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Abstract—Hyperspectral image synthesis overcomes the
limitations of imaging sensors and enables low-cost acquisition of
hyperspectral images with high spatial resolution. Using RGB as
a conditional input for hyperspectral generation is promising and
valuable, as it can leverage abundant existing multispectral/RGB
images without the intervention of hyperspectral sensors. How-
ever, most existing generation methods follow one-to-one mapping
frameworks and ignore generation diversity. In addition, the
current evaluation metrics of hyperspectral generation are based
on the similarity with the reference image, which cannot reflect
the diversity of the generated spectra. In this paper, we propose
a novel method for diverse hyperspectral remote sensing image
generation based on the diffusion model. The diffusion model uses
a denoising model to gradually remove noise from the normal
distribution and generates the hyperspectral data step-by-step
with the conditional RGB image as input. To address the high-
dimensional noise prediction problem caused by a large number
of bands in the hyperspectral image, we introduce a conditional
VQGAN that maps the high-dimension hyperspectral data into a
low-dimension latent space and conduct the diffusion process in
the latent space. The latent-diffusion process makes the diffusion
process faster and more stable. The conditional VQGAN decodes
hyperspectral images from the latent code generated by diffusion,
with the conditional RGB image as input, which restricts the
diversity to a specific object distribution. We also design two new
metrics to evaluate the generation spectral diversity. Experiments
on the IEEE grss dfc 2018 dataset demonstrate that our method
can synthesize highly diverse hyperspectral data. In addition, the
rationality of the proposed metrics is also verified.

Index Terms—Remote sensing, hyperspectral image synthesis,
diffusion model, diverse spectral synthesis

I. INTRODUCTION

HYPERSPECTRAL remote sensing images have unique
advantages over other remote sensing images in veg-

etation index mapping [1], mineralogical analysis [2], and
water monitoring [3], benefiting from their high spectral
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resolution. The accuracy and precision of these applications
depend, respectively, on the quality and spatial resolution of
the hyperspectral images (HSIs). However, obtaining HSIs
with high-quality and high spatial resolution is challenging.
On the one hand, imaging sensors require high time and
technical costs due to the strict requirements for platform
stability and weather conditions [4]. On the other hand, the
spatial and spectral resolutions of the remote sensing image
are inversely related, and HSIs often suffer from low spatial
resolution [5]. Hyperspectral image synthesis methods can
overcome these challenges by using RGB images or multi-
spectral images (MSIs) as conditional inputs to generate HSIs
for specific scenes [6]. This way, hyperspectral image synthesis
can achieve high-quality generation of high spatial resolution
HSIs without the expensive costs of hyperspectral sensors.

Hyperspectral synthesis methods have received growing
interest in recent years and the quality of the synthesized
spectra has been continuously improving [7, 8]. However,
existing hyperspectral synthesis methods aim to maximize the
similarity between the synthesized and the real images in terms
of Peak Signal-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM), while ignoring the purpose of im-
proving application accuracy. For related downstream tasks,
such as hyperspectral classification [9], target detection [10],
and unmixing [11], the synthesized high-spatial-resolution HSI
needs to closely resemble the real scene, especially the spectral
variability. Spectral variability denotes the variation of spectral
features of the same material caused by the effects of atmo-
sphere, illumination, and other environmental factors as well
as sensor imaging noise [12]. However, existing methods often
follow the paradigm of one-to-one mapping, which cannot
support diverse generation, due to the similarity-maximizing
objective [13–15]. Therefore, it is important to study diverse
hyperspectral synthesis methods. On the one hand, they can
better simulate the phenomenon of spectral variation and
generate data with a distribution closer to real-world data. On
the other hand, they can enrich the hyperspectral data and
reduce the risk of over-fitting, which is easily caused by a
small number of samples.

