67 / 62.17 / 97.99
DMINet23 [28] ResNet18 94.89 / 92.02 / 93.43 / 87.68 / 99.48 92.16 / 88.83 / 90.46 / 82.59 / 99.04 81.61 / 80.91 / 81.26 / 68.44 / 98.48

Baseline SegformerB0 94.19 / 91.15 / 92.64 / 86.30 / 99.42 90.75 / 88.54 / 89.63 / 81.21 / 98.95 84.63 / 78.65 / 81.53 / 68.82 / 98.54
BiFA SegformerB0 95.15 / 93.60 / 94.37 / 89.34 / 99.56 91.52 / 89.86 / 90.69 / 82.96 / 99.06 83.85 / 84.06 / 83.96 / 72.35 / 98.69

TABLE II
COMPARISON RESULTS ON THE THREE CD TEST SETS. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN, BLUE. ALL RESULTS ARE

DESCRIBED IN PERCENTAGE (%).

Backbone SYSU-CD DSIFN-CD CLCD-CD
Pre. / Rec. / F1 / IoU / OA Pre. / Rec. / F1 / IoU / OA Pre. / Rec. / F1 / IoU / OA

FC-EF18 [24] UNet 78.94 / 78.58 / 78.76 / 64.96 / 90.01 63.84 / 68.83 / 66.24 / 49.52 / 88.34 65.83 / 66.50 / 66.16 / 49.43 / 94.93
FC-Siam-Diff18 [24] UNet 79.82 / 78.75 / 79.28 / 65.68 / 90.29 57.17 / 75.11 / 64.92 / 48.06 / 86.51 66.37 / 65.59 / 65.98 / 49.23 / 94.96
FC-Siam-Conc18 [24] UNet 80.15 / 77.39 / 78.75 / 64.95 / 90.15 52.07 / 76.14 / 61.85 / 44.77 / 84.38 71.30 / 62.45 / 66.58 / 49.91 / 95.33

IFNet20 [25] VGG16 85.46 / 75.60 / 80.23 / 66.98 / 91.21 62.40 / 73.90 / 67.67 / 51.13 / 88.26 59.08 / 66.39 / 62.52 / 45.48 / 94.08
SNUNet21 [23] NestedUNet 90.12 / 58.01 / 70.59 / 54.54 / 88.60 70.95 / 66.01 / 68.39 / 51.96 / 89.86 71.42 / 53.78 / 61.36 / 44.25 / 94.96

SwinUnet22 [44] Swin-T 82.31 / 73.73 / 77.78 / 63.64 / 90.07 63.47 / 66.92 / 65.15 / 48.31 / 88.10 70.66 / 59.19 / 64.42 / 47.52 / 95.13
BIT22 [34] ResNet18 76.88 / 80.68 / 78.73 / 64.93 / 89.72 63.14 / 68.27 / 65.61 / 48.81 / 88.11 72.47 / 66.93 / 69.59 / 53.36 / 95.64

ChangeFormer22[67] SegformerB1 77.29 / 78.75 / 78.01 / 63.95 / 89.53 71.08 / 64.01 / 67.36 / 50.78 / 89.69 72.37 / 63.12 / 67.43 / 50.87 / 95.46
MSCANet22 [65] ResNet18 81.75 / 74.41 / 77.91 / 63.81 / 90.04 55.93 / 76.42 / 64.59 / 47.70 / 86.07 67.09 / 67.91 / 67.50 / 50.94 / 95.13
Paformer22 [29] ResNet18 84.84 / 72.51 / 78.19 / 64.20 / 90.46 60.84 / 70.85 / 65.47 / 48.66 / 87.57 76.20 / 60.13 / 67.22 / 50.63 / 95.63
DARNet22 [33] - 83.33 / 78.72 / 80.96 / 68.01 / 91.27 67.53 / 70.23 / 68.85 / 52.50 / 89.44 68.73 / 62.75 / 65.60 / 48.81 / 95.10

ACABFNet23 [27] ResNet34 83.78 / 78.94 / 81.29 / 68.48 / 91.42 70.40 / 71.96 / 71.17 / 55.25 / 90.31 78.16 / 64.25 / 70.53 / 54.47 / 96.00
DMINet23 [28] ResNet18 84.99 / 79.41 / 82.11 / 69.65 / 91.84 60.17 / 78.51 / 68.13 / 51.66 / 87.79 73.24 / 70.11 / 71.64 / 55.81 / 95.87

Baseline SegformerB0 85.42 / 78.78 / 81.97 / 69.45 / 91.82 71.65 / 64.99 / 68.16 / 51.70 / 89.91 81.12 / 74.96 / 77.92 / 63.83 / 96.83
BiFA SegformerB0 86.98 / 81.44 / 84.12 / 72.59 / 92.75 73.99 / 68.87 / 71.34 / 55.45 / 90.80 84.02 / 74.98 / 79.23 / 65.61 / 97.08

For a fair comparison, all methods are trained under the
same conditions based on the officially published Pytorch
code.

