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Abstract—Perception of 3D remote sensing scenes plays a

crucial role in accurately recognizing and locating ground objects,

as it enables a deeper understanding of complex environments

by capturing scene geometry, object relationships, and occlusion

patterns. Inspired by the powerful multi-sensor fusion capabilities

in autonomous driving, we explore a new task in this paper: given

a set of multi-view images of a 3D remote sensing scene, we aim

to obtain bird’s-eye view (BEV) scene information under the

common view area in the world coordinate system. In this work,

we focus on the task of semantic segmentation to demonstrate

the feasibility of our approach and introduce a BEV modeling

technique tailored for remote sensing scenes, which facilitates the

projection of 3D scene details from multiple perspective views

onto a bird’s-eye view. We then utilize a dual-encoder structure

based on the Vision Transformer (VIT) architecture to extract

relevant spatial information using self-attention mechanisms.

Within the decoder, we employ a Feature Pyramid Network

(FPN) to integrate BEV patch encoding with spatial feature

residuals, enabling fine-grained segmentation results at the orig-

inal input resolution. Furthermore, we curated the LEVIR-

MDS multi-drone segmentation dataset, comprising scenes from

10 community-level areas across 3 continents, totaling 243k

images and their corresponding annotated BEV semantic maps,

amounting to approximately 500GB. This dataset serves as a

robust benchmark to assess the effectiveness and generalization

capability of our proposed method. To our best knowledge, this is

the first semantic segmentation dataset designed specifically for

collaborative multi-drone applications. We further show that our

method achieves a 12% improvement in mIoU, reaching 69.73%,

compared to a pure convolutional network model.

Index Terms—Multi-view collaborative segmentation, remote

sensing, Bird’s-Eye-View (BEV) representation, semantic segmen-

tation

I. INTRODUCTION

M
ULTI-VIEW stereoscopic perception is vital in remote
sensing tasks for applications such as disaster assess-

ment [2, 3], resource monitoring [4, 5], and land surveying [6].
While drone-based remote sensing provides advantages over
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Fig. 1: Visual comparison between existing drone semantic
segmentation framework and our proposed framework. (a)
Captured from a side-view perspective and annotated using
pixel-to-pixel labeling [1]. (b) Captured from a top-view
perspective and annotated using pixel-to-pixel labeling [2]. (c)
Our proposed framework, which learns scene 3D information
from multiple side-view perspectives and performs semantic
segmentation on BEV at absolute scale.

satellite imaging, including flexible path planning and fine-
grained perception, most existing remote sensing approaches
rely on pixel-based segmentation, overlooking the richness of
multi-view and 3D information [7].

With the advancement of convolutional neural networks
(CNNs), the performance of semantic segmentation has sig-
nificantly improved. Existing drone-based remote sensing se-
mantic segmentation can be categorized into two types based
on the input perspective: semantic segmentation for side-view
perspectives [1, 8] and semantic segmentation for top-view
perspectives [2, 3, 9]. Side-view perspectives encompass more
spatial information and perception coverage. However, they
face challenges such as object occlusion at different heights,
requiring semantic segmentation in a pixel-to-pixel space after
perspective transformation, making it difficult to map to world
coordinates. Top-view perspectives largely resolve occlusion
issues and allow direct target localization in world coordi-
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nates. However, their perception range is fixed, with a single
viewpoint that limits capturing spatial scene information.

In recent years, within the realm of autonomous driving
(e.g., Tesla [10]), pertinent methods have adeptly integrated
multi side-view sensor data by creating a Bird’s Eye View
(BEV) representation. This method involves projecting and
integrating information captured by side-view sensors around
the vehicle into a top-down view. The process facilitates a
comprehensive depiction of surrounding scenes in the world
coordinate system, providing an absolute scale and leveraging
3D information perceived from side-view perspectives.

To project side-view information into BEV perspective,
methods can be categorized into two approaches. Some meth-
ods directly map side-view features to BEV space, such
as [11–14], by extracting 2D image features from side views,
predicting depth distribution, and then projecting and inte-
grating them into BEV space. Others like [15, 16] use depth
estimation to predict side-view depth maps and extract features
in 3D space. These methods share a common goal of recover-
ing depth information lost in the 2D imaging process of side
views and associating it with BEV space. Alternatively, some
methods utilize camera models for inverse perspective map-
ping directly in BEV space. For example, [17] first utilized this
method in 3D object detection, assuming targets lie on a plane
in 3D space and querying point-by-point for corresponding
features from various viewpoints. Furthermore, [18, 19] built
mappings between BEV space points and side-view images
based on a variational encoder-decoder and MLP architecture,
while [20, 21] utilized transformers to directly construct BEV
queries and employ cross-attention mechanisms to search for
corresponding features in perspective images.

However, these methods build on assumptions made for
autonomous driving tasks, where the objective is limited to
perceiving the immediate surroundings of a vehicle. This
allows for treating the ground as a nearly flat plane to fa-
cilitate straightforward projections between perspective views
and the bird’s-eye view. In drone scenarios, by contrast,
the task generally involves a much broader scope of scene
perception, rendering the simplistic flat plane assumption
impractical. Moreover, unlike in autonomous driving, the
extensive freedom in drone trajectories and the multiscale
nature of scenes demand a specialized BEV-based framework
designed for drone applications. Therefore, we introduce a
robust network framework, RSBEV, tailored for multi-view
collaborative segmentation. Accompanying this framework,
we present a substantial dataset named LEVIR-MDS, which
spans 10 community-level scenes across three continents, en-
compassing 243k images with corresponding annotated BEV
semantic maps, totaling approximately 500GB.

