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Abstract—Hyperspectral image synthesis, as an emerging
research topic, is of great value in overcoming sensor limitations
and achieving low-cost acquisition of high-resolution remote
sensing hyperspectral images. However, the linear spectral mixing
model used in recent studies oversimplifies the real-world
hyperspectral imaging process, making it difficult to effectively
model the imaging noise and multiple reflections of the object
spectrum. As a prerequisite for hyperspectral data synthesis,
accurate modeling of nonlinear spectral mixtures has long been
a challenge. Considering the above difficulties, we propose a
novel method for modeling nonlinear spectral mixtures based
on implicit neural representations in this paper. The proposed
method learns from implicit neural representation and adaptively
implements different mixture models for each pixel according to
their spectral signature and surrounding environment. Based on
the above neural mixing model, we also propose a new method
for hyperspectral image synthesis. Given an RGB image as input,
our method can generate an accurate and physically meaningful
hyperspectral image. As a set of by-products, our method can
also generate sub-pixel-level spectral abundance as well as the
solar atmosphere signature. The whole framework is trained
end-to-end in a self-supervised manner. We constructed a new
dataset for hyperspectral image synthesis based on a wide range
of AVIRIS data. Our method achieves an MPSNR of 52.36 dB
and outperforms other state-of-the-art hyperspectral synthesis
methods. Finally, our method shows great benefits to downstream
data-driven applications. With the hyperspectral images and
abundance directly generated from low-cost RGB images, the
proposed method improves the accuracy of hyperspectral image
classification tasks by a large margin, particularly for those with
limited training samples.

Index Terms—Remote sensing, hyperspectral image synthesis,
implicit neural representation, adaptive spectral mixture model

I. INTRODUCTION

HYPERSPECTRAL remote sensing techniques have
unique advantages in many applications such as pre-

cision agriculture [1], environment monitoring [2], and min-
eralogy [3]. In recent years, the rapid development of neu-
ral networks and deep learning has brought new ideas to
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Hyperspectral Image (HSI) processing tasks. However, HSI
processing is more challenging compared with other tasks such
as cloud detection [4], object detection [5], segmentation [6],
etc. Existing deep learning-based remote sensing image pro-
cessing methods benefit from the utilization of high spatial
resolution texture information and heavily rely on a large
amount of pixel-by-pixel annotated training data. However,
due to the limitations of imaging sensors, the cost of obtaining
high spatial resolution data from hyperspectral images is
very high, and large-scale annotation relies on field surveys
by professionals. Therefore, deep learning methods currently
face two main challenges in large-scale hyperspectral image
processing applications: limited spatial resolution and scarcity
of labeled data.

Recent, hyperspectral image synthesis methods [7–9] have
received increasing attention as an emerging research direction
in remote sensing field. Hyperspectral image synthesis aims at
generating hyperspectral images with both high-spectral and
high-spatial resolutions from low-resolution input, which helps
alleviate the sensor limitations. According to different input-
output configurations, recent hyperspectral synthesis methods
are mainly divided into the following three categories: 1)
hyperspectral spatial super-resolution with low-resolution HSI
(LR-HSI) input [7, 10], 2) spectral super-resolution with high-
resolution MSI (HR-MSI) input [8], and 3) image fusion
with both LR-HSI and HR-MSI as input [9]. These methods
generally follow a data-driven approach, using deep learning
networks to learn reconstruction mapping relationships directly
from input-output data pairs. Although the reconstruction
accuracy has been continuously improved, there is still a
long way to go before the practical application of synthetic
hyperspectral images. The main reason is that the existing
hyperspectral image synthesis methods lack the correspond-
ing physical meaning and ignore the causal factors behind
the hyperspectral imaging. The ignored factors include solar
illumination, atmospheric absorption, the spectral mixture of
ground objects, and sensor quantification. As a result, the re-
alisticity and rationality of synthetic hyperspectral data cannot
be guaranteed. Furthermore, the images synthesized by these
methods also lack ground truth labels, resulting in significantly
lower usability.

As a prelude to this paper, our recently proposed physics-
driven hyperspectral image synthesis method PDASS [11]
offers the possibility to address the above problems. PDASS
considers both hyperspectral imaging mechanisms and linear
spectral mixing, and introduces a deep generative network to
generate hyperspectral image data based on the standard USGS
spectral library [12], which ensures the practical physical
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meanings of the synthetic data. Meanwhile, PDASS can restore
the proportion (abundance) of each object (endmember) in the
spectral library in the process of HSI generation. However, the
Linear Mixture Model (LMM) used in PDASS oversimplifies
the real-world hyperspectral imaging process. On one hand,
this assumption makes it difficult to accurately model the
imaging noise and multiple reflections of the object spectrum.
On the other hand, the nonlinear mixture models (NLMMs)
have long been a challenge and are difficult to explicitly model
since they heavily depend on the interactions between the
environment and multiple types of ground features [13–15].

In this paper, we propose an implicit neural spectral mixing
model for modeling nonlinear spectral mixtures. Meanwhile,
we propose a novel method for hyperspectral remote sensing
image synthesis based on the proposed neural mixing model.
We refer to the proposed method as “Implicit Neural Spectral
Synthesis (INSS)”. Given an RGB image as conditional input,
the proposed method first predicts sub-pixel-wise abundance
and then synthesizes the hyperspectral data according to
the neural spectral mixing model and standard spectral li-
brary [12]. For the neural spectral mixing model, the proposed
formulation is inspired by the recent advances in Implicit
Neural Representation (INR) [16–19]. In INR, an object is
usually parameterized by a multilayer perceptron (MLP) that
maps coordinates to a signal. Since the coordinates can be any
continuous values, the INR is naturally suitable for modeling
continuous signals. In our method, since the nonlinear mixing
model also has a continuous form in the physical world,
therefore we represent the nonlinear mixing function by a
multi-layer perceptron (MLP) network which takes in the
continuous pixel coordinates, as well as the abundance and
the spectral library as its inputs. To achieve adaptive spectral
mixing, the parameters of the MLP are determined by the
interaction between different ground features in a pixel-by-
pixel fashion, i.e., adaptively learns a local nonlinear mixing
model for every pixel location. In detail, we design a hyper-
network to generate weight parameters of the MLP network.
The weight parameters may differ from each other at each
pixel location. Furthermore, the mixture model follows the
physical process of multiple reflections of the ground object
spectrum and the order of the nonlinear mixing is represented
by the number of MLP response times. In this way, we can
control the order of the mixture model. The hyper-network is
trained along with the other network components in an end-to-
end manner. As a result, the method not only generates high-
resolution hyperspectral data but also acquires the spectral
abundance and the pixel-wise nonlinear mixture model.

Compared to the LMM-based spectral synthesis, the pro-
posed method has several advantages. First, the causal fac-
tors behind the generated spectral data are recovered more
completely, which means not only the proportion of each
feature (abundance) and the solar atmospheric condition are
clear, but also the nonlinear mixture model for each location
can be obtained simultaneously. Second, the proposed implicit
neural spectral mixing model has a clear physical meaning,
each response of the MLP corresponds to a spectral reflection
process of the ground objects. Third, the spectral reflection
characteristics of the mixing model are pixel-wise determined

by the ground objects and the surrounding environment, in line
with the actual physical meaning.

To verify our method, we build a new wide-range dataset
based on the AVIRIS data. Experiments on the newly collected
dataset verify the effectiveness of the proposed method. The
proposed method outperforms other state-of-the-art methods 1.
We also verify that the synthetic hyperspectral data produced
by our method are of great help for real-world downstream
hyperspectral processing tasks. The main contributions of the
paper are summarized as follows:

1) We propose an implicit neural spectral mixing model
for modeling nonlinear spectral mixtures. We learn from
the implicit neural representation and adopt coordinate-
driven neural networks to represent the spectral mixture
model. The response of the network completely simulates
the multiple reflection law of the spectrum of physical
objects, and the number of responses corresponds to the
order of the mixture model.