1) Quantitative results: Numerically, Table I and Table II
show the overall performance of all methods on the WHU-
CD, LEVIR-CD, LEVIR+-CD, SYSU-CD, DSIFN-CD, and
CLCD-CD test sets. Bold numbers represent the best results.
Evidently, the BiFA exhibits superior performance in compari-
son to alternative methods. In contrast to the pure Transformer-
based methods, SwinUnet and Changeformer, BiFA demon-
strates substantial superiority outcomes across all six datasets.
Furthermore, the F1-score of BiFA surpassed the most recent
DMINet by varying percentages across different datasets.
Specifically, on the WHU-CD, LEVIR+-CD, SYSU-CD, and
DSIFN-CD datasets, the F1-score of BiFA exceeded that of
DMINet by 0.94%, 3.21%, 2.01%, and 2.7%, respectively.
Notably, on the CLCD-CD dataset, the F1-score of BiFA
even exceeded that of DMINet by 7.59%. While BiFA does
not exhibit a significant improvement over DMINet on the
LEVIR-CD dataset, it does attain satisfactory outcomes. The
results indicate that while BiFA’s Rec. metric on the DSIFN-

CD is lower than that of DMINet, the former outperforms
the latter in other metrics, suggesting its superior accuracy in
detecting changes in the area. Similarly, it is noteworthy that
on the SYSU-CD dataset, while the precision metric of BiFA is
comparatively lower than that of SNUNet, BiFA outperformed
SNUNet in other metrics. This suggests that BiFA is more
comprehensive in detecting changing regions. In summary, the
above quantitative analysis proves that BiFA implementing bi-
temporal feature alignment at the temporal (channel, spatial),
and multi-scale levels is essential for change detection tasks.

2) Qualitative results: To further illustrate the validity of
our proposed method, qualitative analyses are conducted on
WHU-CD, LEVIR-CD, LEVIR+-CD, SYSU-CD, DSIFN-CD,
and CLCD-CD test sets (Fig. 4-9), where distinct colors are
assigned to identify the correctness or incorrectness of the
detection, including TP (white), TN (black), FP (red) and FN
(green).

Visualization on WHU-CD (Fig. 4): Several representative
samples are selected for visualization comparison, such as the
surface disturbance caused by the cement surface covering in
Fig. 4(a), the densely distributed small buildings in Fig. 4(b),
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the offset of buildings affected by the different perspectives
in Fig. 4(c) and the intense illumination variation in Fig.
4(d). And the superiority of our BiFA over other competitors
is evident from the data presented in Fig. 4(a). While the
ACABFNet exhibits a satisfactory detection effect, it reveals
more conspicuous omissions compared with our method. The
results obtained from Fig. 4(b) demonstrate that our BiFA can
detect changes in scenes with complex structures, as evidenced
by the reduced occurrence of omission faults and commission
errors. Moreover, comparing the false identifications of each
model in Fig. 4(c) and (d), our BiFA attains a surprisingly
precise discriminability despite the interference of differences
in perspective and illumination. This verifies the advantage
of BiFA for bi-temporal feature alignment at the channel
and spatial levels. Shortly, the qualitative analysis results
are consistent with the quantitative analysis in Table I, and
the proposed BiFA achieves state-of-the-art performance on
WHU-CD.

Visualization on LEVIR-CD (Fig. 5): A similar scheme is
utilized to compare the LEVIR-CD, and several representative
examples are selected. Fig. 5(a) represents the changing scene
of large buildings, Fig. 5(b) represents the scene of dense small
buildings, and Fig. 5(c) and (d), respectively, represent the
influence of perspective difference and illumination intensity.
Fig. 5(a) shows that BiFA achieved far better results than other
methods in detecting large irregular buildings. Similarly, our
method achieves good results in the complex scene of dense
small buildings in Fig. 5(b). This is because the IND, which
learns the continuous representation of the image in coordinate
space, precisely aligns the multi-level differential features. By
looking at the results in Fig. 5(c), (d), it can be seen that
BiFA is more robust to perspective difference and illumination
distinctions.

Visualization on LEVIR+-CD (Fig. 6): In the LEVIR+-
CD, we also selected several representative samples. Fig. 6(a)
shows the changes in large buildings, Fig. 6(b) shows the scene
of dense small buildings, Fig. 6(c) and (d) respectively show
the difference in perspective and the influence of illumination.
As can be seen, our BiFA achieved better results in all cases,
especially in small buildings, where our approach has less
connectivity.