In this paper, we apply Inverse Perspective Mapping (IPM)
within BEV framework to comprehensively extract all relevant
2D data and employ self-attention mechanisms to meticulously
filter and ascertain the accurate 3D information. Initially,
we model the ground height under a normal distribution
assumption using a multi-plane approach and extract BEV
representation of the scene through weighted pooling. Sub-
sequently, we propose a dual Encoder structure based on
the Vision Transformer (VIT) [22] architecture to filter out

irrelevant spatial information using self-attention mechanisms.
Finally, in the decoder, we design a Feature Pyramid Network
(FPN) [23] to connect BEV patch encoding with spatial feature
residuals, enabling the acquisition of finely segmented bird’s-
eye view images at the input resolution.

The contributions of our work can be summarized as
follows:

1) We propose a multi-view joint perception framework de-
signed for 3D remote sensing scenes. Given a set of multi-
view images, our aim is to accurately derive BEV scene
information within the shared viewing area of the world
coordinate system. Our method stands out by leveraging
complex 3D scene data and drone collaboration, ensuring
precise perception of the environment and we utilize the
task of semantic segmentation to validate the efficacy of
our framework.

2) A Novel Algorithm (RSBEV): We propose the RSBEV
method to achieve multi-view collaborative semantic seg-
mentation. Initially, we project 3D scene information
from multiple perspectives into BEV space using BEV
modeling. Additionally, we design a dual Encoder struc-
ture based on the Vision Transformer (VIT) architecture,
utilizing self-attention mechanisms to extract relevant
spatial information. In the decoder phase, we employ a
Feature Pyramid Network (FPN) to connect BEV patch
encoding with spatial feature residuals, enabling finely
segmented bird’s-eye view results at the input resolution.
These innovative algorithmic designs enable our method
to effectively address multi-view collaborative scene seg-
mentation tasks with drones.

3) A New Dataset (LEVIR-MDS): We curate a comprehen-
sive multi-view collaborative segmentation dataset, which
includes scenes from 10 community-level areas across
three continents, featuring a total of 243k images and
their corresponding annotated bird’s-eye view (BEV) se-
mantic maps, totaling approximately 500GB. This dataset
provides essential experimental resources and serves as a
significant benchmark in the drone remote sensing field.
It not only validates the effectiveness of our proposed
RSBEV method but also fosters extensive research and
development in this domain.

The rest of the paper is organized as follows. Section II
reviews related work in BEV representation and semantic
segmentation. Section III details our proposed method. Section
IV presents the details of LEVIR-MDS. Section V provides
experimental results demonstrating the effectiveness and ratio-
nale of our method. Finally, we conclude in Section VI.

II. RELATED WORK

A. Vision-centric BEV Representation

Vision-centric BEV representation, with its capacity to
seamlessly integrate 3D information at a real-world scale,
has increasingly captured the attention of both industry and
academia [24]. The earliest works in this area date back
over 30 years, introducing methods that project side-view
perspectives onto BEV under rigid plane assumptions [25].
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Fig. 2: An overview of our method. We take multi-view images as input. In the BEV Feature Builder, multi-view feature is
projected onto a multi-plane grid within the world coordinates, followed by a weighted pooling to obtain the BEV feature map.
Subsequently, in the Spatial Feature Encoder, the BEV feature map is used to learn spatial and category-related information.
Finally, the FPN-based Decoder predicts the Segmentation map in BEV space.

With advancements in deep learning, several methods [7, 26–
28] have utilized BEV representation to transform features
from 2D perspective pixel coordinates to 3D world coordinates
in a bird’s-eye view.

To mitigate severe deformation and occlusion issues during
rigid transformation processes, some methods have introduced
Generative Adversarial Network (GAN) [29] to compensate
for errors in projection. For instance, BriighGAN [30] takes
three views as inputs: perspective view, homography view,
and bird’s-eye view. It employs multiple sub-models based
on a multi-GAN architecture to address significant viewpoint
differences and severe deformations between perspective views
and bird’s-eye view. MonoLayout [31] predicts BEV layouts,
leveraging adversarial feature learning to hallucinate scene
details for occluded image regions. This approach tackles the
challenge of estimating layouts beyond visible information and
compensates for 3D information loss due to projection.

However, these direct transformation methods still suffer
from incomplete projections due to occlusions and errors
caused by the planar assumption. To address these funda-
mental issues, [11, 12, 15, 16] leverage depth prediction
or the probability distribution of depths from 2D side-view
images to determine the position of feature vectors in the
BEV space. Nonetheless, directly predicting missing depth
information increases model complexity and hinders conver-
gence. Alternatively, CaDNN [32] incorporates supervision
using depth information obtained directly from lidar during
depth estimation, leading to a more precise transformation
from perspective view to BEV.

Meanwhile, some methods continue to pursue accu-
rate transformation processes exclusively through visual
cues.VED [18] employs learnable parameters to implicitly
express the mapping from perspective view to BEV, uti-

lizing a variational encoder-decoder and MLP architecture
to extract semantic information in 3D space directly from
monocular images.Building on this approach, [19, 21] in-
tegrate features from multiple perspective views into BEV
space, aggregating spatial information from various viewpoints
on the BEV feature map. While these methods effectively
mitigate errors in BEV modeling of non-flat terrain such
as mountains or buildings, they may encounter overfitting
issues due to the network’s requirement to fit additional scene-
specific geometric details. Notably, HFT [33] devised a hybrid
model that combines geometric transformation features with
camera parameters and learnable features, surpassing previous
methods in performance.However, further enhancements are
necessary to optimize performance when integrating multi-
view information [24].