2) Based on the neural mixing model, we propose
a new hyperspectral image synthesis method. The
method can generate accurate and physically meaningful
hyperspectral images along with the causal factors includ-
ing the sub-pixel-level abundance, the solar atmosphere
signature and the adaptive mixing model.

The rest of the paper is organized as follows. Section II
introduces the related work of HSI reconstruction and implicit
neural representation. In section III, details of the implicit
neural spectral mixing model and the synthesis method are
described. Section IV provides experimental evaluations on
the effectiveness of the method and the benefit to downstream
tasks. Finally, we draw conclusions in Section V.

II. RELATED WORK

In this section, we give a brief review of hyperspectral image
reconstruction methods. Meanwhile, we introduce the implicit
neural representation and its application to image generation.

A. Hyperspectral Image Reconstruction
Hyperspectral image reconstruction aims at recovering spa-

tial or spectral information from low-resolution input images.
Early hyperspectral reconstruction methods are mainly based
on manual features and optimization [7, 20–28]. These meth-
ods target at preserving the spectral or spatial information
of the input image [22, 25–27] while using regularization
constraints such as sparsity [21, 23], low-rank [20, 23], cor-
relation between bands [7] and non-local similarity [24] to
reconstruct the missing details. Since the same spatial sparse
encoding is shared by the input and the synthesized output,
dictionary learning and tensor factorization are widely used in
HSI reconstruction [9, 29–41]. Dictionary learning is mainly
used to refine the spectra after optimization [9, 29–31] and
tensor decomposition methods are usually combined with the
non-local similarity of HSIs [35–38]. With the development
of convolution neural networks (CNNs), fully-data-driven HSI

1The dataset and our code are publically available at http://levir.buaa.edu.
cn/Code.htm.

http://levir.buaa.edu.cn/Code.htm
http://levir.buaa.edu.cn/Code.htm
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generation methods take advantage of the powerful CNN
structure [42–66]. There are mainly four categories of the
CNN-based HSI generation methods: attention of the band
correlation [42–47], simulation of the degradation process [48–
52], improvement of the structure [53–61] and utilization of
the imaging prior [62–64]. For example, the MS3 method
provides a cluster-based multi-branch backpropagation neural
network based on super-pixel segmentation [65].

These methods achieve continuous improvement in the
accuracy of HSI generation. However, they still fail to alleviate
the problem of limited HSI annotation. In this paper, we
propose a hyperspectral data synthesis method based on a non-
linear mixture imaging model, which generates hyperspectral
data along with the corresponding label (abundance map).

B. Implicit Neural Representation and its Application on
Image Synthesis

Implicit Neural Representation (INR), also known as
coordinate-based representations [19], provides a new way
to parameterize signals based on neural networks. Different
from the traditional rasterized representation, INR realizes a
continuous representation of the signal. The input of INR is
usually the position in the signal, such as the coordinates
of the pixels in an image, and the output is the value of
the position, such as the RGB value of the pixel [17]. The
mapping between the position and the value of the signal
is continuous and cannot be expressed explicitly. INR rep-
resents the implicit mapping with neural networks, mainly by
multi-layer perceptrons (MLPs) [16]. INR has the following
advantages due to the continuity of representation: first, INR
is resolution free since the input coordinates can take arbitrary
decimals [16]. Second, INR can convert non-differentiable
problems into differentiable which can be solved by back-
propagation [67]. Finally, the parameters of the neural network
can be given by hyper-networks or meta-learning, making the
mapping flexible [68].

INR is originally proposed for 3D scene representation
and novel view synthesis [16, 19]. To achieve an accurate
representation of high-frequency signals, methods such as
position encoding [69] and SIREN (SInusoidal REpresentation
Networks) [18] have been proposed successively. Thanks to
the property of resolution independence, INR is naturally
suitable for image generation [70, 71] and super-resolution
tasks [17, 72]. Local Implicit Image Function (LIIF) inputs
the latent code related to the image content as well as the
distance between the current location and the center of the
latent code to obtain the RGB value of the position [17]. To
solve the shape distortion of high-frequency prediction in LIIF,
UltraSR designs residual MLP to replace MLP in LIIF [72].
Image generation methods based on INR often combine with
styleGAN [73], generating images from latent code [68, 70,
71]. ALIS (Aligning Latent and Image Spaces) obtains the
modulation parameters of the AdaIN (Adaptive Instance Nor-
malization) [74] module of each coordinate through MLP and
achieves spatial continuous generation by the movement of
the anchor [70]. Similarly, CIPS (Conditionally-Independent
Pixel Synthesis) uses MLP to learn modulation vectors while

allowing pixel independence via additional position encoding
input [71]. Different from ALIS and CIPS, INR-GAN uses a
hyper-network to predict the parameters of the MLP, directly
adjusting the generator weights [68]. ASAPNet (A Spatially-
Adaptive Pixelwise Network) provides a fast image translation
method, processing each pixel individually [75]. Moreover,
Functa transforms the image data into function space and
performs classification tasks in the function space [76].

In our paper, we also use INR to represent a continuous
nonlinear mixture model. We represent the mixture model with
MLP and learn from INR to set pixel-independent parameters
for the model.

III. PROPOSED METHOD

In this section, we start with the proposed implicit neural
spectral mixing model and then introduce the new method of
image synthesis, loss functions, implementation details, etc.

A. Implicit Neural Spectral Mixing Model
In this paper, we follow the earth surface reflection model

in [11] and assume the spectrum of the ground object after
primary reflection can be expressed as follows:

y = ' · r, (1)

where ' represents the solar atmospheric absorption signature
and r represents the spectral reflectance of the ground object.
The notation · represents element-wise multiplication of the
two vectors. If there is no multiple reflection or interaction
between distinct endmembers, the energy received by a single
pixel from the sensor can be represented by the Linear Mixture
Model [77]:

l = t ·
NgX

i=1

↵iri + n,

↵i � 0; ↵>1 = 1.

(2)

In Eq. 2, Ng represent the number of spectra. ri represents
a single spectrum (endmember) in the spectral library R 2
RK⇥Ng = [r1, . . . , rNg ]. K represents the band number of the
spectra. t = q' denotes the atmospheric absorption factors '
with sensor quantification correction q.

In practice, the light travels with multiple interactions
among distinct endmembers during the imaging of complex
remote sensing scenes. In this case, complex nonlinear mixing
is involved, which is difficult to express explicitly. Therefore,
We introduce an implicit neural spectral mixing model. In
detail, we apply multi-layer perceptron M to represent the
complex response of each order (reflection one time) as shown
in Fig. 1. The parameters of M are pixel-wise adaptive, thus
realizing an adaptive spectral mixing model N .

To fully simulate the reflection effect of surrounding objects,
we propose the following two design ideas. First, each point-
wise mixture model Mp takes both the pixel’s coordinates
p and its abundance Ap as input. Second, the neural mixing
models are parameterized with spatially varying parameters �p

transformed from the object features. Specifically, each Mp

defines the following mapping:

Mp(Ap, p) = Mp(Ap, p|�p,R) =: xp. (3)
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Fig. 1. An overview of the proposed method. Given an input RGB image, we introduce a U-Net based abundance prediction network F to generate pixel-wise
spectral abundance maps. Then the hyperspectral image is synthesized with the abundance map and the standard spectral library following the implicit neural
spectral mixing model. The model is pixel-wise adaptive and represented by MLPs whose parameters are from the feature transform network T . All networks
can be trained in an end-to-end manner with self-supervised reconstruction losses.

In the above equation, all mixture models (M) share the output
layer which takes the spectral library R as layer parameters.
The feature before the output layer represents the respective
reflection of Ng ground objects and the output xp denotes the
band response in current order to the previous one.