Visualization on SYSU-CD (Fig. 7): It is worth noting
that the above three datasets focus on building change. To
further verify the detection performance for various category
changes, we validated the BiFA on SYSU-CD, which has a
broader category. As can be seen, the BiFA has an outstanding
visualization effect. For example, in the large area of surface
vegetation change in Fig. 7(c), our method has almost achieved
the same visual effect as the ground truth. Regarding apparent
color difference interference (Fig. 7(d)), BiFA has far superior
performance compared with BIT, DMINet, and other methods.
This further demonstrates the robustness of BiFA against
independent interference.

Visualization on DSIFN-CD (Fig. 8): We also extend the
proposed BiFA to a broader range of change scenarios. Fig.
8(a), (b) represents the changes in large objects, and Fig.
8(c), (d) represents the changes in small objects. It is difficult
to distinguish different types of changes in these complex

TABLE III
COMPARISON RESULTS ON MODEL EFFICIENCY. WE REPORT THE NUMBER
OF PARAMETERS (PARAMS.), FLOATING-POINT OPERATIONS PER SECOND

(FLOPS), AND THE TRAINING TIME (TIME) FOR A SINGLE EPOCH ON
LEVIR+-CD. THE SIZE OF THE INPUT IMAGE TO THE MODEL IS

256⇥ 256⇥ 3 TO CALCULATE THE FLOPS.

Model Params. (M) FLOPs (G) Time (Min)

FC-EF18 1.35 3.57 1.61
FC-Siam-Diff18 1.34 4.72 1.50
FC-Siam-Conc18 1.54 5.33 1.77

IFNet20 50.71 41.1 5.02
SNUNet21 1.35 4.72 1.65

SwinUnet22 30.28 11.83 3.01
BIT22 3.04 8.75 2.8

Changeformer22 41.02 202.78 20.45
MSCANet22 16.42 14.80 6.28
Paformer22 16.13 10.85 2.12
DARNet22 15.09 64.48 12.53

ACABFNet23 102.32 28.28 5.12
DMINet23 6.24 14.55 3.53

BiFA 5.58 53.00 12.73

scenarios. Encouragingly, even though the results are limited
relative to other datasets, our BiFA has the best visuals on the
DSIFN-CD.

Visualization on CLCD-CD (Fig. 9): We have also extended
BiFA to the vast range of change scenarios CLCD-CD. As
shown in Fig. 9, BiFA can achieve good results in large-area
road changes (Fig. 9(a)) and rural road changes(Fig. 9(c)).
And, BiFA can well identify woodland changes even in the
presence of significant illumination differences (Fig. 9(d)).

3) Model efficiency: To further verify the efficiency of the
proposed model, the model parameters (Params.), floating-
point operations per second (FLOPs), and the training time
(Time) for a single epoch on LEVIR+-CD are presented in
Table III, where the input size is 256 ⇥ 256 ⇥ 3. Compared
to DARNet, our BiFA structure is lightweight and delicately
designed, which is superior to DARNet in terms of efficiency
and parameters. Compared with most other state-of-the-art
methods, BiFA has a small number of parameters. Notwith-
standing, since each decoding stage is queried on the entire
map (256 ⇥ 256), the computational demands are significant,
resulting in higher FLOPs and training time than alternative
approaches. This presents a space for potential improvement
in future research.

D. Ablation studies

To further verify the influence of each module on the
performance of CD, ablation experiments are conducted in
this section, as shown in Table IV-VII.

1) Effects of Different Components in BiFA: To verify the
validity of key modules in the proposed BiFA, eight ablation
experiments are designed, and the Segformer-B0 is selected
to build the baseline. The experimental results, as shown in
Table IV, whether each critical module is added separately or
in different combinations, the experimental results are superior
to the baseline. The F1/IoU on WHU-CD, LEVIR-CD, and
DSIFN-CD increased by 1.72%/3.04%, 1.06%/1.75%, and
3.18%/3.75%, respectively. These improvements indicate that
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(a)

(b)

(c)

(d)

T1 T2 GT SNUNet BIT MSCANet Paformer DARNet ACABFNet DMINet BiFA

Fig. 4. Visualization results of different methods on the WHU-CD test set. (a)-(d) are representative samples. White represents a true positive, black is a true
negative, red indicates a false positive, and green stands as a false negative.

(a)

(b)

(c)

(d)

T1 T2 GT SNUNet BIT MSCANet Paformer DARNet ACABFNet DMINet BiFA

Fig. 5. Visualization results of different methods on the LEVIR-CD test set. (a)-(d) are representative samples. White represents a true positive, black is a
true negative, red indicates a false positive, and green stands as a false negative.