Image synthesis methods based on generative models are
mainly divided into three categories: Generative Adversarial
Networks (GANs) [16–18], likelihood-based methods [19,
20], and diffusion models [21, 22]. GANs have achieved
high-quality hyperspectral image synthesis [23, 24]. How-
ever, GANs may lack generative diversity. Likelihood-based
methods, such as Variational AutoEncoders (VAEs) [19] and
Normalizing Flows (NFs) [20], have not been applied to
hyperspectral generation due to their inability to synthesize
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high-quality images. Diffusion models have recently gained
widespread attention, as they destroy data with successive
addition of Gaussian noise and recover the data by reversing
the noising process [21, 22]. Diffusion models consist of two
processes: a forward process that gradually adds noise to
the data until it becomes standard normal distribution noise,
and an inverse diffusion process that starts from the noise
and gradually predicts the added noise to recover the data.
Diffusion models show great potential in diverse hyperspectral
image synthesis, as they consider both quality and diversity
in image generation [25–27]. However, to the best of our
knowledge, no such diffusion-based hyperspectral synthesis
method has been proposed with RGB image as conditional
input.

Diffusion directly in the hyperspectral image data space
poses several challenges. First, hyperspectral images have
dozens or even hundreds of bands compared with RGB or
multi-spectral images, and the dimension of the noise addition
and removal in data space is proportional to the bands, which
makes the noise prediction problem difficult. Second, the high
dimension of the data space requires a lot of computing
resources and time costs for the imperceptible and redundant
details. Third, the value range of hyperspectral data is wide
and most of them are located in a low range, which poses
challenges for data normalization and the diffusion noise
schedule design.

In this paper, we propose a diverse hyperspectral remote
sensing image synthesis method based on diffusion models
in latent space, which we call “Hyperspectral Latent space
Diffusion Model (HyperLDM)”. Given hyperspectral images
and their corresponding RGB images, the method first trains
a conditional VQGAN model that encodes the HSIs into a
latent space and decodes them from the latent codes. Unlike
traditional VQGAN (Vector Quantized Generative Adversarial
Networks) [28], we input the corresponding RGB images as
conditions along with the latent codes into the decoder, so that
the decoder pays more attention to the spatial information in
RGB images. Once the training is complete, the parameters
of the VQGAN are frozen and a deterministic one-to-one
bidirectional mapping between the high-dimensional HSI data
and low-dimensional latent code is obtained. Therefore, the
hyperspectral data is transferred to a perceptually equivalent
and computationally suitable space that ignores some high-
frequency details. Next, the method trains the diffusion model
in the latent space. It takes the time step, noise image, and
conditional image as input and shares the same parameters at
each step. The diffusion model predicts the added noise and
uses training loss with two terms: the Mean Squared Error
(MSE) and structural similarity between the predicted noise
and the real one. In the forward generation process, we predict
a latent code from a randomly sampled noise through a multi-
step denoising iteration of the denoising model with an RGB
image as conditional input. Then the decoder of the conditional
VQGAN recovers HSI from the denoised latent code with the
same conditional RGB image.

Existing evaluation metrics only measure the similarity
between synthetic data and the real one. To verify the diversity
of the synthesized spectra, we propose two new evaluation

metrics: spectral diversity (SD) and spectral diversity-multiple
(SDM). Experiments on the IEEE grss dfc 2018 [29, 30]
show that the HyperLDM method achieves diverse spectral
synthesis 1. The main contributions of the paper are summa-
rized as follows:

1) We are the first to study the spectral variability problem in
hyperspectral synthesis and introduce denoising diffusion
models for diverse hyperspectral synthesis to the best of
our knowledge. The diverse synthesized spectra better
simulate the spectral variation in the real world and
increase the modes of synthesized spectra, which can
reduce the risk of overfitting in downstream processing
tasks.

2) To avoid predicting high-dimensional noise in data space
diffusion, we design a conditional VQGAN model that
maps the hyperspectral data to latent space. With diffu-
sion in the latent space, our denoising model achieves
a faster speed and a better denoising quality with fewer
model parameters and steps.

3) We propose two new metrics to measure the spectral
diversity of the diverse spectral synthesis. The metrics are
based on a pre-trained hyperspectral classification model
and are more suitable for the purpose of hyperspectral
synthesis than similarity metrics such as PSNR and
SSIM.

The rest of the paper is organized as follows. In Section
II, we review the related work on HSI synthesis methods and
generative models. Section III details the HyperLDM method
and the design of the newly proposed metrics. Section IV
provides experimental evaluations on the synthesis diversity
and quality. Finally, we draw conclusions in Section V.