Here, the output at position p of the kth order ek
p

can be
represent with the kth order response xk

p
:

ek
p
= ek�1

p
· xk

p

xk

p
= Mk

p
(Ap, p).

(4)

Mk

p
represent the mixture model of kth order at location p. In

this way, the full representation of the implicit neural spectral
mixing model can be written as follows:

Np(Ap, p|�p,R) = lp + e2
p
+ . . .+ ek

p
+ . . .

= lp +M2
p
· lp + . . .

= lp +
NX

k=2

 
lp ·

kY

i=2

Mi

p

!
,

(5)

where
Q

k

i=2 denotes element-wise multiplication, lp = e1
p

denotes the linear mixture at p as shown in Eq. 2, and Np is
the summation of each order output. Under model N , different
abundance yield different sets of per-pixel parameters. This in
turn means each pixel has an adaptive mixing model varying
across space.

B. Generating Pixel-wise Parameters for the Neural Mixing
Model

Given the neural spectral mixing model N and the ground
object feature surroundings, we predict �p based on an abun-
dance prediction network F . Predicting a parameter vector �p

for each pixel independently is prohibitive. Instead, we predict
the parameter with a convolutional network T , operating on a
much lower resolution feature fl from the U-Net decoder in
F . In practice, the feature transform network T predicts a grid
of parameters at D⇥ smaller resolution than the RGB image
x, which has the same resolution as the input fl. The grid is
then D times upsampled to the same resolution of the image x
using nearest interpolation, thus obtaining a parameter vector
�p for the adaptive neural mixing model Np:

�p = [upsample(T (fl), D)]p. (6)

The adaptive neural mixing model needs pixel-wise different
parameters, while �p is predicted at a low resolution and then
upsampled by nearest interpolation. This limits the ability of
the mixing model to synthesize high-frequency details. We
avoid this limitation by augmenting Mp to take an encoding
of the coordinate p as additional input [69]. We encode each
component of the 2D pixel position p = (px, py) as a vector of
sinusoids with frequencies according to the upsampling factor
D. Specifically, in addition to the abundance Ap, each MLP
takes the following additional inputs:

E(px) =
�
sin (2⇡px/2

k), cos (2⇡px/2
k)
�

E(py) =
�
sin (2⇡py/2

k), cos (2⇡py/2
k)
�

k = 1, 2, . . . , log2(D).

(7)

Here, (px, py) denotes p’s relative position to the center of
�p, which means the same �p shares by a local patch similar
to [17]. With different positional encode as input, a pixel-wise
adaptive neural mixing model is realized.
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C. Image Synthesis with the Neural Spectral Mixing Model
To synthesize the hyperspectral images, instead of using the

linear mixture model, we start from the neural spectral mixing
model (Eq. 5), and consider multiple factors including solar
atmospheric absorption, the abundance map, and the standard
USGS spectral library. The synthesis process mainly involves
the abundance prediction network F , the feature transform
network T , the mixing model N and the spectral library R.
An overview of this process is shown in Fig. 1.

Given an RGB image x as conditional input, the abundance
prediction network F recovers the abundance maps A for each
object in R at each pixel:

A = F(x|✓f ), (8)

where ✓f denotes the trainable parameters in F . W ⇥ H is
the spatial size of x. A 2 RNg⇥W⇥H . Meanwhile, we take
the feature map fm from the decoder of F as input of the
feature transform network T . The parameters of the mixture
model N can be generated as follows:

� = T (fm|✓t), (9)

where ✓t denotes the trainable parameters in T . Finally, the
spectrum at pixel location p can be synthesized with the
spectral library R, the abundance A and the neural mixing
model N :

sp = Np(Ap, Ep, t|�p,R)

= Np(F(x|✓f )p, Ep, t|T (fm|✓t)p,R),
(10)

where Ep = (E(px), E(py)) represents the position encoding
at p. t denotes the solar atmospheric factor with sensor
quantification, which is optimized along with the ✓f ,✓t during
the training process.

D. Loss Functions
The proposed method is trained in a self-supervised learning

framework. Given a hyperspectral image S, we compose a
spectral down-sampled version x(S) with only R,G,B channels
and put it into F for the reconstructed hyperspectral image
Sr. The goal of the training process is to make Sr similar
to the original image S. Here we introduce five groups of
loss functions:1) pixel similarity, 2) spectral angle mapping,
3) HSV color similarity loss, 4) regularization loss on multiple
reflections, and 5) adversarial losses. Let sl denotes the
spectrum in S at location l and srl denotes the spectrum in
Sr at that location.

1) pixel similarity: The pixel similarity loss is defined as
the pixel-wise L1 distance between Sr and S. Meanwhile, we
find the synthesis errors are different for each band, so we
design band-wise weight L1 loss. In practice, we compute the
variance of each band and weighted the L1 loss of each band
according to the variance:

Lpxl = ES⇠DS{kS � Srk1 ·w},
= EI⇠DI ,l⇠Il{ksl � srlk1 ·w}

(11)

where DS is the training dataset of hyperspectral images. Il
is the total pixels in image S. w is the variance vector of
each band, which is normalized to kwk1 = 1 through w =
w/kwk1.

2) Spectral angle mapping: The spectral angle mapping
loss is defined as the cosine similarity between the real
spectrum vector and the synthesis one. The loss is written
as follows:

Lcos = ES⇠DS{cos< S, Sr >},
= EI⇠DI ,l⇠Il{cos< sl, srl >},

(12)

where the cosine distance between two vectors s1 and s2 is
defined as follows:

cos < s1, s2 >=
sT1 s2p

ks1k22ks2k22
. (13)

3) HSV color similarity: The HSV color similarity loss is
designed to avoid color distortion of the synthesis spectra. The
loss constrains the distance between the HSV color space of
the images:

Lhsv = ES⇠DS{khsv(x(S))� hsv(x(Sr))k1}, (14)

where hsv(·) denotes the transformation from an RGB image
to an HSV color image.

4) Regularization loss on multiple reflections: Since the
spectrum is mainly from the linear mixing part, we regularize
the non-linear part by adding losses on multiple reflections. In
practice, we use the L1 norm of the residual image Sr�Lr as
loss, where Lr = {lp|p = (px, py), x 2 (0, H), y 2 (0,W )}
denotes the linear mixture part in Sr.

Lreg = ES⇠DSkSr � Lrk1 (15)

5) Adversarial losses: To overcome the ill-posedness of
the abundance prediction and mixture model, we follow the
conditional adversarial training framework [78, 79]. Once used
the adversarial loss, we may alleviate the blur of the synthesis
image and improve the visual reality. The joint discriminative
learning in our previous work [80] is adopt, the conditional
spatial discriminator Dspat and the spectral discriminator
Dspec follow the same design in [80]. The adversarial losses
are defined as follows:

Lspat

adv
= ES⇠D logDspat(S)

+ ES⇠D log(1�Dspat(Sr))

Lspec

adv
= ES⇠D logDspec(S)

+ ES⇠D log(1�Dspec(Sr))

Ladv = Lspat

adv
+ Lspec

adv
.

(16)

The above losses are trained with a minimax optimization
process, where the F , T try to minimize this objective while
the two discriminators try to maximize it:

min
F,T ,t

max
Dspat,Dspec

Ladv. (17)

6) Total loss: The proposed method can be trained in an
end-to-end manner since all the components are differentiable.
The total loss is defined as follows:

Ltotal = Lpxl + �1Lcos + �2Lhsv + �3Lreg + �4Ladv, (18)

where �1, �2, �3, and �4 are the pre-defined weights for
balancing different loss terms. We set the solar atmospheric
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absorption t as all trainable variables. The final loss functions
are trained by solving the optimization problem below:

✓⇤
f
,✓⇤

t
, t⇤ = arg min

✓f ,✓t,t
max

✓spat
D ,✓spec

D

Ltotal. (19)

Although there are no losses or constraints attached to t and
the abundance A, they are trained as implicit variables all
together with other network parameters.