(a)

(b)

(c)

(d)

T1 T2 GT SNUNet BIT MSCANet Paformer DARNet ACABFNet DMINet BiFA

Fig. 6. Visualization results of different methods on the LEVIR+-CD test set. (a)-(d) are representative samples. White represents a true positive, black is a
true negative, red indicates a false positive, and green stands as a false negative.
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(a)

(b)

(c)

(d)

T1 T2 GT SNUNet BIT MSCANet Paformer DARNet ACABFNet DMINet BiFA

Fig. 7. Visualization results of different methods on the SYSU-CD test set. (a)-(d) are representative samples. White represents a true positive, black is a
true negative, red indicates a false positive, and green stands as a false negative.

(a)

(b)

(c)

(d)

T1 T2 GT SNUNet BIT MSCANet Paformer DARNet ACABFNet DMINet BiFA

Fig. 8. Visualization results of different methods on the DSIFN-CD test set. (a)-(d) are representative samples. White represents a true positive, black is a
true negative, red indicates a false positive, and green stands as a false negative.

(a)

(b)

(c)

(d)

T1 T2 GT SNUNet BIT MSCANet Paformer DARNet ACABFNet DMINet BiFA

Fig. 9. Visualization results of different methods on the CLCD-CD test set. (a)-(d) are representative samples. White represents a true positive, black is a
true negative, red indicates a false positive, and green stands as a false negative.
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Fig. 10. Visualization results of the differential feature maps on the WHU-CD test set. W/O BI is the baseline model, and W/ BI represents the baseline
model adding BI. Red denotes higher attention values, and blue denotes lower values.

Fig. 11. Visualization results of position offset from T1 to T2 on the WHU-CD test set. S1, S2, and S3 represent different stages. Warp T1 indicates the
offset of the T1 image. The red arrow indicates the offset direction.

T1 T2 GTUpsample BiFADeconv

Fig. 12. Visualization results of prediction results. T1 and T2 mean bi-temporal images on the WHU-CD test set. Upsampel represents the method utilizing
bilinear interpolation. Deconv is deconvolution. BiFA is our method. GT means the ground truth. Red squares denote the challenging regions that can be
resolved by our proposed BiFA.



13

BiFA can reasonably apply to CD tasks by implementing bi-
temporal feature alignment at the temporal (channel, spatial),
and multi-scale levels.

2) Effects of different stages of BI: To further study the in-
fluence of BI at different stages, we conducted the experiment
as shown in Table V. BiFA w/o BI represents the BiFA model
without the BI, and S1-S4 represents the four feature extraction
stages. With the gradual addition of the BI in different stages,
the performance of the model (e.g., F1, IoU, and Kappa) gener-
ally increases. This indicates that the channel-level alignment
of the bi-temporal features at different stages can effectively
alleviate the interference caused by irrelevant factors such
as illumination. To provide a more intuitive explanation and
eliminate the interference of other modules, we visualized the
differential features between baseline (w/o BI) and baseline-
added BI (w BI) in the four stages on the test set of WHU-CD.
As shown in Fig. 10, adding BI modules at both shallow and
high levels obtains better visualization. Specifically, adding
BI to shallow layers (such as S1) produces fewer noise points
on the building and more apparent structural details. After BI
is added in the deep layers (such as S3 and S4), the model
pays more attention to changing regions, thus obtaining more
accurate prediction results.

3) Effects of different stages of ADFF: In addition, we also
studied the influence of ADFF at different stages, as shown in
Table VI. The BiFA w/o ADFF represents the BiFA without
the ADFF module, and S1-S4 represents the four stages. It
can be seen that the performance of the model (e.g., F1, IoU,
and Kappa) is gradually improved when ADFF is added in the
first three stages. However, when ADFF is added in the fourth
stage, the performance of the model will decline. This can be
interpreted as the abstract semantics of the feature map in the
fourth stage, which makes it difficult to learn effective position
offset information and affects the performance of the model.
In order to show the position offset intuitively, we visualized
the offset image on the test set of WHU-CD. As shown in Fig.
11, the red circle represents the unregistered phenomenon of
pixel level in the bi-temporal image, and the arrow in the red
circle means the direction of pixel offset in the T1 image,
and the length represents the offset. Obviously, the unaligned
region in T1 will shift toward T2 after being sent to the ADFF,
which is consistent with our expectations.