The advent of Vision Transformer (VIT) [22] has brought
remarkable advancements in applying transformer-based mod-
els to computer vision tasks. Certain transformer-based ap-
proaches have surpassed MLP-based methods and consistently
demonstrate strong performance in multi-view fusion scenar-
ios. In the field of autonomous driving, [20, 21, 34] leveraging
cross-attention mechanisms effectively retrieve image features
from perspective views to map onto the BEV. In such methods,
the primary trade-off lies in the use of sparse queries [35–37],
which sacrifices spatial geometric structure awareness, while
dense queries [20, 38] require exceedingly high computational
complexity.

In this article, addressing the characteristics of drone in
large-scale scene perception. By employing inverse perspective
mapping combined with a VIT-based architecture [22], we
filter out inaccurately projected spatial information, achieving
a balance between computational complexity and accuracy.



IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2024 4

B. Semantic Segmentation Using Encoder-Decoder Architec-
ture

The encoder-decoder architecture framework is widely em-
ployed in pixel-level segmentation tasks. In this framework,
the encoder typically reduces the spatial scale of the input
image and maps semantic information from the spatial domain
to high-dimensional feature vectors. Meanwhile, the decoder
performs upsampling to map these feature vectors back to
category information. FPN [23] was first introduced using
the VGG network as its encoder, where the original fully
connected layers were replaced with a decoder capable of
restoring resolution. To ensure multiscale spatial information,
feature maps of different scales from the encoder were directly
fused with corresponding layers of the decoder, preserving
spatial features at various resolutions. Subsequently, more
convolutional network architectures such as ResNet [39], HR-
Net [40], and ResNeSt [41] have also been used as encoder.
However, due to pooling operations in encoder and continuous
upsampling in decoder, it remains challenging to learn high-
frequency details in images. U-Net [42] and its subsequent
variants [43–46] introduced several shortcuts in the encoder-
decoder structure, further preserving multiscale information,
and found wide applications in image segmentation in med-
ical and remote sensing domains [47]. A similar U-shaped
network structure was adopted in [47], incorporating decon-
volution layers in the decoder to extract roads in drone remote
sensing scenes. Additionally, SegNet [48] systematically de-
codes encoder features layer by layer, preserving indices in
max pooling to consider contextual information and maintain
overall object-level consistency during segmentation. More
recent research, Spatial-Spectral Masked Auto-encoder (MAE)
[49], extends the encoder-decoder paradigm by focusing on
masked image modeling, where certain portions of the input
are masked, and the model is trained to reconstruct those
hidden parts. This approach enhances the model’s ability to
capture spatial and spectral relationships, which is particu-
larly valuable in remote sensing tasks [50]. MAE’s masked
reconstruction strategy leverages the rich spatial-spectral in-
formation in remote sensing data, contributing to improved
scene classification and feature extraction.

The exceptional global modeling capabilities of Trans-
former [51] have been extended to encoder-decoder-based
image segmentation frameworks in research. For example,
SETR [52] follows the paradigm of VIT [22] in the encoder,
splitting the image into patches and leveraging transformers to
learn global information. The output tokens are then reassem-
bled into feature maps and processed with upsampling and
convolution in the decoder. On the other hand, Segmenter [53]
is built entirely on transformer-based encoder-decoder struc-
tures.In decoding process, the authors replace convolutional ar-
chitecture with transformer that includes a category token, and
ultimately compute the similarity between output tokens and
category tokens using dot products. Segformer [54] employs
lightweight self-attention mechanisms and hierarchical feature
maps in encoder, while leveraging MLP structures in decoder
to effectively reduce computational complexity. More recently,
methods such as [55] have embedded Swin Transformer [56]

into U-Net [42], resulting in improved segmentation accuracy
for small-scale objects.

III. PROPOSED METHOD

The overall process of our RSBEV method is illustrated in
the flowchart shown in Fig. 2. This method comprises three
main components: 1) BEV Feature Builder, which projects
features from input side-view perspectives to obtain Bird’s Eye
View (BEV) representations. 2) Spatial Feature Encoder,
which filters out irrelevant spatial information from the BEV
representations and models the correlation between features
and categories. 3) FPN-based Decoder, which decodes the
output features by integrating multi-scale information to obtain
category prediction results.

A. BEV Feature Builder
In this subsection, we efficiently projects image features

from multiple perspectives into BEV space. First, we ex-
tract features from multi-perspective images using a shared
backbone network. Subsequently, these features are explicitly
projected onto a multi-plane grid in the world coordinates
using the camera models. This process allows us to obtain
the BEV feature map through weighted pooling.

We first process multi-view images I 2 RN⇥3⇥H⇥W and
utilize their corresponding camera parameters M 2 RN⇥4⇥4

with a ResNet-like [39] network (NET) to extract image
features. To effectively integrate spatial information, a depth
coordinate map Z 2 RN⇥1⇥H⇥W , derived from M, is intro-
duced. This map, representing the depth for each viewpoint,
quantifies the distance from the observed scene to the world
coordinate plane at z = 0. It is concatenated with the extracted
features, and a convolutional operation is applied to generate
a per-pixel mask. This mask assesses the relative importance
of image features at specific locations. The feature extraction
process can be formalized as:

F2D = Net(I) (1)

mask = conv(concat(F2D,Z)) (2)

Fmask2D = F2D � sigmoid(mask) (3)

Where F2D 2 RN⇥feature h⇥feature w⇥C denotes the image
features directly obtained from the feature extraction network,
and Fmask2D 2 RN⇥feature h⇥feature w⇥C represents the image
features weighted by the viewpoint-specific masks, where C

is the dimension of the image features.
It is noteworthy that a significant challenge arises due to

the unavailability of ground truth elevation values at arbitrary
points within the scene. Directly projecting features onto the
BEV plane from ground level often results in inaccurate
feature representations. To address this issue, we model the
ground height distribution within the scene as a Gaussian
distribution N (µ,�), where µ represents the average scene
height zworld, and we set � = 1.0. Specifically, we dis-
cretize the height into a series of bins, dividing the space
into 2L � 1 parallel planes, equally spaced with elevations:
z = {z1, z2, . . . , zL, . . . , z2L�2, z2L�1}, where zL = µ. In
our experiments, we set L = 4 with a height spacing of
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5 meters, resulting in a total of 7 planes. For each height
zi, a grid-shaped BEV map is created. Using the camera
projection model, we search for 2D image features that can
be projected from each grid point onto the BEV plane. For
a given BEV grid with coordinate (x, y, z), the projection
process is mathematically described as follows:

p = Mtrans(M, x, y, z) (4)