E. Implementation Details
1) Spectral Library: We use the same spectral library

as [11] for spectra synthesis. The spectral data is from the
standard USGS Spectral Library [12]. In 2014, the library
released its version 7 and we choose the AVIRIS 2014 subset
in USGS-v7, which consists of 7 types of objects’ spectra, in-
cluding artificial materials, coatings, liquids, minerals, organic
compounds, soils and mixtures, and vegetation. We remove all
the spectra from minerals, organic compounds, and chemical
reagents of artificial materials. The final spectral library used
for experiment consists 345 spectra, i.e., Ng = 345.

2) Network Architecture: We design the abundance pre-
diction network F with a U-Net [81] backbone. We use
the residual blocks [82] to replace the convolution layer
in the encoder for deep spatial-spectral feature extraction.
Meanwhile, skip-connections are adopted to fuse features of
different semantic depths with element-wise addition. The
backbone network consists of 6+6 residual blocks and the
upsampling of the features in the decoder is conducted by
bilinear interpolation upsampling followed by a convolution
layer, which avoids checkerboard artifacts. The output layer
adopts softmax normalization along the channel dimension
for the Ng abundance to meet the non-negative and sum to
1 constraint.

The feature transform network T is designed with 2 con-
volutional layers without changing the feature resolution. In
practice, we choose the feature 24 = 16 times down-sampling
from the original resolution in the decoder of F . The first layer
is designed with 64 3⇥3 convolution followed by a reflection
padding layer with padsize=1. The second layer is a 1 ⇥ 1
convolution layer. The dimension of the output of T depends
on the number of parameters in the mixture model N .

Each MLP in N consists two hidden layers, the dimension
of each MLP is set to (Ng +4⇥ logD2 , 32,Ng , K), where D =
16. The parameters of the output layer come from the spectral
library R and others come from the feature transform network
T . We choose 0.1 ⇥ tanh as the activation function for the
output layer and leaky ReLU for others. Especially, we finally
choose the order of the neural mixing model as 3, which means
N consists of two MLPs.

3) Training details: During the training phase, we ran-
domly select 256⇥ 256 patches from the training images. We
set the loss weights �1 = 10, �2 = 0.1, �3 = 1 and �4 = 0.01
and optimize the two discriminators once after each 3 iters
of the other networks. The whole framework is trained with
Adam optimizer [83] and the cosine learning rate [84] after
20 initial epochs with the max-iteration number 80. The initial
learning rate is 10�5 for the discriminators, and 10�4 for other
parameters.

IV. EXPERIMENT

A. Datasets and Experimental Setup
We collect a new dataset from the NASA Jet propulsion lab-

oratory (JPL), which is collected by the well-known AVIRIS
sensors 2. The dataset contains 6 scenes of hyperspectral im-
ages with a spatial resolution of approximately 3m, with 224
channels. To eliminate the influence of water absorption bands,
we remove the bands [104-114, 152-168] during the training
and evaluating processes. The RGB images are conducted
from bands 35, 18 and 8 from the hyperspectral images. We
choose one scene of image for validation, one scene for testing
and the rest for training, with all the images cropped into
512⇥512 patches (train: 330 patches, validation: 66 patches,
test: 76 patches). Moreover, the test patches are divided into
256⇥256 to meet the GPU memory limitation.

We compared our method with four state-of-the-art
hyperspectral synthesis methods, including FMNet [54],
R2HGAN [80], HSRNet [57], HSCNN+ [66] and PDASS [11].
FMNet [54] uses multiple branches to learn spatial information
of adaptive receptive field, while HSRNet [54] conducts group
reconstruction according to the spectral response function
(SRF). HSCNN+ [66] designs efficient networks with residual
blocks. R2HGAN [80] synthesizes hyperspectral data with
joint discriminative learning and PDASS [11] synthesizes HSI
with the linear mixture model. All the experiments are con-
ducted on a desktop PC with an Intel (R) Core (TM) i7-7700K
CPU @ 4.20GHz and an NVIDIA GeForce GTX 1080 GPU.
For a fair competition, all methods are optimized adequately
and five criteria are used for evaluation, including RMSE
(Root Mean Squared Error) [27, 39], MRAE (Mean Relative
Absolute Error) [64], SAM (Spectral Angle Mapper) [53],
MSSIM (Mean Structural SIMmilarity) [27, 61] and MPSNR
(Mean Peak Signal-to-Noise Ratio) [27, 61]. The MPSNR is
the mean of PSNR in each hyperspectral band. The PSNR
value of each band is in direct proportion to the negative
logarithm of the RMSE of that band. Detailed calculation of
the indicators can be found in [80].

B. Comparison with Other Methods
The synthesized images by different methods are shown in

Fig. 2. To better illustrate, the false-color images (bands 35, 18,
and 8) and the MPSNR score are compared. We can see that
HSCNN+ [66] has obvious structural damage and color devi-
ation in building areas. FMNet [54] reconstructs images with
undesired color deviation. The same phenomenon happens
with PDASS [11], which is caused by the incompleteness of
the linear mixture model. The hyperspectral images generated
by R2HGAN [80], HSRNet [57] and our method are visually
indistinguishable from real images. In addition, our method
achieves a higher MPSNR than other methods, which can be
also found in Table I.

As shown in Table I, our method achieves the best re-
construction accuracy except for the RMSE metric on the
AVIRIS dataset. Our method makes a significant improvement
on MRAE from 0.2165 (PDASS [11]) to 0.1913. For RMSE,

2The data is collected from https://aviris.jpl.nasa.gov/dataportal.

https://aviris.jpl.nasa.gov/dataportal
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1 R2HGAN (39.600) 1 FMNet (49.594) 1 HSRNet (51.038) 1 HSCNN+ (50.254) 1 PDASS (50.735) 1 INSS (51.967) 1 Real

2 R2HGAN (40.680) 2 FMNet (49.965) 2 HSRNet (51.425) 2 HSCNN+ (51.996) 2 PDASS (51.280) 2 INSS (52.874) 2 Real

3 R2HGAN (47.606) 3 FMNet (50.333) 3 HSRNet (52.448) 3 HSCNN+ (52.114) 3 PDASS (52.036) 3 INSS (53.897) 3 Real

4 R2HGAN (42.759) 4 FMNet (49.165) 4 HSRNet (50.354) 4 HSCNN+ (49.664) 4 PDASS (48.745) 4 INSS (51.106) 4 Real

Fig. 9. False-color image of the recovered HSI for six typical test patches, Each row represents the effect of different methods on the test patches, and each
column represents the different test patches of the same method. Numbers before the methods represent different test patches and the end ones represent the
PSNR of the generated HSI. For example, 1 HSRNet (27.478) means it shows the false-color image of generated HSI of image 1 by HSRNet, and the PSNR
of the HSI is 27.478.

of it is higher than real sensor imaging. SL-HGAN has the
closest response to real sensor imaging, contains even less
noise than the real band.

Table IV shows the performance of different comparison
methods on various indicators, including MRAE, RMSE,
SAM, MSSIM and MPSNR. The spectra generated by the
methods are shown in Fig. 11. From Table IV and Fig. 11, we
can find that HSRNet has an unauthentic generation and the
pixel-wise error is even more than three times the real spectral
reflectance. The spectra generated by HSRNet (shown in Fig.
11(a)) have many abnormal peaks as high as the maximum
imaging range 65535.

HSCNN+ uses DenseNet to learn the mapping between
RGB images and HSI, and gets reliable MPSNR as 38.95
and MSSIM as 0.9455. The spectra generated from HSCNN+
have a similar shape to the real ones, but the response values
are far from the real spectra. FMNet designs pixel-aware
receptive field and improves all the five indicators compared
with HSCNN+. Especially, the SAM of the FMNet decreases
42% from that of HSCNN+ and the spectra in Fig. 11 are
much more closer to the real ones than HSCNN+. However,
the spectra of FMNet of some objects such as road in (a) and
artificial turf in (e) still have shape deviation of the local band
compared with the real ones.