4) Effects of IND: We also compare IND with standard
upsampling methods, such as bilinear interpolation and de-
convolution. The Base indicates utilizing the head that is used
in Segformer-B0. Upsample and Deconv indicate utilizing
the same structure as IND, respectively, except that the up-
sampling method is replaced with bilinear interpolation and
deconvolution. Specifically, the Upsample approach unifies the
feature maps from the four stages into 256 dimensionalities,
subsequently transforming to the original image size by bilin-
ear interpolation. Ultimately, these resized feature maps are fed
into the decoder with the same structure as IND for predicting.
Similarly, the Deconv method replaces bilinear interpolation
with deconvolution whereby the deconvolution kernel/step size
is set as 6/4, 12/8, 24/16, and 48/32, respectively, to handle
feature maps across different stages. As shown in Table VII,
compared with Upsample, IND obtains better results with a

slight increase in the number of parameters (for example,
F1/IoU respectively increased by 0.43%/0.77% on the WHU-
CD). And there are varying degrees of improvement over
Deconv and Base. This implies that IND is a lighter and
more effective approach. We further provide comparisons of
visualization results on the test set of WHU-CD in Fig. 12.
The BiFA can produce more precise boundaries by effectively
aligning low-level and high-level feature maps. Particularly,
the FLOPs of BiFA increase significantly compared with the
Base, which we will improve in the future.

5) Effects of Position Encoding: Some experiments are
conducted to explore the influence of different position en-
codings on IND, as shown in Table VIII. When the BiFA
adds position encoding, F1/IoU indicators improve on both
datasets. In particular, adding learnable encoding receives the
most significant improvement, so we select learnable position
encoding in the BiFA.

E. Parameter Analysis
1) Number of Head: To investigate the impact of varying

the number of heads within the BI module on model perfor-
mance, we conducted experiments using different configura-
tions of the BiFA on the WHU-CD and LEVIR-CD datasets.
The experimental results are shown in Table IX. As the
number of heads gradually increases, the model’s performance
across both datasets exhibits an ascending trend, with optimal
results attained at the number of 8. This phenomenon stems
from different heads focusing on different aspects, thereby
endowing the model with a more comprehensive focus and
consequent performance enhancement. However, as the num-
ber of heads continues to mount, the performance tends to
decline, attributed to the exacerbation of information redun-
dancy resulting from excessive attentional different aspects.
Consequently, the number of heads in BI is set to 8.

2) Kernel Size: To explore the influence of varying convo-
lutional kernel sizes within the ADFF on model performance,
we conducted a series of experiments on both the WHU-CD
and LEVIR-CD datasets. It can be observed from Table X
that the model achieves the best result when the convolution
kernel size increases to 3. This result can be attributed to the
increase in the receptive field, which can make the model learn
the local offset between the bi-temporal images combined with
the neighborhood information. However, as the convolutional
kernel size continues to increase, a declining trend in model
performance begins to appear. This phenomenon is due to the
inundation of crucial local information by an excessive inflow
of neighboring contextual details with the expansion of the
receptive field, which makes it difficult for the model to learn
the local offset between the bi-temporal images. So, the size
of the convolution kernel in ADFF is set to 3.

3) Coefficients of Loss Function: To validate the impact of
various loss function coefficients on model performance, we
conducted corresponding experiments on the WHU-CD and
LEVIR-CD datasets. The experimental results are presented
in Table XI. For the WHU-CD dataset, optimal performance
is achieved when the coefficients of cross-entropy loss (�1)
and dice loss (�2) are relatively balanced. As for the LEVIR-
CD dataset, the results exhibit relative stability across different
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TABLE IV
ABLATION STUDY ON DIFFERENT COMPONENTS.

WHU-CD LEVIR-CD DSIFN-CD
Model Pre. / Rec. / F1 / IoU / OA / Kappa / FA Pre. / Rec. / F1 / IoU / OA / Kappa / FA Pre. / Rec. / F1 / IoU / OA / Kappa / FA

Baseline 94.19 / 91.15 / 92.64 / 86.30 / 99.42 / 92.35 / 0.23 90.75 / 88.54 / 89.63 / 81.21 / 98.95 / 89.09 / 0.48 71.65 / 64.99 / 68.16 / 51.70 / 89.91 / 62.18 / 5.12