II. RELATED WORK

In this section, we briefly review the hyperspectral image
synthesis methods, generative models and their applications
in hyperspectral synthesis. Specifically, we focus on diffusion
models in the field of image generation.

A. Hyperspectral Image Synthesis
Hyperspectral image synthesis methods aim to acquire high

spatial-resolution HSIs [14, 31]. These methods are divided
into hyperspectral super-resolution (SR) [32, 33], spectral
super-resolution (SSR) [6, 34], and image fusion (IF) [35, 36]
according to different conditional input images. Hyperspectral
SR takes a low-resolution HSI (LR-HSI) as input, SSR takes a
high-resolution multispectral image (HR-MSI) or RGB image
as input, and image fusion takes both HR-MSI and LR-HSI as
input. Depending on algorithms and techniques, hyperspectral
synthesis methods mainly fall into the following categories:
methods based on manual features and optimazation [31–
33, 37], methods based on dictionary learning [35, 38, 39],
methods based on tensor decomposition [40, 41] and methods
based on neural networks [42–44]. In recent years, neural
network-based hyperspectral synthesis has been developed
rapidly, mainly in the following directions: powerful network

1The code is publically available at http://levir.buaa.edu.cn/Code.htm.

http://levir.buaa.edu.cn/Code.htm
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structure [13, 45, 46], attention to band correlation [47, 48],
simulation of imaging process [43, 49] and utilization of
imaging prior [42, 44].

Spectral super-resolution (SSR) is a hyperspectral image
synthesis method with low imaging cost [6, 35]. We adopt
it for diverse hyperspectral synthesis, which takes the RGB
image as input. Early SSR methods use optimization or tensor
decomposition methods [8, 31]. With the powerful modeling
capabilities of neural networks, SSR methods learn spectral
characteristics implied in RGB/MSI from a large amount of
data [13, 14, 50]. These methods mainly design effective
structures for deep feature learning [46, 51, 52]. Due to the
limitations of fully data-driven methods, many SSR methods
model physical characteristics [15, 45]. HSRNet incorporates
the spectral response function (SRF) to group the bands [45].
Arad et al. correct the spectra after CNN prediction by
combining the unmixing process [53]. SSRNet designs cross
fusion network with HSI prior learning modules based on the
imaging model [46].

These methods learn a one-to-one mapping between the
input conditional image and the target HSI. The evaluation
metrics are mainly based on the similarity between the ref-
erence image and the synthesized one, such as pixel-wise
metrics, including Root Mean Square Errors (RMSE) [7, 14,
34, 42, 50], Mean Relative Absolute Error (MRAE) [8, 50],
Peak Signal-Noise Ratio (PSNR) [8, 50], Spectral Angle
Mapper (SAM) [8, 14, 50]. Other metrics, such as Structural
Similarity Index Measure (SSIM) [8, 46, 50] and relevance
metrics [8, 54] are also used for evaluation. Most of the
metrics compare the synthesized images with the real ones in
data space, which limits their ability to evaluate the synthesis
quality without the real reference image and the generation
diversity. Although these methods achieve high pixel-wise
reconstruction accuracy, they hardly use advanced generative
models, resulting in over-smoothed synthesis images.

In this paper, we use an advanced generative model to
achieve diverse HSI generation, while taking advantage of
imaging process and ground object spectra.

B. Generative Models

A good generative model is expected to have three prop-
erties: fast sampling, mode coverage or adequate sample
diversity, and high-quality samples. However, existing gen-
erative models [55] face a trilemma, which mainly in-
cludes three kinds of methods: generative adversarial networks
(GANs) [16], likelihood-based methods [20, 56], and diffusion
models [21, 22].

GANs consist of a generator that generates images and
a discriminator that judges whether the generated images
conform to the real image distribution [16]. The generator
and the discriminator improve each other with alternating
training, thus achieving realistic image generation. GANs are
fast at sampling and have achieved high-quality hyperspectral
image generation [23, 24, 57, 58]. However, these methods
fail to synthesize diverse HSIs and suffer from unstable
training processes. Likelihood-based methods, such as Varia-
tional AutoEncoders (VAEs) [56, 59] and Normalizing Flows

(NFs) [20], learn a mapping from complex data distribution
to a latent space. These models capture certain modes with
fast sampling but fail to produce high-quality samples, mak-
ing them unsuitable for high-quality HSI synthesis in high
dimensions.