R2HGAN and SL-HGAN have good reconstruction re-
sults, the MPSNR of R2HGAN has been promoted 4.0323
from 42.8291of FMNet to 46.8614. The spectra generated
by R2HGAN are closer to the real ones than HSCNN+ and

FMNet as shown in Fig. 11. There are still some cases that
R2HGAN behaves not very well. For example, the spectrum
of soil in (b) generated by R2HGAN is quite different from
the actual spectrum at wavelength 700-1100nm.

Compared to R2HGAN, SL-HGAN recovers spectra
through the abundance inversion of objects in the spectral
library, so that the spectra have more actual physical meaning.
The recovery effect outperforms R2HGAN and other methods
except on MRAE. The MRAE of SL-HGAN is 0.076, which is
similar to the best 0.075 of R2HGAN. The MPSNR achieved
47.56 and MSSIM reached 0.9879, which improve the relia-
bility of spectral recovery through abundance inversion. The
spectra recovered from SL-HGAN are closest to the real ones
as shown in Fig. 11.

TABLE IV
A COMPARISON OF DIFFERENT METHODS ON OUR DATASET. FOR RMSE,
MRAE, SAM A LOWER SCORE INDICATES BETTER, WHILE FOR MSSIM

AND MPSNR A HIGHER SCORE INDICATES BETTER.

Method RMSE # MRAE # SAM # MSSIM " MPSNR "

HSRNet 19899.24 3.4615 1.1257 0.765 29.7306
HSCNN+ 986.6544 0.1737 0.1515 0.9455 38.9456

FMNet 697.9392 0.1177 0.0875 0.9729 42.8291
R2HGAN 466.7432 0.075 0.0596 0.9861 46.8614
R2HbSL 406.3703 0.076 0.0553 0.9879 47.5641

Fig. 2. False-color visualization (band No. 35, 18, and 8) of the synthesis hyperspectral image with different methods: R2HGAN [80], FMNet [54], HSRNet [57],
HSCNN+ [66] PDASS [11], and INSS (Ours). The reconstruction MPSNR is given along with the image ID. For example, 1 R2HGAN (39.600) means the
result of R2HGAN [80] on test image #1 with MPSNR equals 39.600.
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(b) Gravel
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(c) Parking lot
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(d) Grass
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(e) Building
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(f) Asphalt road

Fig. 11. Comparison of generated spectra by SL-HGAN with state-of-the-art methods. (a) shows the spectra generated by all the five methods, the HSRNet
generated spectra abnormal for all pixels, which has many peaks out of the normal spectral range. (b-f) eliminate the spectra recovered by HSRNet to facilitate
comparison.

(a) Recovered SAA

(b) Real Spectrum of Solar Radiation [83]

Fig. 13. The recovered Solar atmospheric absorption and the real spectrum
of solar radiation.

increases the diversity of spectra and the difficulty of discrim-
inating spectral rationality. We propose a remote sensing gen-
eration method based on spectral library, instead of recovering
the HSI as a 3D data cube, we restore the remote sensing HSI
from the imaging process. We invert the abundance map of
ground objects from RGB image input and establish a remote
sensing HSI imaging model to recover HSI. The HSI imaging
model is based on the LMM and takes the solar atmospheric
absorption into account. The image-independent SAA and
the abundance map are solved implicitly by constraining the
distance between the HSI reconstructed and the real one. The
experiment verifies that SL-HGAN can reconstruct HSI ac-
curately, which exceeds other state-of-the-art methods. At the
same time, it is heartening that the recovered solar atmospheric
absorption is consistent with that from previous research of
solar radiation analysis. In addition, the inverted abundance
map of the ground objects contains the distribution information
of the RGB image, which can be used to realize sub-pixel
image parsing and segmentation. Codes of our SL-HGAN are
available on http://levir.buaa.edu.cn/Code.htm.
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Fig. 3. Spectral curves on six objects generated by different methods: R2HGAN [80], FMNet [54], HSRNet [57], HSCNN+ [66], PDASS [11], and INSS
(Ours).



IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2022 8
IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2021 13

R2HGAN 3 FMNet 3 HSRNet 3 HSCNN+ 3 PDASS 3 INSS 3 real HSI 3

R2HGAN 20 FMNet 20 HSRNet 20 HSCNN+ 20 PDASS 20 INSS 20 real HSI 20

R2HGAN 80 FMNet 80 HSRNet 80 HSCNN+ 80 PDASS 80 INSS 80 real HSI 80

R2HGAN 200 FMNet 200 HSRNet 200 HSCNN 200 PDASS 200 INSS 200 real HSI 200

R2HGAN 224 FMNet 224 HSRNet 224 HSCNN 224 PDASS 224 INSS 224 real HSI 224

Fig. 10. Different bands of the generated HSI on three test images. Each row represents the effect of different methods on the same band, and each column
represents the different bands of the same method to generate HSI. Numbers before the methods represent different test images and the following ones
represent the index of the band. For example, 1 MsCNN 30 means it shows the 30th band in the HSI generated for image 1 by MsCNN.

D. Analysis of the Recovered SAA and Abundance Map

In Fig. 13, we show the restored solar atmospheric ab-
sorption spectrum recovered from the SL-HGAN in (a), and
the real spectrum of solar radiation [83] is demonstrated in
(b). In (b), we paste the recovered SAA on the spectrum of
solar radiation from [83]. It can be found that the recovered
solar atmospheric absorption spectrum is consistent with the
actual sunlight at sea level after atmospheric absorption. Near
wavelength at 750nm and 950nm, there are oxygen (O2) and
water (H2O) absorption bands respectively in the sunlight
at sea level. The restored SAA managed to learn the trend
of sunlight at sea level in (b), the irradiance rising from
wavelength at 380nm, max out at wavelength around 500nm,
and then start dropping till 1050nm. Meanwhile, the recovered
SAA successfully restored the trough of oxygen and water
absorption.

The inverted abundance map of the objects is shown in
Fig. 14. We combined the abundance of objects of the same
category to show it. For example, Fig. 14(a) shows the
abundance map of all objects belonging to artificial materials.

The abundance of the ground objects is mainly distributed
in artificial materials. The buildings and cars have a high
percentage of artificial materials, almost above 0.6. The coat-
ings have very little abundance distribution because we see
less paint from an aerial view. The abundance of soils and
mixtures mainly appears on roads, it is mainly because the
roads are paved with a mixture of artificial materials and soil
mixtures including gravel, stones, etc. The grass and tree are
evident in the abundance map of vegetation. Since there is
almost no water body, the abundance of liquids is small at
most pixels, only some pixels under the shadow are given a
certain proportion. We can regard the abundance distribution
of liquids as a shadow distribution. In a word, the recovered
abundance map is consistent with the distribution of actual
objects, the abundance inversion is valid.

V. CONCLUSION

The phenomenon of spectral mixing generally exists in
remote sensing HSI due to the low spatial resolution, which

Fig. 4. Band compare of the generated hyperspectral images. Each row contains a particular band generated by different methods: R2HGAN [80], FMNet [54],
HSRNet [57], HSCNN+ [66], PDASS [11], and INSS (Ours). Each column shows different bands of one method.

TABLE I
RECONSTRUCTION ACCURACY OF DIFFERENT METHODS ON AVIRIS

DATASET. FOR RMSE, MRAE, AND SAM, A LOWER SCORE INDICATES
BETTER, WHILE FOR MSSIM AND MPSNR A HIGHER SCORE IS BETTER.