Where p 2 RN⇥2 includes feature pixel coordinates of all
cameras that can be projected from the coordinates (x, y, z).
Further, we filter out points within the coordinate range of each
camera’s feature map, along with their corresponding features:

pvalid = {pi 2 p | check bounds(pi, Hfeature,Wfeature)} (5)

F3D[x, y, z] = Fmask2D(pvalid) (6)

The function check bounds verifies if the coordinates pi fall
within the feature map dimensions [0, Hfeature) ⇥ [0,Wfeature).
After filtering, pvalid 2 Rnhit⇥2 contains only those coordinates
that meet this criteria, where nhit 2 [0, N) denotes the count of
viewpoints that can project their features within this coordinate
range by the grid point. If nhit = 0, then F3D[x, y, z] is a
zero vector. Otherwise, F3D[x, y, z] 2 Rnhit⇥C represents the
projected feature set corresponding to this BEV grid.

In the above process, the transformation Mtrans(M, x, y, z)
adheres to the pinhole camera model, where the 3D point (x, y,
z) in the world coordinate system is projected onto a 2D pixel
plane through the intrinsic and extrinsic camera parameters
incorporated within the matrix M. The projection mechanism
is defined by the following equation:
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In this equation, (u,v) 2 RN⇥2 corresponds to the previ-
ously defined p, K signifies the cameras’ intrinsic matrix, R
the rotation matrix, and t the translation vector. These compo-
nents collectively compose the cameras’ extrinsic matrix. The
complete matrix M is thus formulated as the product of K
and the concatenated extrinsic matrix

�
R t

�
.

Once we have obtained the complete BEV multi-plane
features F3D(x, y, z) 2 Rnhit⇥C , we compute the averaged
features for each grid point in the BEV map as follows:

F[x, y, z] =

(
1
nhit

P
nhit
i=1 F3D[x, y, z][i] if nhit > 0

0 if nhit = 0
(8)

Where F 2 Rbev h⇥bev w⇥(2L�1)⇥C represents the BEV map
across different layers, providing a comprehensive representa-
tion of the scene at various heights.

Finally, we employ weighted pooling to aggregate F accord-
ing to the discrete Gaussian distribution probabilities, yielding
the final BEV feature map B 2 Rbev h⇥bev w⇥C :

B =
2L�1X

i=0

1

�
p
2⇡

exp� (zi � zL)2

2�2
· F[:, :, i, :] (9)

Algorithm 1 BEV Feature Building Process. The symbols
used in this pseudocode follow the same naming conventions
as in the previous formulas.
Input: Multi-view images I, Camera parameters M
Input: BEV grid dimensions (bev h, bev w, L)
Output: Final BEV feature map B

1: Step 1: Extract multi-view features.

2: mask conv(concat(Net(I),Z))
3: // Z: Depth map computed from M
4: Fmask2D  Net(I)� sigmoid(mask)
5:
6: Step 2: For each grid point in the BEV map, calculate

projected feature.

7: for each grid point (x, y, z) in BEV grid do

8: p  Mtrans(M, x, y, z)
9: pvalid  check_bounds(p, Fmask2D.shape())

10: if pvalid 6= ; then

11: F3D(x, y, z)  Fmask2D(pvalid)
12: else

13: F3D(x, y, z)  0
14: end if

15: end for

16:
17: Step 3: Feature fusion and weighted pooling.

18: for each grid point (x, y, z) in BEV grid do

19: if nhit > 0 then

20: F[x, y, z] 1
nhit

P
nhit
i=1 F3D[x, y, z][i]

21: else

22: F[x, y, z] 0
23: end if

24: end for

25: B  WeightedPooling(F, Gaussian weights)
26: return B

B. Spatial Feature Encoder

We observe that the BEV feature map B obtained through
pooling contains overlapping features from different eleva-
tions. Consequently, directly applying convolutional architec-
tures for feature encoding and decoding would struggle to
capture effective contextual information due to the presence
of excessive invalid information in the BEV feature map.
Subsequent experiments also validate the presence of severe
overfitting under such conditions. To address this issue, we
propose a transformer-based architecture inspired by VIT [22],
which enables global modeling of spatial information through
self-attention mechanisms. The entire process is divided into
two encoders, Encoder1 and Encoder2, utilizing self-attention
modules with identical structures. Furthermore, considering
that the pixel-wise operations during the projection of image
features may negate the regularization effect induced by data
augmentation in subsequent encoders, we incorporate addi-
tional data augmentation on the BEV feature map B following
the approach proposed in BEVDet [13], involving operations
such as rotation, cropping, resizing, and flipping.

In Encoder1, we divide the BEV map into a series of 8⇥ 8
patches, which are flattened and fed into a linear layer to
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Fig. 3: Network architecture of the Spatial Feature Encoder.
In Encoder1, the network receives patch embedding with
positional embedding and utilizes self-attention mechanisms
to filter out irrelevant spatial information in the input. Subse-
quently, the output is concatenated with class embedding and
fed into Encoder2 to learn the dependencies between features
and class information.

obtain BEV feature tokens. These tokens, along with positional
embeddings, are then input to Encoder1, comprising N1 self-
attention modules aimed at filtering out irrelevant spatial
information. The output dimensions remain the same as the
input BEV patch encoding. Subsequently, these encodings are
combined with category embeddings and fed into Encoder2,
which consists of N2 self-attention modules designed to learn
the dependencies between BEV feature encoding and category
information. Finally, Encoder2 outputs the BEV patch encod-
ing corresponding to each patch.