Diffusion models are inspired by nonequilibrium thermody-
namics and follow a progressive decompression scheme that
is interpreted as autoregressive denoising [21, 22]. Although
diffusion models have low sampling speed, they have shown
powerful ability in high-quality and diverse synthesis [60].
In this paper, we apply the excellent synthesis properties
of diffusion to hyperspectral synthesis, which has not been
explored to the best of our knowledge.

C. Diffusion Models
Denoising diffusion probability models (DDPMs) gradually

add Gaussian noise to images until they reach a normal
distribution in the forward process and denoise them step by
step with noise prediction in the reverse process [21, 22]. The
noise at the start and each step is randomly sampled from the
Gaussian distribution, which results in high-quality samples
with a variety of modes [25, 60]. Moreover, score-based gen-
erative models (SGMs) rely on a continuous diffusion process
that gradually perturbs the data towards a tractable distribution,
while the generative model learns to denoise [61, 62].

The multi-step denoising slows down the sampling effi-
ciency, and several methods have been proposed to accelerate
diffusion [55, 63–65]. The denoising diffusion implicit model
(DDIM) designs a non-markovian diffusion process and op-
timizes it by the same surrogate objective as DDPM [64].
Variational diffusion models allow a learnable diffusion pro-
cess that shortens the inverse process [63]. Salimans and Ho
design a progressive distillation to gradually reduce the reverse
diffusion steps to one step [65]. Moreover, denoising diffu-
sion GAN approximates the reverse process by conditional
GANs [55].

DDPM fails to predict high-dimension noise, and thus
faces problems with high-resolution image generation. To
solve this problem, diffusion models mainly provide three
solutions. One is the cascaded generation [66], which first
generates low-resolution images and then performs iterative
super-resolution on them. The text-to-image models, such
as GLIDE [67], DALL·E 2 [27] and Imagen [68], follow
the cascaded generation. The other solution is diffusion in
the latent space, which reduces the noise dimension and
accelerates the diffusion process [62, 69]. The latent diffusion
is used by stable diffusion [69], which has been setting off
waves in image generation with unimaginable effect [70, 71].
The last one is simple diffusion, which works in an end-to-end
manner through careful design of noise schedule and network
architecture [72].

Benefits from the strong generative ability, diffusion models
have been shining in various fields and applications, such
as image editing [25, 73], super-resolution [26], semantic
segmentation [74], video synthesis [75], medical image inverse
problem solving [76] and 3D shape generation [77].

However, to the best of our knowledge, they have not been
applied to hyperspectral synthesis even though they have great
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Fig. 1. An overview of the proposed method. The conditional VQGAN maps the hyperspectral data to a latent space where the diffusion process operates.
The conditional VQGAN is universal and only trained once before training the diffusion model. Both the diffusion model and the VQGAN decoder use the
conditional RGB image as input. The generation process starts with noise and iteratively denoises it to obtain the latent code. The decoder T then takes the
latent code as input and produces the abundance map A which is mapped to HSI through the Linear mixing model (Ml).

potential in diverse and high-quality image synthesis. In this
paper, we study the diffusion models for the hyperspectral syn-
thesis and make improvements aiming at the high dimension
of HSI.

III. PROPOSED METHOD

To avoid the high-dimensional noise prediction problem, we
design a bidirectional mapping between the high-dimensional
hyperspectral data and the low-dimensional latent space,
and perform the diffusion process in the latent space. The
Hyperspectral Latent space Diffusion Model (HyperLDM) has
three advantages over diffusion in the data space: first, it
greatly reduces the dimension of noise prediction; second,
it speeds up the sampling by reducing the denoising model
capacity; and third, it diffuses in the latent space, which is
regular in numerical values and easy to denoise.

We design a conditional VQGAN to perform bidirectional
mapping, and its decoder takes both the RGB image and the
latent code as input. With conditional VQGAN, we specialize
HyperLDM for hyperspectral image synthesis conditioned on
RGB images. In this section, we start with the design of
the conditional VQGAN and then introduce the denoising
diffusion in the latent space. After that, we detail some im-
plementation designs. Finally, the two newly proposed metrics
that evaluate spectral diversity are introduced.