w/ BI 92.12 / 94.22 / 93.16 / 87.20 / 99.45 / 92.87 / 0.33 91.59 / 88.55 / 90.05 / 81.90 / 99.00 / 89.52 / 0.44 67.79 / 71.71 / 69.65 / 53.43 / 89.63 / 63.35 / 6.36
w/ ADFF 95.75 / 90.85 / 93.24 / 87.32 / 99.48 / 92.96 / 0.17 91.83 / 88.24 / 90.01 / 81.81 / 99.01 / 89.47 / 0.43 69.86 / 68.28 / 69.07 / 52.75 / 89.83 / 62.98 / 5.87
w/ IND 95.57 / 91.19 / 93.34 / 87.50 / 99.48 / 93.07 / 0.18 91.15 / 88.94 / 90.04 / 81.88 / 98.99 / 89.51 / 0.47 68.56 / 72.14 / 70.31 / 54.22 / 89.87 / 64.21 / 6.59
w/ BI+IND 94.43 / 91.99 / 93.19 / 87.26 / 99.46 / 92.92 / 0.23 91.08 / 89.47 / 90.27 / 82.27 / 99.02 / 89.76 / 0.47 74.05 / 67.57 / 70.66 / 54.64 / 90.67 / 65.14 / 4.72
w/ BI+ADFF 95.18 / 92.69 / 93.92 / 88.54 / 99.52 / 93.68 / 0.19 91.09 / 89.35 / 90.22 / 82.17 / 99.01 / 89.69 / 0.47 78.32 / 64.74 / 70.89 / 54.91 / 91.16 / 65.74 / 3.57
w/ ADFF+IND 96.19 / 91.70 / 93.84 / 88.49 / 99.52 / 93.64 / 0.15 90.87 / 90.06 / 90.42 / 82.52 / 99.03 / 89.96 / 0.49 68.49 / 72.59 / 70.49 / 54.42 / 89.89 / 64.40 / 6.66

BiFA 95.15 / 93.60 / 94.37 / 89.34 / 99.56 / 94.14 / 0.19 91.52 / 89.86 / 90.69 / 82.96 / 99.06 / 90.19 / 0.43 73.99 / 68.87 / 71.34 / 55.45 / 90.80 / 65.87 / 4.82

TABLE V
ABLATION STUDY ON DIFFERENT STAGES OF BI. AND S STANDS FOR THE STAGE.

WHU-CD LEVIR-CD
Model S1 S2 S3 S4 Pre. / Rec. / F1 / IoU / OA / Kappa / FA Pre. / Rec. / F1 / IoU / OA / Kappa / FA

BiFA w/o BI ⇥ ⇥ ⇥ ⇥ 96.19 / 91.70 / 93.84 / 88.49 / 99.52 / 93.64 / 0.15 90.87 / 90.06 / 90.42 / 82.52 / 99.03 / 89.96 / 0.49

BiFA X ⇥ ⇥ ⇥ 95.81 / 92.46 / 94.10 / 88.87 / 99.54 / 93.87 / 0.17 92.01 / 88.89 / 90.47 / 82.59 / 99.04 / 89.99 / 0.45
BiFA X X ⇥ ⇥ 92.66 / 95.90 / 94.26 / 89.14 / 99.55 / 94.02 / 0.16 91.63 / 89.53 / 90.57 / 82.77 / 99.05 / 90.07 / 0.44
BiFA X X X ⇥ 96.11 / 92.32 / 94.18 / 89.01 / 99.55 / 93.95 / 0.16 92.19 / 89.10 / 90.62 / 82.85 / 99.06 / 90.12 / 0.41
BiFA X X X X 95.15 / 93.60 / 94.37 / 89.34 / 99.56 / 94.14 / 0.19 91.52 / 89.86 / 90.69 / 82.96 / 99.06 / 90.19 / 0.43

TABLE VI
ABLATION STUDY ON DIFFERENT STAGES OF ADFF. AND S STANDS FOR THE STAGE.

WHU-CD LEVIR-CD
Model S1 S2 S3 S4 Pre. / Rec. / F1 / IoU / OA / Kappa / FA Pre. / Rec. / F1 / IoU / OA / Kappa / FA

BiFA w/o ADFF ⇥ ⇥ ⇥ ⇥ 94.43 / 91.99 / 93.19 / 87.26 / 99.46 / 92.92 / 0.23 91.08 / 89.47 / 90.27 / 82.27 / 99.02 / 89.76 / 0.47

BiFA X ⇥ ⇥ ⇥ 95.27 / 91.84 / 93.52 / 87.83 / 99.49 / 93.26 / 0.18 91.51 / 89.53 / 90.51 / 82.66 / 99.04 / 90.01 / 0.45
BiFA X X ⇥ ⇥ 95.19 / 92.08 / 93.62 / 87.98 / 99.50 / 93.35 / 0.19 91.60 / 89.67 / 90.62 / 82.86 / 99.05 / 90.13 / 0.44
BiFA X X X ⇥ 95.15 / 93.60 / 94.37 / 89.34 / 99.56 / 94.14 / 0.19 91.52 / 89.86 / 90.69 / 82.96 / 99.06 / 90.19 / 0.43
BiFA X X X X 95.13 / 93.04 / 94.17 / 88.81 / 99.53 / 93.83 / 0.20 90.87 / 90.47 / 90.67 / 82.94 / 99.05 / 90.17 / 0.49

TABLE VII
ABLATION STUDY ON IND.