As shown in Fig. 3, the same self-attention operation is
utilized in different encoders. Q, K, V denote query, key and
value, and input tokens (Q, K, V ) are linearly projected using
embedding tokens or encoding tokens T, represented as:

Q = TWq
, K = TWk

, V = TWv
, (10)

where Wq , Wk, Wv are the learnable parameters of the
linear projection layer. In Encoder1, they have dimensions
HW/82⇥d, and in Encoder2, their dimensions are (HW/82+
num cls)⇥ d. Moreover, num cls represents the number of
classes, and d denotes the feature dimension of the tokens.
After obtaining Q, K, andV, one attention head can be
expressed as:

SelfAttn(Q,K,V) = Softmax(
QKT

p
d

)V (11)

C. FPN-based Decoder
Although our encoder contains intermediate features with

precise spatial relations, the network struggles to capture
information about small-scale objects. This is because each
encoding vector at the output of the Spatial Feature Encoder
describes only the category information within each patch.
Directly upsampling and computing the inner product with
the class encoding, as done in [53], results in the loss of
small-scale information at this stage. To address this issue,
we introduce FPN [23] into the segmentation output head to

Fig. 4: Decoder Network Architecture Diagram. This diagram
illustrates how the feature sequence processed by the encoder
is rearranged into a 2D feature map and subsequently re-
fined through three upsampling modules to produce the final
segmentation results. During the upsampling process, feature
maps of various resolutions are fused with the downsampled
BEV feature map to enhance segmentation performance.

fuse multi-scale information. By employing both upscaling UP
modules and downscaling DOWN modules, we fuse the BEV
map before the Spatial Feature Encoder with the feature maps
concatenated with BEV patch encodings, enabling multi-scale
fusion. This ultimately yields category segmentation results in
the BEV space at the original scale. The process is illustrated
in Fig. 4.

D. Loss Function
Our loss function consists of three components: weighted

cross-entropy loss Lce, dice loss [57] Ldice, and inter-class
diversity loss Lcls. Assuming C is the number of classes, N
is the number of samples, yij denotes the ground truth label (0
or 1) of sample i belonging to class j, and pij is the probability
predicted by the model that sample i belongs to class j.
Lce can be represented as follows:

Lce = �
1

N

NX

i=1

CX

j=1

wj · yij · log(pij) (12)

Where wj is the weight assigned to class j, which is set
inversely proportional to the pixel count of each class to further
balance the class distribution in the samples.
Ldicecan be represented as follows:

Ldice = 1� 1

C

CX

j=1

2 ·
P

N

i=1 pij · yijP
N

i=1 pij +
P

N

i=1 yij

(13)

Lcls can be represented as follows:

Lcls = �
1

C(C � 1)

CX

i=1

CX

j=1,j 6=i

����
ui

kujk
� ui

kujk

���� (14)

Where ui and uj are both class encoding output by the
encoder. Minimizing this ensures that features from different
classes have distinct separability in the feature space, thereby
enhancing the ability to distinguish between different classes.
The final loss function can be represented as:

L = Lce + Ldice + �Lcls (15)

The weight of the Lcls, denoted by �, is set to 0.1 in this case.
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E. Network Details

TABLE I: Detailed configuration of our shared backbone.
Here, Conv-DOWN represents a convolutional layer followed
by batch normalization, rectified linear unit (ReLU), and max
pooling; Conv-UP represents a convolutional layer followed
by ReLU and upsampling layer.

Layer Config Input Dim Output Dim Resolution
Layer0 Conv-Down 3 64 1/4
Layer1 Resnet.layer1 64 256 1/4
Layer2 Resnet.layer2 256 512 1/8
Layer3 Resnet.layer3 512 1024 1/16
Layer4 Resnet.layer4 1024 2048 1/32

Conv FPN1 Conv-UP+Layer4 2048 1024 1/16
Conv FPN2 Conv-UP+Layer3 1024 512 1/8
Conv FPN3 Conv-UP+Layer2 512 256 1/4
Conv FPN4 Conv-UP+Layer1 256 64 1/2
Conv mask Concat-Conv 64+1 1 1/2

Scalar product Conv mask � Conv FPN4 64&1 64 1/2

1) BEV Feature Builder: As shown in Table I, we employ
a ResNet-50-like [39] backbone network to extract image
features. The average pooling and fully connected layers are
removed and replaced with an upsampling network structured
as a FPN [23], with corresponding feature maps being skip
connected. The output image feature size is half of the input
image size, with feature channels set to C = 64.

The BEV feature map B was set to have dimensions 512⇥
512⇥64, corresponding to a spatial resolution of 0.8m⇥0.8m,
effectively covering a perception range of 409.6m⇥409.6m.
In the multi-plane projection part of the BEV Feature Builder,
we set L = 4 with a height spacing of 5 meters, resulting in
a total of 7 planes, and the perception of information within
a 30-meter height range.

2) Transformer Encoder: We divide the input image into
a series of 8 ⇥ 8 patches, and then project each patch into a
256-dimensional feature vector using a linear transformation
(with an 8⇥8 convolutional kernel and a stride of 8). After in-
corporating positional embedding, these feature vectors serve
as the input to the transformer. Additionally, in TabVII, we
obtain models with different parameter counts by modifying
the settings in the encoder. For instance, in RSBEV-base, we
set the number of layers in both Encoder1 and Encoder2 to 6,
the number of attention heads to 4, and the dimension of the
Feed Forward layer to 512.