A. Design of the Conditional VQGAN
The conditional VQGAN is based on the VQGAN model,

which has been widely used in natural image generation [28].
Here, we additionally introduce the conditional RGB image as

input, thus enabling the VQGAN to perform conditional gener-
ation. Meanwhile, we adopt the hyperspectral imaging model
proposed in our previous work [57], which obtains the corre-
sponding abundance map while generating the hyperspectral
image.

Specifically, given a hyperspectral image I 2 RH⇥W⇥nc

in hyperspectral data space, the encoder E encodes it into
the latent space x̃ = E(I) 2 Rh⇥w⇥nx . The encoder down-
samples the image by a factor f = H/h = W/w, where
f = 2m,m 2 N and the channel of the latent code nx is
usually smaller than the channels of the HSI nc. To make the
latent space more regular and robust, we quantize it with codes
from a learnable, discrete codebook Z = {zk}Kk=1 ⇢ Rnx ,
which contains K codes with dimension nx. The quantization
assigns an element-wise closest code in Z for each pixel x̃ij

at location (i, j) in code x̃. Here, the code zk closest to x̃ij

is chosen from Z according to L1 distance as:

xq = q(x̃) :=

✓
argmin
zk2Z

kx̃ij � zkk
◆
2 Rh⇥w⇥nx . (1)

The decoding process takes both the quantized code xq and
the conditional RGB image C 2 RH⇥W⇥3 as input. Since
the conditional image has a different size from the latent code
xq , we design a condition encoder C, and input the feature
C(C) along with xq into the decoder T . The abundance map
A 2 RH⇥W⇥ng and the solar atmospheric spectrum t 2 Rnc

are
A, t = T (xq, C) = T (q(E(I)), C(C)). (2)

With the Linear Mixing Model (LMM) Ml proposed in [57]
and the spectral library R 2 Rnc⇥ng = [r1, . . . , rng ], which
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has ng spectra and each with nc bands, the reconstructed
hyperspectral image Ĩ ⇡ I is

Ĩ = Ml(A, t,R). (3)

The linear mixing model Ml consists of simple tensor
multiplication with no trainable parameters. Therefore, the
trainable parameters of the VQGAN are Z, ✓E , ✓T , and ✓C ,
where ✓E , ✓T , ✓C denote parameters in E , T , C respectively.

Since the quantization operation is non-differentiable, we
use a straight-through gradient estimator to perform backprop-
agation, which simply copies the gradients from the decoder T
to the encoder E . Therefore, all the parameters can be trained
end-to-end by minimizing the loss function:

Lgen(✓E , ✓T , ✓C ,Z) = Lrec(I, Ĩ) + Lqua(I, xq)

Lrec(I, Ĩ) = �1Ll1(I, Ĩ) + �2Lcos(I, Ĩ)

Lqua(I, xq) = ksg[E(I)]� xqk22 + ksg[xq]� E(I)k22.
(4)

Here, Lrec is the reconstruction loss, which consists of pixel
similarity and spectral angle similarity loss functions, same as
in [57]. According to equations (2) and (3), the reconstruction
loss Lrec depends on ✓T , ✓C and Z . Lqua(I, xq) denotes the
quantization error, depends on ✓E and Z . sg[·] denotes the
stop-gradient operation.

Lrec(I, Ĩ) = Lrec(I,Ml(T (xq), R)) = Lrec(✓T , ✓C ,Z)

Lqua(I, xq) = Lqua(✓E ,Z)
(5)

The quantized latent code xq is determined by the codebook
Z according to equation (1). During training, the parameters
are optimized through gradient back-propagation, and the
optimizations to xq are reflected as updates to Z .

We optimize the above models under the framework of
Generative Adversarial Networks (GANs) to make the recon-
struction of HSI more realistic. The discriminators include
a spatial one Dspat and a spectral one Dspec, which are
same as [57]. Therefore, the final optimization objective is
as follows:

min
✓E ,✓T ,✓C,Z

max
✓
spat
D ,✓

spec
D

Ltotal

Ltotal = Lgen + Ladv

Ladv = Lspat

adv
+ Lspec

adv
,

(6)

where ✓spaD , ✓speD denote the parameters of Dspat and Dspec

and Lspat

adv
, Lspec

adv
denote their losses.