Param. FLOPs. WHU-CD LEVIR-CD
Model (M) (G) Pre. / Rec. / F1 / IoU / OA / Kappa / FA Pre. / Rec. / F1 / IoU / OA / Kappa / FA

Base 7.43 11.77 95.18 / 92.69 / 93.92 / 88.54 / 99.52 / 93.68 / 0.19 91.09 / 89.35 / 90.22 / 82.17 / 99.01 / 89.69 / 0.47

Upsample 5.53 49.51 95.34 / 92.78 / 93.94 / 88.57 / 99.43 / 93.71 / 0.19 91.42 / 89.56 / 90.48 / 82.62 / 99.04 / 89.98 / 0.46
Deconv 206.07 13192.11 95.06 / 92.57 / 93.80 / 88.32 / 99.51 / 93.54 / 0.20 91.70 / 89.16 / 90.41 / 82.50 / 99.03 / 89.90 / 0.43
BiFA 5.58 53.00 95.15 / 93.60 / 94.37 / 89.34 / 99.56 / 94.14 / 0.19 91.52 / 89.86 / 90.69 / 82.96 / 99.06 / 90.19 / 0.43

settings of the loss function coefficients. For ease of model
selection, both �1 and �2 are set to 0.5.

F. Advantages of IND
Different from the previous CD methods, our approach

introduces a decoder based on implicit neural representation
and realizes alignment between feature maps with different
resolutions by learning continuous representation of images in
coordinate space. To further explore the advantages of BiFA
in the CD task, we conducted experiments on the LEVIR-
CD as shown in Table XII. Train Res. and Test Res. indicate
the resolution of the train set and test set. Taking the train
set of LEVIR-CD as an example, 0.5m/pixel data is obtained
by cropping the original image (the image size is 1024 ⇥
1024 and the image resolution is 0.5m/pixel) to 256 ⇥ 256
patches. To obtain 1m/pixel data, the original image is first
resized 512 ⇥ 512, resulting in the resolution of the image

becoming 1m/pixel, and then cropped to 256 ⇥ 256 patches. In
the case of 2m/pixel data, direct resizing of the original image
to 256 ⇥ 256 is performed. Ultimately, three train sets with
differing resolutions can be derived. Similarly, test sets with
three resolutions are also available. BiFA w/o IND indicates
the BiFA removes the implicit neural alignment decoder.

We choose CNN-based SNUNet, Transformer-based BIT,
and DMINet for comparison. According to the experimental
results (Table XII), our BiFA obtains the best results when
using different-resolution images for training and testing.
Specifically, when training at 0.5m/pixel resolution and testing
at 1m/pixel resolution, the F1 of our method is 12% higher
than SNUNet, 4.85% higher than BIT, and 3.72% higher than
DMINet. Compared with a variant that does not use IND
(BiFA w/o IND), the F1 of our BiFA also is 1.08% higher
than it. These results indicate that BiFA has better robustness
for cross-resolution training and testing than other methods.
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TABLE VIII
ABLATION STUDY ON DIFFERENT PE.

WHU-CD LEVIR-CD
Model Learn PE Fixed PE Pre. / Rec. / F1 / IoU / OA / Kappa / FA Pre. / Rec. / F1 / IoU / OA / Kappa / FA

BiFA ⇥ ⇥ 94.88 / 92.58 / 93.72 / 88.18 / 99.50 / 93.46 / 0.21 91.92 / 89.27 / 90.57 / 82.78 / 99.05 / 90.08 / 0.42
BiFA ⇥ X 95.55 / 92.26 / 93.88 / 88.47 / 99.52 / 93.62 / 0.18 91.82 / 89.47 / 90.63 / 82.87 / 99.06 / 90.14 / 0.43
BiFA X ⇥ 95.15 / 93.60 / 94.37 / 89.34 / 99.56 / 94.14 / 0.19 91.52 / 89.86 / 90.69 / 82.96 / 99.06 / 90.19 / 0.43

TABLE IX
EFFECT OF THE NUMBER OF HEADS IN BI

WHU-CD LEVIR-CD
Num. Pre. / Rec. / F1 / IoU / Kappa Pre. / Rec. / F1 / IoU / Kappa

1 95.84 / 92.58 / 94.18 / 89.00 / 93.94 91.71 / 89.36 / 90.52 / 82.69 / 90.02
2 95.64 / 92.59 / 94.09 / 88.85 / 93.85 91.95 / 89.39 / 90.65 / 82.90 / 90.15
4 94.75 / 93.06 / 93.89 / 88.50 / 93.64 92.69 / 88.71 / 90.66 / 82.92 / 90.17
8 95.15 / 93.60 / 94.37 / 89.34 / 94.14 91.52 / 89.86 / 90.69 / 82.96 / 90.19
16 94.64 / 93.25 / 93.94 / 88.57 / 93.69 91.32 / 89.95 / 90.63 / 82.87 / 90.14
32 95.48 / 92.91 / 94.17 / 88.99 / 93.93 93.04 / 88.39 / 90.66 / 82.91 / 90.17