3) Segmentation Head: We reorganize the patch encodings
outputted by the encoder into a shape ofH8 ⇥

W

8 ⇥ 256.
Then, leveraging the FPN [23] structure depicted in Fig. 4,
we progressively fuse BEV features with patch encodings at
different scales. Finally, employing a 1 ⇥ 1 convolution, we
predict categories at the original scale of the BEV feature map.

IV. DATASET

Multi-view drone datasets have made significant progress
in the field of object tracking [58, 59], yet there are still
substantial gaps in the segmentation domain. In the realm
of autonomous driving, several large-scale datasets such as
nuScenes [60], KITTI [61], and the Waymo Open Dataset
(WOD) [62] have been established, providing a wealth of data
for various tasks. To validate the effectiveness of RSBEV, we
drew inspiration from both dataset creation methods in the

drone domain and dataset formats prevalent in the autonomous
driving domain, and proposed a comprehensive dataset named
LEVIR-MDS, specifically designed for multi-view collabora-
tive segmentation.

This dataset leverages real-world 3D scenes generated
from Google Earth Studio [63], comprising 10 extensive
community-level scenes across 3 continents. Each scene is
captured from four unique drone viewpoints, resulting in
a comprehensive collection of 5800 frames per viewpoint.
These frames have been rigorously annotated to categorize
six distinct features: building, road, vegetation, water, boat,
and other, demonstrating the substantial effort involved in
dataset preparation. Representative images from the dataset
are presented in Fig. 5, while the corresponding annotated
bird’s-eye view images are illustrated in Fig. 6.

Our LEVIR-MDS offers a robust foundation for advancing
research in multi-view collaborative segmentation, bridging
the existing gaps in the current drone segmentation datasets.
By leveraging the high-resolution and detailed nature of the
simulated 3D scenes, researchers can develop and validate new
algorithms and methodologies aimed at enhancing segmenta-
tion accuracy and efficiency in multi-drone systems.

A. Trajectory Setup
For each scene measuring approximately 4km ⇥ 4km, the

area is typically divided into 3 rows and 5 columns, and
scanned along a serpentine trajectory through these subregions
as illustrated in Fig. 7. During the scanning process, the
camera centers of the four trajectory cameras in each frame
converge on the same point, with the cameras facing forward,
backward, leftward, and rightward, respectively. In our dataset,
the BEV center position for each frame is determined by a
meticulously designed set of trajectories, ensuring that the
central position is as much as possible within the common
view area of the four viewpoints.

Scanning is performed along the row direction with a 500-
frame interval between two adjacent rows (3 rows in total) and
along the column direction with a 200-frame interval between
two adjacent columns (5 columns in total), all at a frame rate of
24 fps. These speeds were chosen to balance between detailed
temporal resolution and practical data collection rates. This
results in a sequence of 4 ⇥ 5800 temporal images for each
scene, where each image measures 1600 ⇥ 900 pixels. The
horizontal field of view (HFOV) for each image is 20°.

The height and tilt angle of the drones vary within specific
ranges to simulate realistic flight conditions. Specifically, the
height ranges from 100 meters to 500 meters, and the tilt angle
varies between 25 degrees and 50 degrees to capture different
perspectives and enhance the dataset’s diversity.

B. Data Pairing
For scene i, we only annotate to obtain the BEV ground

truth map Maski. In frame t, the visible area of the ground
truth map P

t in this scene is defined as:

P
t =

N[

n=1

0

@
[

p2Maski

p = (u, v)

������
Mtrans(p) 2 grid(In)

1

A (16)
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Fig. 5: Sample images of the first four scenes from the dataset

Fig. 6: Annotated BEV map of the first four scenes from the
dataset

where N represents the number of cameras, p = (u, v)
denotes the pixel coordinates in Maski, grid(In) denotes the
tensor of pixel coordinates in the n-th viewpoint, and Mtrans(·)
denotes the projection from BEV to side view transformation
using the pinhole camera model.

Thus, we obtain the data pairs of the side-view images I
t

i

and the corresponding ground truth mask maskt
i
= Maski(P t)

in the BEV space, as illustrated in Fig. 1(c).

C. Dataset Format
The dataset structure is inspired by the nuScenes [60]

dataset. It organizes data in directories named “sam-
ple”, “sweep”, and “mask”, with metadata stored in
“data meta.json”.

1) Directory Structure:
• sample: Stores keyframe images from different side-view

perspectives in JPEG format. Each keyframe represents
significant moments in each trajectory and is stored with
a corresponding timestamp.

• sweep: Contains time-series sequences of images cap-
tured between keyframes from different side-view per-
spectives, also in JPEG format, providing a continuous
view of each trajectory.

• mask: Contains the ground truth images for each scene,
annotated with six categories. The annotated ground
truth images are stored in PNG format, along with the
corresponding camera parameter information.

• data meta.json: Contains a dictionary that records the
paths of images and corresponding camera parameters
for all trajectories in each scene. The dictionary structure
allows easy access to the dataset’s metadata.

2) Statistical Properties: Key statistical properties of the
dataset include:

• Scenes Information:The dataset comprises a total of 10
scenes sourced from three different continents. Specific
details about each scene, including coordinates, area,
average height, number of frames, and main categories,
are provided in Tab.II.

• Number of Images: Each scene contains a sequence of
4⇥5, 800 to 4⇥8, 500 frames captured from four distinct
drone viewpoints, culminating in a total of 242,800
images.

• Image Resolution: Each image has a resolution of 1600⇥
900 pixels.

• Categories: The ground truth annotations include six
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Fig. 7: Trajectories of the first four scenes and forward-looking images at different times. The leftmost images show the
camera trajectories (white curves) from a forward-looking perspective for four scenes. White dots indicate the key points
selected during the trajectory design, with camera poses for the remaining frames obtained using cubic spline interpolation for
a smooth trajectory. The orange, green, and red dots represent the camera’s position at three specific moments, corresponding
to the images shown in the right three columns.