Once the conditional VQGAN is trained, the parameters
Z, ✓E , ✓T and ✓C are frozen and the bidirectional map-
ping between the hyperspectral data and the low-dimension
latent space is established. Therefore, we can synthesize
hyperspectral data through latent code generated by diffusion
in the latent space.

B. Priliminary of Denoising Diffusion
Diffusion models learn a data distribution p(x) by gradually

denoising data from a normal distribution [21]. These models
have two processes: a forward process that adds noise to the
input data over time and a reverse process that generates data
by denoising.

The forward noising process q consists of T steps and
adds Gaussian noise with variance �t 2 (0, 1) at step t =
1, 2, . . . , T . Given the latent code distribution p(x0), the latent
variables x1, x2, . . . , xT are as follows:

q(x1, x2, . . . , xT |x0) :=
TY

t=1

q(xt|xt�1)

q(xt|xt�1) := N (xt;
p
1� �txt�1,�tI).

(7)

N (x;µ,�2) denotes x follows a Gaussian distribution with
mean µ and variance �2. Then, xt is the marginalized condi-
tional distribution given by

q(xt|x0) = N (xt;
p
↵̄tx0, (1� ↵̄t)I) (8)

where ↵̄t is a predefined constant that ↵̄t =
tQ

s=1
(1� �t).

This implies that we can sample it by the reparameterization
technique, without iteratively adding noise.

xt =
p
↵̄tx0 +

p
1� ↵̄t✏

✏ ⇠ N (0, I)
(9)

When the time step T is large enough and the noise schedule
of �t is well-designed such that ↵̄T approaches zero, the
latent xT becomes a Gaussian distribution with mean zero,
identity covariance matrix, and zero cross-covariance, namely
q(xT |x0) ⇡ N (0, I).

For the reverse process, if we know the reverse distribution
q(xt�1|xt), we can sample xT ⇠ N (0, I) and then run it
iteratively to obtain a sample following p(x0). We approximate
q(xt�1|xt) with a trainable neural network with parameters ✓:

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (10)

The joint distribution is

p✓(x0:T ) = p(xT )
TY

t=1

p✓(xt�1|xt). (11)

To optimize the neural network, we form the variational
upper bound commonly used for training variational autoen-
coders [19].

Eq(x0) [�logp✓(x0)]  Eq(x0)q(x1:T |x0)


�log p✓(x0:T )

q(x1:T |x0)

�
=: L

(12)
Following DDPM [21], the Variational Lower Bound (VLB)

can be written into three parts:

Lvlb := Eq

"
LT +

X

t>1

Lt�1 + L0

#

LT := DKL (q(xT |x0)kp(xT ))

Lt�1 := DKL (q(xt�1|xt, x0)kp✓(xt�1|xt))

L0 := � log p✓(x0|x1)

(13)

We can see that LT is irrelevant to ✓ and L0 is equal to
Lt�1 when t = 1. Therefore, the Lvlb is determined by the
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expectation value of the sum of Lt�1. The tractable posterior
distribution q(xt�1|xt, x0) is:

q(xt�1|xt, x0) = N (xt�1; µ̃t(xt, x0), �̃tI)

µ̃t(xt, x0) :=

p
↵̄t�1�t

1� ↵̄t

x0 +

p
1� �t(1� ↵̄t)

1� ↵̄t

xt

�̃t :=
1� ↵̄t�1

1� ↵̄t

�t

(14)

Assuming that the Gaussian noise added at each step is
small, q(xt�1|xt, x0) and p✓(xt�1|xt) can be processed as
normal distributions. We set the variance in the reverse process
as constant and the trainable parameters only exist at µ✓(xt, t).
The KL (Kullback-Leibler) divergence Lt�1 has a simple
form:

Lt�1 = DKL (q(xt�1|xt, x0)kp✓(xt�1|xt))

= Eq


1

2�2
t

kµ̃t(xt, x0)� µ✓(xt, t)k2
�
+ C

(15)

Therefore, combining equations (9) and (14), the mean of
the posterior distribution is