Method RMSE # MRAE # SAM # MSSIM " MPSNR "

R2HGAN 2051.48 14.745 0.2621 0.9612 41.7964
FMNet 320.33 0.3055 0.1533 0.9759 49.7225

HSRNet 301.31 0.2327 0.1344 0.9796 51.8475
HSCNN+ 317.15 0.2150 0.1404 0.9787 51.3637
PDASS 334.39 0.2165 0.1317 0.9762 50.9376

INSS (Ours) 304.04 0.1913 0.1238 0.9801 52.3584

our method ranks second only higher than HSRNet [57], where
the MRAE and SAM are much higher than ours.

The comparison on spectral curves and different bands are
shown in Figs 3, 4. We can see that FMNet [54], HSRNet [57]
and HSCNN+ [66] tend to generate spectral curves which are
not as smooth as the real ones. For example, the generated
spectra of gravel by the three methods has spectral deviation
at wavelength 1500-1800nm and 2000-2500nm as shown in
Fig. 3(b). The spectra of grass have the same phenomenon

at wavelength 700-900nm (Fig. 3 (d)). The spectral curves
of R2HGAN [80] are visually similar to that of FMNet [54],
HSRNet [57] and HSCNN+ [66], but there are some abnormal
spectra, in which the spectral reflection values at some bands
are close to the maximum value. The abnormal values can be
found in band 224 in Fig. 4, with unexpected highlight pixels.
Therefore, the indicators of R2HGAN [80] perform poorly
even with good false-color images and some fine spectra.
PDASS [11] generates spectra similar to the real ones except
for certain bands of some objects. As shown in Fig. 3 (d),
PDASS generates spectra with deviation at wavelength 700-
1100nm. INSS compensates for these deviations through the
neural mixing model and generates spectra closer to the real
ones.

In Fig. 4, five typical bands of the generated hyperspectral
images by all methods are shown. It can be found that
R2HGAN [80], FMNet [54], HSRNet [57] and HSCNN+ [66]
lost spatial information in band 224. Moreover, FMNet [54]
loses most spatial information in almost all bands except
band 20. PDASS [11] and INSS (Ours) recover more spatial
information, especially on some bands where many sensor
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Fig. 5. Error images of different methods in RMSE and SAM metrics, where the lower value denotes the higher reconstruction accuracy. (a) the RMSE
visualization, (b) the SAM visualization.

noises exist, such as band 3 and band 224. The rich spatial
information is due to the band recovery with the help of the
standard spectral library, which avoids the noise in the real
image brought by the sensors.

The maps of different methods on RMSE and SAM of
the fourth test image in Fig. 2 (test image #4) are shown in
Fig. 5. From the RMSE map in Fig. 5 (a), it can be found
the value of INSS (Ours) is obviously lower than others,
especially in the areas of highlighted and residential buildings.
The visualization is consistent with the RMSE values of the
image, where INSS (Ours) gets the lowest RMSE of 261.98.
From Fig. 5 (b), INSS (Ours) and HSRNet [57] have visually
better performance on SAM than other methods. When we
carefully compare the highlight building in the upper center,
the area of vegetation in the lower left corner and the left road
area of the image, we can find INSS has lower SAM values
than HSRNet, which is corresponding to the SAM value of
the image (0.0845 for INSS and 0.0928 for HSRNet [57]).
Therefore, INSS (Ours) has the lowest RMSE and SAM on test
image #4, which denotes the highest reconstruction accuracy.

C. Ablation Studies

We conduct ablation studies on different technical compo-
nents of our method, including the order of the spectral mixing
model, the design of the mixing model, the downscale factor
of the feature transform network T , whether detach gradient
on T , and the loss functions. All the ablation experimental
results are shown in Table II.

1) Order of the neural spectral mixing model: In experi-
ments 6-9 of Table II, we study the order of the neural spectral
mixing model. We find the reconstruction accuracies of 2-order
and 3-order models reach a high level (experiments 7 and
8). The hyperspectral images generated by the linear mixture
model (1-order) decrease sharply in accuracy (experiment 6).
For example, the MPSNR decreases from 52.2778 to 50.9376.
When the order of the model is raised to 4 (experiment 9),
the reconstruction accuracy is slightly lower than that of the
3-order model. Therefore, we choose the 3-order model as our
final setting.

2) Design of the neural spectral mixing model: In exper-
iments 10-12 of Table II, we study the design of MLPs in

the neural mixing model. Nh�layer denotes the number of
hidden layers and Nneuron denotes the number of neurons in
the hidden layer. From experiments 8 and 10, we find that
increasing the number of hidden layers (from 2 to 3) cannot
lead to improved accuracy. Moreover, when we set the hidden
layer number as 1, the number of MLP parameters increased
largely and the model cannot get reasonable results. Therefore,
the hidden layer number is set to 2. For experiments 11 and
12, the number of neurons in the hidden layer is changed to
16 and 64 respectively and the synthesis accuracy is barely
affected by it. In conclusion, we chose Nh�layer = 2 and
Nneuron = 32 for balance of the number of parameters and
the reconstruction accuracy.

3) Downscale factor of T : We experiment on different
downscale factors of the feature transform network T by
changing its input. Since there is no spatial resolution change
in T , the different input feature denotes a different downscale
factor D in Eq. 6. As shown in experiments 4 and 8 in Table
II, the downscale factor is set to 23 = 8 and 24 = 16,
respectively. There is not much difference in accuracy between
the two experiments, which indicates the robustness of the
downsampling factor to the mixing model.

4) Whether detach on the input of T : We evaluate the
effect whether detach gradient of the input of T in Table II
experiments 3 and 5. When the gradient of T is detached,
the reconstruction accuracy has a slight decrease. Therefore,
we input the feature 24 = 16 times downscaled to T without
detaching the gradient as summarized from experiments 3, 4,
5, and 8.

5) Loss functions: For the loss functions, we experiment on
the weighted L1 loss and the HSV color loss. We compare the
pixel-wise L1 loss whether using weights on different bands or
not. As shown in experiment 1 of Table II, without weighted
L1 loss Lband, the focus of the optimization is shifted to errors
where the change is not obvious. All the indicators are getting
worse especially the MPSNR, which decreases from 52.3584
to 52.095. Therefore, the weighted L1 loss is critical for the
reconstruction of the AVIRIS dataset since there are many
bands to generate. Meanwhile, we attempt to remove the HSV
color loss and find a slight decrement in the accuracy as shown
in Table II experiment 2.

In conclusion, the parameter settings have little influence on
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TABLE II
ABLATION STUDIES OF DIFFERENT SETTINGS OF THE METHOD, † DENOTES THE FINAL SETTING OF INSS.

Name Order Nh�layer Nneuron D Detach Lband Lhsv RMSE # MRAE # SAM # MSSIM " MPSNR "

1 % 311 0.1963 0.1246 0.9792 52.095
2 % 309.88 0.193 0.1241 0.9794 52.1829
3 23 ! 312.3 0.196 0.1251 0.9791 52.1018
4 23 % 309.41 0.1942 0.1245 0.9795 52.1574
5 24 ! 311.57 0.1967 0.1259 0.9791 52.1019

6 1 334.39 0.2165 0.1317 0.9762 50.9376
7 2 306.59 0.1921 0.1237 0.9798 52.2778
8† 3 2 32 24 % 304.04 0.1913 0.1238 0.9801 52.3584
9 4 317.46 0.1994 0.1257 0.9785 52.0093

10 3 309.25 0.1944 0.1243 0.9794 52.0024
11 16 306.24 0.1865 0.1242 0.9799 52.3660
12 64 306.13 0.1883 0.124 0.9799 52.3231
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Fig. 6. Estimated solar atmospheric absorption factors and their true val-
ues [85].

the reconstruction accuracy except for the order of the model.
We choose the experiment settings as experiment 8 in Table
II.