TABLE II: Detailed information of each scene

Scene latitude&longitude Area (km2) Avg Height (m) Frames Main Categories Region
Scene 1 47.62, -122.34 11 205.69 5800 Building, Ship Washington, USA
Scene 2 40.79, -73.96 12 238.31 5800 Vegetation, Building New York, USA
Scene 3 34.67, 135.40 14 297.13 5800 Vegetation, Building Tokyo, Japan
Scene 4 35.65, 139.83 18 396.75 5800 Vegetation, Ship Yokohama, Japan
Scene 5 35.45, 139.96 10 170.13 5800 Building Yokohama, Japan
Scene 6 40.79, -74.12 14 244.24 5800 Vegetation, Water New York, USA
Scene 7 40.80, -73.49 16 235.01 5800 Building, Roads New York, USA
Scene 8 40.79, -74.01 15 245.62 5800 Vegetation, Water Brooklyn, USA
Scene 9 47.46, 8.58 8 112.28 8500 Vegetation, Building Zurich, Switzerland
Scene 10 47.630, -122.346 10 265.09 5800 Road, Others British Columbia, Canada

categories: building, road, vegetation, water, boat, and
other. The distribution of these categories across the
dataset is illustrated in Fig. 8.

• Altitude Distribution: Each scene’s four trajectories are
meticulously designed with a specific altitude distribu-
tion, ensuring a consistent shared viewing area among
different drone perspectives throughout their motion. This
design also facilitates the occurrence of image occlusions
among various viewpoints. Altitude curves in the first
scene are illustrated in Fig. 9.

V. EXPERIMENT

A. Experimental Setup
1) Implementation Details: We perform training on 8

scenes, validation on 1 scene, and testing on a separate scene.

Our network is deployed under the PyTorch framework. We
utilize a single NVIDIA GeForce RTX 4090 24-GB GPU. We
employ the Adam optimizer with a learning rate of 5e-4 and a
weight decay of 1e-8. The learning rate scheduler is configured
to decay by 0.99 after each epoch. A batch size of 1 is utilized,
and the maximum number of epochs is set to 100.

2) Evaluation Metrics: We employ IoU to assess the clas-
sification performance of each category and use the average
F1 score to evaluate the overall segmentation effectiveness of
the network.

The IoU for each category i is calculated using the formula:

IoUi =
TPi

TPi + FPi + FNi

(17)

Where TPi epresents the true positives, FPi represents the
false positives, and FNi represents the false negatives for
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Fig. 8: Pixel count distribution of annotated categories

category i.
The average F1 score is calculated using the formula:

F1avg =
1

C

CX

i=1

2 · Precisioni · Recalli
Precisioni + Recalli

(18)

Where Precisioni is given by TPi
TPi+FPi

and Recalli is given
by TPi

TPi+FNi
.

B. Comparative Experiments
To further strengthen the evidence supporting the effective-

ness of our proposed method and the newly introduced dataset,
LEVIR-MDS, we conducted comparative experiments using
two representative camera-based methods: Cam2BEV [64] and
LSS [11]. We also designed a purely convolutional network
for comparison with our method.

Cam2BEV [64] addresses the challenge of estimating
distances in monocular camera images by transforming the
camera perspective into a corrected BEV image. It uses the
uNetXST model to generate a 360° BEV image from multiple
vehicle-mounted cameras, making predictions for occluded
areas and generalizing well to real-world data using synthetic
training data, outperforming traditional IPM. In our experi-
ments, we retained the core architecture of the uNetXST model
used in Cam2BEV but adapted the input perspective to the
drone’s viewpoint.

LSS [11] explicitly predicts the depth distribution from
monocular images and uses this information to construct
precise 3D features, enabling better performance in BEV tasks.
The model predicts a depth-aware feature map that aligns with

the BEV space, allowing for more accurate scene understand-
ing. In our experiments, we adapted LSS by replacing the
input perspective with the drone’s viewpoint and modified the
output head to match the multi-class segmentation structure
used in our method.

In our CNN-based model, the ViT [22] structure used in the
spatial encoder-decoder of our original network was replaced
with a convolutional architecture, while keeping the rest of
the pipeline intact, to validate the applicability of our dataset
across different model architectures.

The results of the comparison between Cam2BEV, LSS, our
convolutional network, and our proposed method are shown in
Table III. As demonstrated by the table, the results not only
highlight the effectiveness of our method but also demonstrate
the robustness of our dataset in evaluating different approaches
across various methods.

C. Visualization

We visualize the classification results on the test set, as
shown in Fig. 10. In Fig. 10(a), it can be observed that
even with occlusion and non-uniform scales among input
views, the output can still achieve accurate bird’s-eye-view
segmentation results at the given resolution. For example,
the image depicts partially obscured houses and a swimming
pool due to tree cover. In contrast, the CNN architecture
model without the transformer encoder fails to extract effective
spatial information, leading to significant overfitting issues.
Consequently, crucial occlusion details such as the swimming
pool are often lost in the side view. In Fig. 10(b), rural roads
and some small buildings are well predicted by the model.
These are capabilities not possessed by existing methods in
the field of autonomous driving. However, in Fig. 10(c), the
segmentation performance of our model for densely distributed
small boats still needs improvement.

D. Ablation Study

To validate the effectiveness of the three proposed modules
in our network, we conducted ablation experiments using
a pure convolutional network as the baseline, in which the
BEV multi-plane projection and spatial encoder-decoder com-
ponents were directly removed, and the output head was
simplified by eliminating the FPN method. Additionally, we
developed several variants of the model by incrementally
adding different components (Model-v1 to Model-v5) to assess
their contributions. The results are shown in TableIV.