µ̃t(xt, x0) =
1p

1� �t

✓
xt �

�tp
1� ↵t

✏

◆
(16)

The mean of the denoising model can be represented using
a noise-prediction network:

µ✓(xt, t) =
1p

1� �t

✓
xt �

�tp
1� ↵t

✏✓(xt, t)

◆
(17)

Finaly, from equations (15), (16), (17), the VLB is written
as

Lt�1 = Ex0⇠q(x0),✏⇠N (0,I)

⇥
�tk✏� ✏✓(xt, t)k2

⇤

xt =
p
↵̄tx0 +

p
1� ↵̄t✏

�t =
�2
t

2�2
t
(1� �t)(1� ↵̄t)

,

(18)

where �t is a time-dependent weight and is often large for
small t. DDPM [21] observes that simply setting �t = 1
improves the sample quality, so we optimize the network
parameters ✓ using:

Lsimple = Ex0⇠q(x0),✏⇠N (0,I),t⇠U(1,T )L✏

L✏ = k✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)k2

(19)

C. Denoising Diffusion in the Latent Space
The hyperspectral data typically follow a long-tail distribu-

tion, where most values are less than 0.2 times the maximum
value. We perform diffusion in the latent space to cope with
the high dimensionality and uneven range of the hyperspectral
data.

Specifically, we first encode the hyperspectral image into
latent space using the conditional VQGAN. Then we train
a diffusion model in this space to generate latent codes with
conditional RGB images as input. Finally, we decode the latent
codes into hyperspectral images using the conditional VQGAN
decoder.

To implement the denoising diffusion, we design a U-
Net [78] M as the noise prediction model. The denoising
model M is iterated for T steps to gradually recover the latent
code of the hyperspectral image from a randomly sampled
noise from N (0, I), while using the conditional RGB image
as input. In this section, we describe the design of the noise
schedule, the denoising model, the loss functions, and the
optimization and sampling processes.

1) Noise schedule: We design the noise schedule to satisfy
that ↵̄T ! 0, as the sampling process starts with a normal
distribution of N (0, I). The diffusion step is set to T=100
based on empirical experiments. Inspired by [60], we take a
linear schedule with minimum 0.01 and maximum 0.2, where
↵̄T = 1.26⇥ 10�5. Hence, q(xT |x0) ⇠ N (0, I), and we can
start the denoising process with a randomly sampled noise
from the distribution N (0, I).

2) Denoising network: The latent code compresses spatial
information by a factor of 4m (H ⇥ W to h ⇥ w), which
makes the latent diffusion process less constrained by fine
spatial information in conditional RGB images. Therefore, we
feed RGB images as condition to the denoising network to
ensure its supervision of spatial information. Therefore, we
put both the time step t and the conditional RGB image C
as input to the noise prediction network. The time embedding
module Et is composed of two linear layers and outputs the
time embedding et = Et(t), as the same design in [60]. The
condition encoder C encodes C to ec = C(C) 2 Rh⇥w⇥nc

standing alone with that in the conditional VQGAN. The
model M takes xt =

p
↵̄tx0 +

p
1� ↵̄t✏, et and ec as input.

M is built mainly on Resblocks [79] and AttentionBlocks [80]
with 2D convolution. Each Resblock is repeated 2 times for
each resolution and has [128, 128, 256, 256, 512, 512] channels
for [21, 22, 23, 24, 25, 26] times downsampled features, corre-
sponding. The AttentionBlock is only used for the feature
resolution at 8⇥ 8 and 4⇥ 4. The time-embedding et is used
at each Resblock to rescale the feature with scale and shift
before the skip connection. et is obtained by applying Et to
the time step t, and we project et to escale, eshift as shown in
equation (20). The feature f to be processed is then mapped
multiplied by escale and added by eshift.

escale, eshift =Linear(et)

fout = (escale + 1)⇥ f + eshift
(20)

The condition embedding ec is concatenated with the latent
input xt in the channel dimension. Therefore, the predicted
noise at time t is

✏✓ = M(xt, et, ec)

= M(
p
↵̄tx0 +

p
1� ↵̄t✏, Et(t), C(C))

= D(t, xt, C),

(21)

where D denotes the denoising diffusion model, including M,
C, and Et.