D. Analysis of Latent Variables

1) Analysis on the solar atmospheric absorption: The es-
timated solar atmospheric absorption factors is shown in Fig.
6 as well as its true measurement [85]. The solar atmospheric
absorption signature with quantification factors is aligned
with its true measurement on wavelength. We can find the
recovered and true signatures are consistent. Although there
is no groundtruth of the signature and supervised constraints
on it, the signature learns the irradiance rises from 380nm to
500nm, and decrements till 2500nm. Meanwhile, we recover
the absorption peaks of various substances without omission.
As shown in Fig. 6, the absorption peak of oxygen (O2)
at 750nm, the absorption peak of carbon dioxide (CO2) at
around 2000nm and the two peaks of water (H2O) at 950nm
and 1100nm are all visible in the estimated signature.

2) Analysis on abundance maps: The predicted abundance
maps are visualized in Fig. 7, demonstrating the recovered
abundance is consistent with the true distribution of objects.

The abundance of bone black pigment is relatively high in
the vegetation areas (shown in Fig. 7(a)) which is mainly
because its spectrum has similar absorption peaks as vege-
tation. Therefore, we can take its abundance as vegetation.
The tin roofs in residential areas show a high abundance of
iron oxide in Fig. 7(b). Low abundance occurs on natural
umber and seawater coast, as these objects are absent from
the scene as shown in Fig. 7(c)(d). The abundance of seawater
coast is mainly distributed on buildings and roadsides since
these areas have gravel similar to the coast. Two buildings
have a high abundance of dust debris as shown in Fig. 7(e).
From Fig. 7(f), the bare ground has a high-value abundance
on soil and mixtures, which suggests the rationality of the
abundance map. Meanwhile, the vegetation abundance is high
in the areas covered with vegetation, such as the greening of
residential, the regular grassland and the vegetation growing
on bare ground as shown in Fig. 7(g). Although there are
still some predicted abundance maps that have less reasonable
distributions, such as the abundance of iron oxide distributes
on road, almost all the abundance maps have significant
physical meaning.

3) Analysis on pixel-wise neural mixing model: For the
pixel-wise mixing model, it is determined by the abundance
input, the positional encoding and the parameters of the MLP.
We pixel-wisely concatenate them and use t-SNE [86] to
reduce the dimension and visualize the parameters of each
pixel. We plot all the pixels of test image #1 in Fig. 8 (a) and
typical pixels manually labeled of five classes in Fig. 8 (b). As
shown in Fig. 8, pixels of each class distribute in a different
area in the manifold, showing the rationality of the pixel-wise
mixing model.

In conclusion, the estimated solar atmospheric absorption,
the abundance maps and the pixel-wise mixing model all
suggest the rationality and validity of our design.

E. Usage of the Synthesis Data
For the synthesized hyperspectral data and the correspond-

ing abundance map, we design a U-Net based network A to
learn the map from hyperspectral data to its abundance map
related to the spectral library:

A(S) = A(S|✓a), (20)



IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2022 11
IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2021 16

0

0.2

0.4

0.6

0.8

1

(a) Bone Black

0

0.2

0.4

0.6

0.8

1

(b) Iron Oxide

0

0.2

0.4

0.6

0.8

1

(c) Natural Umber
0

0.2

0.4

0.6

0.8

1

(d) Seawater Coast

0

0.2

0.4

0.6

0.8

1

(e) Dust Debris

0

0.2

0.4

0.6

0.8

1

(f) Soil and mixtures
0

0.2

0.4

0.6

0.8

1

(g) Vegetation (h) Image

Fig. 13. The recovered abundance map of the objects of five categories. (a)-(e) represent abundance map of artificial materials, coatings, liquids, soils and
mixtures, and vegetation. (f) shows the false-color image.

[13] M. A. Veganzones, M. Simes, G. Licciardi, N. Yokoya,
J. M. Bioucas-Dias, and J. Chanussot, “Hyperspectral super-
resolution of locally low rank images from complementary
multisource data,” IEEE Transactions on Image Processing,
vol. 25, no. 1, pp. 274–288, 2016.

[14] Y. Fu, T. Zhang, Y. Zheng, D. Zhang, and H. Huang, “Hyper-
spectral image super-resolution with optimized rgb guidance,”
in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 11 653–11 662.

[15] R. Wu, W.-K. Ma, X. Fu, and Q. Li, “Hyperspectral super-
resolution via globallocal low-rank matrix estimation,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 58,
no. 10, pp. 7125–7140, 2020.

[16] K. Zheng, L. Gao, W. Liao, D. Hong, B. Zhang, X. Cui,
and J. Chanussot, “Coupled convolutional neural network with
adaptive response function learning for unsupervised hyperspec-
tral super resolution,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 59, no. 3, pp. 2487–2502, 2021.

[17] X.-H. Han, B. Shi, and Y. Zheng, “Self-similarity constrained
sparse representation for hyperspectral image super-resolution,”
IEEE Transactions on Image Processing, vol. 27, no. 11, pp.
5625–5637, 2018.

[18] B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral
signal from natural rgb images,” in European Conference on
Computer Vision. Springer, 2016, pp. 19–34.

[19] Y. Fu, T. Zhang, Y. Zheng, D. Zhang, and H. Huang, “Joint
camera spectral response selection and hyperspectral image
recovery,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 1, pp. 256–272, 2022.

[20] R. Hang, Q. Liu, and Z. Li, “Spectral super-resolution network
guided by intrinsic properties of hyperspectral imagery,” IEEE
Transactions on Image Processing, vol. 30, pp. 7256–7265,
2021.

[21] J. Li, C. Wu, R. Song, W. Xie, C. Ge, B. Li, and Y. Li, “Hybrid
2-d3-d deep residual attentional network with structure tensor
constraints for spectral super-resolution of rgb images,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 59, no. 3,
pp. 2321–2335, 2021.

[22] K. Fotiadou, G. Tsagkatakis, and P. Tsakalides, “Spectral super
resolution of hyperspectral images via coupled dictionary learn-
ing,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 5, pp. 2777–2797, 2019.

[23] L. Gao, D. Hong, J. Yao, B. Zhang, P. Gamba, and J. Chanussot,

“Spectral superresolution of multispectral imagery with joint s-
parse and low-rank learning,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 59, no. 3, pp. 2269–2280, 2021.

[24] L. Liu, S. Lei, Z. Shi, N. Zhang, and X. Zhu, “Hyperspectral
remote sensing imagery generation from rgb images based
on joint discrimination,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 14, pp.
7624–7636, 2021.

[25] R. F. Kokaly, R. N. Clark, G. A. Swayze, K. E. Livo, T. M.
Hoefen, N. C. Pearson, R. A. Wise, W. M. Benzel, H. A.
Lowers, R. L. Driscoll, and A. J. Klein, “Usgs spectral library
version 7,” Data Series, 2017.

[26] L. Zhang, J. Nie, W. Wei, Y. Zhang, S. Liao, and L. Shao,
“Unsupervised adaptation learning for hyperspectral imagery
super-resolution,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 3070–3079.

[27] J. Hu, Y. Li, and W. Xie, “Hyperspectral image super-resolution
by spectral difference learning and spatial error correction,”
IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10,
pp. 1825–1829, 2017.

[28] J. Hu, X. Jia, Y. Li, G. He, and M. Zhao, “Hyperspectral image
super-resolution via intrafusion network,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7459–
7471, 2020.

[29] J. Hu, Y. Tang, and S. Fan, “Hyperspectral image super resolu-
tion based on multiscale feature fusion and aggregation network
with 3-d convolution,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 13, pp.
5180–5193, 2020.

[30] X. Wang, J. Ma, and J. Jiang, “Hyperspectral image super-
resolution via recurrent feedback embedding and spatialspectral
consistency regularization,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 60, pp. 1–13, 2022.

[31] P. V. Arun, K. M. Buddhiraju, A. Porwal, and J. Chanussot,
“Cnn-based super-resolution of hyperspectral images,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 58, no. 9,
pp. 6106–6121, 2020.