When the multi-plane projection and weighted pooling
modules were removed, the network only demonstrated cer-
tain perception capabilities for large-area features such as
vegetation and water bodies, while its perception capabilities
for buildings and roads significantly decreased. This indicates
that our BEV modeling strategy effectively projects spatial
information, enhancing the perception capabilities for height-
sensitive areas (Building) and space-sensitive areas (Road).
Incorporating FPN into the decoder resulted in improved
performance for categories such as buildings and boats, but
a slight decrease in performance for road categories, which
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Fig. 9: Altitude curves for the four tracks in the first scene

TABLE III: Comparison of performance between Cam2BEV, LSS, our convolutional network, and our proposed method. The
mIoU and F1 scores are the average values across six classes, including “other” category.

Method IoU vegetation IoU building IoU road IoU ship IoU water mIoU" F1"

Cam2BEV [64] 0.5338 0.4105 0.5023 0.7368 0.6847 0.6135 0.4886
LSS [11] 0.3514 0.4793 0.5102 0.7639 0.5770 0.5518 0.3932
CNN 0.4327 0.4279 0.4413 0.6114 0.7082 0.5736 0.4025
Ours 0.5931 0.6536 0.5077 0.8324 0.8362 0.6973 0.5910

we attribute to a trade-off in small-scale target detection and
information complexity.

Additionally, we found that adding the class differentiation
loss function Lcls to the loss function improved detection
performance, indicating that this measure helps amplify dif-
ferences in features between different categories. Experimental
results are presented in TableV.

E. Model Robustness Evaluation

In this study, we conducted a series of experiments to
evaluate the impact of different numbers of camera views
on the performance of multi-view collaborative segmentation
tasks. First, we trained the network using data from four view-
points to ensure that the network could fully learn multi-view
information under optimal conditions. Then, during the testing
phase, we performed experiments using 3 or 4 viewpoints as
the baseline and randomly reduced one viewpoint to simulate
scenarios where some drones are occluded or some cameras

are unavailable, thereby recording the changes in segmentation
performance (such as mIoU and F1 scores). This process helps
us understand the segmentation performance and stability of
the network under different numbers of viewpoints.

To further improve the robustness of the network, we intro-
duced a random camera dropout strategy during the training
process. In each training batch, we randomly closed one
viewpoint or kept the original input to enhance the network’s
adaptability to different combinations of viewpoints. Subse-
quently, we employed the same testing method to evaluate
the effect of this strategy and verified the improvement in
network stability by comparing the experimental results. The
experimental results, as shown in TableVI, indicate that the
network performance gradually improves with an increasing
number of viewpoints. Moreover, by randomly closing some
viewpoints during training, the network demonstrated stronger
robustness and stability when facing viewpoint loss.
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(a)

(b)

(c)

(d)

Input Views CNN-based Model Ours Ground Truth

Fig. 10: Visualization of segmentation results between our model and the CNN-based model

F. Efficiency and Effectiveness

Based on the current model, we obtained four models
with different parameter sizes by modifying the dimensions
of feature vectors in different modules and the number of
layers in the Transformer. For comparative experiments, we
also used a pure convolutional architecture with 46 million
parameters. Additionally, we tested different models using the
same computational resources, and Table 4 presents their pa-
rameter counts, floating-point operations per second (FLOPs),
mean IoU (mIoU), and F1 scores.

We found that our models outperformed the pure convolu-
tional network with the same parameter count (42 million) and
that performance improved with an increase in the number of
Transformer layers.

VI. CONCLUSION

In summary, our work presents RSBEV, a novel ap-
proach for multi-view collaborative semantic segmentation
using bird’s-eye-view (BEV) representation. Leveraging multi-
view side-view images under BEV space supervision, our
framework improves scene understanding by utilizing 3D
scene information and drone collaborative capabilities. Key
contributions include a new task framework that outperforms
traditional methods, a novel algorithm with BEV modeling and
self-attention mechanisms, and a new dataset for validation.
Experiments showed the robustness and adaptability of our
model, highlighting the importance of multi-plane projection,
weighted pooling, and transformer encoder. Evaluation of
model robustness, including varying the number of viewpoints
and implementing a random camera dropout strategy, demon-
strated the network’s stability under suboptimal conditions.

This work marks a significant step towards advancing drone-
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TABLE IV: Ablation studies of different technical components of the proposed method.

Name MPP&Pooling Encoder1 Encoder2 FPN IoU vegetation IoU building IoU road IoU ship IoU water mIoU" F1 "

Base % % % % 0.4175 0.5086 0.3914 0.4110 0.6283 0.4826 0.3475

Model-v1 % ! ! ! 0.5848 0.4614 0.4482 0.8279 0.8001 0.6293 0.5028

Model-v2 ! ! % % 0.4472 0.5839 0.4974 0.3782 0.7658 0.5974 0.4213

Model-v3 ! % ! % 0.4381 0.6042 0.4907 0.3044 0.7623 0.6010 0.4918

Model-v4 ! ! ! % 0.5914 0.6169 0.5149 0.5239 0.7739 0.6851 0.5887

Model-v5 ! % % ! 0.4420 0.6002 0.3426 0.6817 0.6785 0.6003 0.4876

Ours ! ! ! ! 0.5931 0.6536 0.5077 0.8324 0.8014 0.6973 0.5910

TABLE V: Ablation studies of loss functions configurations.

Lce Ldice Lcls mIoU F1
! % % 0.6738 0.5860

! % ! 0.6804 0.6284

! ! % 0.6841 0.6403

! ! ! 0.6973 0.5910

based semantic segmentation and holds promise for applica-
tions across various real-world scenarios.
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