TABLE X
EFFECT OF THE KERNEL SIZE IN ADFF

WHU-CD LEVIR-CD
Size Pre. / Rec. / F1 / IoU / Kappa Pre. / Rec. / F1 / IoU / Kappa

1 96.25 / 92.20 / 94.18 / 89.01 / 93.95 91.84 / 89.32 / 90.56 / 82.76 / 90.07
3 95.15 / 93.60 / 94.37 / 89.34 / 94.14 91.52 / 89.86 / 90.69 / 82.96 / 90.19
5 95.40 / 92.56 / 93.96 / 88.61 / 93.72 91.22 / 90.03 / 90.62 / 82.86 / 90.13
7 95.73 / 92.89 / 94.29 / 89.20 / 94.06 91.45 / 89.56 / 90.50 / 82.64 / 89.99
9 94.12 / 93.42 / 93.77 / 88.28 / 93.52 92.12 / 89.08 / 90.57 / 82.77 / 90.07

TABLE XI
EFFECT OF COEFFICIENTS OF LOSS FUNCTION

WHU-CD LEVIR-CD
�1 �2 Pre. / Rec. / F1 / IoU / Kappa Pre. / Rec. / F1 / IoU / Kappa

1 0 95.36 / 92.87 / 94.10 / 88.86 / 93.86 92.44 / 89.31 / 90.85 / 83.23 / 90.37
0 1 92.65 / 87.57 / 90.04 / 81.88 / 89.64 90.55 / 89.30 / 89.93 / 81.69 / 89.39

0.5 0.5 95.15 / 93.60 / 94.37 / 89.34 / 94.14 91.52 / 89.86 / 90.69 / 82.96 / 90.19
0.5 1 95.74 / 92.04 / 93.86 / 88.43 / 93.61 90.84 / 90.54 / 90.68 / 82.96 / 90.19
1 0.5 96.30 / 92.49 / 94.36 / 89.32 / 94.13 92.67 / 88.99 / 90.79 / 83.14 / 90.31

TABLE XII
COMPARISON RESULTS OF CROSS-RESOLUTION ON THE LEVIR-CD TEST

SET. RES. IS THE SPATIAL RESOLUTION.

Train Test LEVIR-CD
Model Res. (m/pixel) Res. (m/pixel) F1 IoU

SNUNet 0.5 0.5 88.59 79.51
SNUNet 0.5 1 64.45 47.55
SNUNet 2 1 66.40 49.70

BIT 0.5 0.5 90.03 81.87
BIT 0.5 1 71.61 55.77
BIT 2 1 63.65 46.68

DMINet 0.5 0.5 90.46 82.59
DMINet 0.5 1 72.74 57.16
DMINet 2 1 66.31 49.60

BiFA w/o IND 0.5 0.5 90.22 82.17
BiFA w/o IND 0.5 1 75.38 60.49
BiFA w/o IND 2 1 70.00 53.85

BiFA 0.5 0.5 90.69 82.96
BiFA 0.5 1 76.46 61.88
BiFA 2 1 72.15 56.43

V. CONCLUSION

In this paper, we propose a new CD method BiFA which
is designed to align the features at different levels: temporal
(channel, spatial), and multi-scale, to achieve accurate de-
tection. For temporal alignment, the bi-temporal images are
utilized as input for the BI, and their channel-level alignment
is achieved through mutual guidance between them during
the feature extraction stage. Subsequently, the bi-temporal
features following channel alignment are inputted into the
ADFF to acquire the spatial offset of the bi-temporal images,
achieving their spatial alignment and producing more precise
multi-stage differential features. Ultimately, for multi-scale
alignment, the differential features of each stage are fed into
the IND to precisely align differences across multiple stages
in a lightweight manner, resulting in the acquisition of pre-
diction maps of superior quality. Many ablation experiments
have verified the effectiveness of each module. Meanwhile,
experimental results on six public datasets show that our
method is advantageous over other state-of-the-art methods.
Furthermore, a cross-resolution CD is performed to delve into
the benefits of BiFA, and the experimental results show that
BiFA exhibits superior cross-resolution robustness. However,
the feature map of each stage is queried by IND at the original
image size, resulting in a significant increase in FLOPs. Future
works will enhance the efficiency of IND and utilize it in the
cross/continuous-resolution change detection tasks.
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