[32] R. C. Patel and M. V. Joshi, “Super-resolution of hyperspectral
images: Use of optimum wavelet filter coefficients and sparsity
regularization,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 4, pp. 1728–1736, 2015.

[33] Y. Qu, H. Qi, C. Kwan, N. Yokoya, and J. Chanussot, “Unsu-
pervised and unregistered hyperspectral image super-resolution

Fig. 7. Visualization of the recovered abundance map on different ground objects: (a) bone black pigment, (b) iron oxide, (c) natural umber pigment, (d)
seawater coast, (e) dust debris, (f) soil and mixtures, and (g) vegetation. (h) shows the input image.

IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING, 2021 10

(a) Road (b) Soil (c) Building

(d) Car (e) Artificial turf (f) Tree

Fig. 5. Comparison of generated spectra by different methods for ablation study. (a-f) show the spectra generation of different ground objects. wo-bilinear
represents replacing the bilinear upsample by deconvolution, wo-d denotes the removal of the joint discriminative learning. wo-res denotes removing resblocks
in FEM and replacing them with convolution. wo-ls means getting rid of the Ls loss.
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Fig. 6. Abundance maps of deconvolution and bilinear upsample with
convolution in AIM. They show the abundance maps of ’Lawn Grass’ in
a test image. There is a noticeable checkerboard artifact in the abundance
map of deconvolution.
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Fig. 7. Abundance maps of deconvolution and bilinear upsample with
convolution in AIM. They show the abundance maps of ’Lawn Grass’ in
a test image. There is a noticeable checkerboard artifact in the abundance
map of deconvolution.

the details of HSI generation and select more spectra for
discrimination. Different from [24] chose S = 64 for GF-5
HSI with spatial resolution of 30m, we experiment on the
IEEE grss dfc 2018. Table III demonstrates the indicators of
the HSI recovered from different S. By comparison, we select
S = 16 and extract (128/16)2 = 64 spectra.

TABLE III
EXPERIMENT ON THE SPATIAL INTERVAL IN RGUS OF Ds

S in Ds RMSE # MRAE # SAM # MSSIM " MPSNR "

8 412.9026 0.0792 0.0563 0.9872 47.4404
16 406.3703 0.076 0.0553 0.9879 47.5641
32 432.4822 0.0829 0.0593 0.9864 46.743

C. Comparison with Other Methods

We compare our SL-HGAN with other state-of-the-art SSR
methods including HSRNet [71], HSCNN+ [54], FMNet [65]
and R2HGAN [24]. For fair competition, all these methods
are optimized adequately and parameters for the best results
are selected.

In Fig. 9, the false-color image of HSI generated by
different methods on six 256 ⇥ 256 test patches and their
MPSNR are shown. We can find that the spectral information
of HSI generated by HSRNet is completely lost and only part
of the spatial relationship is retained. HSCNN+ generates HSI
with color deviation and most spatial information is consis-
tent with the real one. FMNet correctly restores RGB color
information with a slight spatial distortion. R2HGAN and SL-
HGAN recover HSIs whose false color images are visually
indistinguishable from the real HSIs. SL-HGAN generates HSI
with higher MPSNR than that of R2HGAN.

The band generation of the methods is shown in Fig.
10. HSRNet loses most spatial information in many spectral
bands. Besides, other methods can recover the information of
different bands. For the recovery of the first band, HSRNet
generated a band that retains the spatial information but differs
greatly from the actual band. HSCNN+ and FMNet only
recover partial spatial information with noise. R2HGAN has a
restoration visually close to the real band, but the noise level

Fig. 8. t-SNE [86] visualization of the mixing model, pixels of different
classes locate in different areas of the manifold where all pixels are distributed
in.

where ✓a denotes the parameters in A. Given a hyperspectral
processing task, we can first use A to obtain the abundance
map, which contains much more information about the ground
objects and plays an important role in the task. Then we design
the downstream method with the input data as well as the
abundance A(S), so that the downstream model comes from
Eq. 21 to Eq. 22. Since the model A has learned effective
priors from a large number of seen images, the abundance
A(S) brings these priors to the downstream tasks and improves
the accuracy.

y = D(S|✓d) (21)

y = D(S,A(S)|✓d) (22)

We experiment on a downstream classification task to eval-
uate the effectiveness of the synthesized data and abundance.
We use the Salinas dataset, which was collected by the AVIRIS
sensor and has a 512⇥217 spatial size with a resolution of
3.7m/pixel. It includes 16 classes with a variety of vegetation
and soils. In Table III, we show the overall accuracy (OA) of
classification with (Eq. 22) or without (Eq. 21) the abundance
obtained by Eq. 20.

TABLE III
THE OVERALL CLASSIFICATION ACCURACY ON THE SALINAS DATASET.

THE ABUNDANCE OBTAINED BY OUR METHOD IMPROVES THE ACCURACY.

Classification
Method Samples OA w/o

abundance (%)
OA w

abundance (%) Improve (%)

2D-CNN
(Our design)

50 85.55 86.76 1.21
100 88.34 89.12 0.78
200 90.34 91.09 0.75

3D-CNN [87]
50 69.103 89.775 20.672

100 88.981 92.509 3.528
200 88.729 96.417 7.688

3D-FCN [88]
50 83.827 88.001 4.174

100 90.15 92.393 2.243
200 89.212 94.846 5.634

Multi-scale
3D-CNN [89]

50 90.349 94.451 4.102
100 91.079 95.583 4.504
200 93.54 96.391 2.851

To fully verify the improvement in classification accuracy,
we experiment with four classification methods as shown
in Table III and chose the number of training samples in
each class as 50, 100, and 200. Note we design a 2D-CNN
based network D with six 3⇥3 convolutional layers with 9⇥9
patches input. The three other methods are based on 3D-
CNN [87], 3D-FCN (Fully Convolutional Network) [88] and
Multi-scale 3D-CNN [89], respectively. We use the implemen-
tation of the three methods in the DeepHyperX toolbox [90].
We can find the abundance significantly improves the accuracy
regardless of the classification method or the sample number.

Meanwhile, for methods 3D-CNN and 3D-FCN [87, 88],
without abundance input, when we add the samples from 100
to 200 per class, the classification accuracy even decreases,
which denotes that increase of training samples cannot bring
accuracy improvement. When we use the synthesis data to
help classification, the sample increment from 100 to 200
still brings an accuracy improvement since additional valid
information is introduced.

As a result, the synthesis data and abundance map help
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improve the downstream tasks and have the potential to reduce
sample labeling requirements.

V. CONCLUSION

Physics-informed hyperspectral image synthesis can gener-
ate hyperspectral images along with the corresponding abun-
dance map according to the remote sensing imaging model. In
this paper, we propose a hyperspectral image synthesis method
based on an implicit neural spectral mixing model. We inspire
from the implicit neural representation and design the pixel-
wise adaptive mixing model to compensate for the incomplete-
ness of the linear mixture model. We predict the sub-pixel-
level abundance of ground objects, estimate the pixel-wise
mixing model, and finally synthesize the hyperspectral image.
The image is synthesized with the predicted abundance, the
solar atmospheric absorption factors and the spectral library
according to the neural mixing model. Meanwhile, the experi-
ments suggest the superiority and validity of our method. First,
on the new-collected AVIRIS dataset, our method achieves the
best reconstruction accuracy with an MPSNR as high as 52.32,
which outperforms previous state-of-the-art methods. Second,
the visualization of the two implicit variables (the abundance
map and the solar atmospheric absorption factors) demonstrate
clear physical meanings and consistency to the true mea-
surements. Third, the improvement in the downstream work
shows the potential of the synthesis data and the abundance.
Finally, an extensive ablation study verifies the robustness of
our method. In the future, we will explore a wider range of
real-world downstream applications utilizing the synthesized
high-quality HSI and its corresponding abundance.
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