3) Loss functions: During the training process, the noise
prediction network D predicts the noise ✏✓. Given x0, c and t,
the forward diffusion process gets xt =

p
↵̄tx0 +

p
1� ↵̄t✏,

with the noise ✏ sampled from N (0, I). The predicted noise
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✏✓(x0, c, t) is called ✏✓ for short. Accordingly, the x̃0 predicted
by the reverse diffusion model is calculated as follows:

x̃0 =
1
p
↵t

�
xt �

p
1� ↵̄t✏✓

�

= x0 +

p
1� ↵̄tp
↵t

(✏� ✏✓)
(22)

Besides the Mean Square Error (MSE) loss to measure the
noise prediction error, we also use the structural similarity loss
as in [81] to better capture the spatial information.

Lmse = Ex0⇠q(x0),✏⇠N (0,I),t⇠U(1,T )k✏� ✏✓k22
Lssim = Ex0⇠q(x0),✏⇠N (0,I),t⇠U(1,T ) {1� SSIM(x̃0, x0)}

(23)
Therefore, the overall objective function is:

LD = Lmse + �3Lssim

✓⇤D = argmin
✓D

LD.
(24)

4) Processes of optimizing and sampling: To optimize the
diffusion model, we take a random sample x0, t, ✏ and update
the noise prediction model D at each iteration. For the sam-
pling process, we use equation (22) to calculate x̃0 according
to the predicted noise ✏✓. The xt�1 is then reparameterized
according to equation (17). The posterior variance �̃t is taken
as variance without prediction, that is �2

t
= �̃t.

q(xt�1|xt, x0) = N (xt�1;µ✓(xt, x̃0),�
2I)

µ✓(xt, x̃0) =
1p

1� �t

(xt �
�tp
1� ↵̄t

✏✓)

�2
t
= �̃t =

1� ↵̄t�1

1� ↵̄t

�t

(25)

We summarize the optimization and sampling procedures of
the latent diffusion model in algorithms 1 and 2, where r is
the learning rate.

Algorithm 1 Training of Latent Diffusion Model
Input: q(x0), C corresponding to x0.
Output: The noise-predicting network with parameters ✓D.

1: repeat
2: Sample x0 ⇠ q(x0), ✏ ⇠ N (0, I), t ⇠ U({1, . . . , T})
3: Predict the noise with ✏✓ = D(t, xt, C), xt =

p
↵̄tx0 +p

1� ↵̄t✏
4: Calculate gradient descent r✓DLD
5: Update ✓D with ✓D  ✓D � rr✓DLD
6: until converged

Algorithm 2 Sampling of Latent Diffusion Model
Input: C ⇠ q(C).
Output: latent x0 ⇠ q(x0).

1: Sample xT ⇠ N (0, I);
2: for t = T, . . . , 1 do
3: Calculate ✏✓ = D(t, xt, C)
4: Sample ✏ ⇠ N (0, I) if t > 1, else ✏ = 0
5: xt�1 = 1p

1��t
(xt � �tp

1�↵̄t
✏✓) + �t✏

6: end for

D. Implementation Details
1) Parameter Settings: The hyperspectral image I 2

R256⇥256⇥48 is downsampled by a factor of 2m = 4 times
and the latent channel is nx = 16, i.e. the latent code x̃ 2
R64⇥64⇥16. The codebook contains K = 1024 embeddings.
For the decoder, we adopt a spectral library R 2 R48⇥345,
which is the same as that in [57]. For the loss functions of the
conditional VQGAN, we adopt �1 = 100,�2 = 1000.

In the latent diffusion model, the time-embedding et 2
R1⇥512 and the condition embedding ec 2 R64⇥64⇥32. The
loss weight �3 = 0.1.

2) Spectral Library: We construct a spectral library based
on the AVIRIS 2014 subset of the USGS spectral library
V7 [82]. We select spectra of ground objects that might be
observed in remote sensing views from the USGS V7 library.
Meanwhile, we resample each spectrum from the AVIRIS sen-
sor to the target hyperspectral sensor with linear interpolation.
The resampling process is based on the wavelength of each
band. We get a spectral library with 345 spectra, and each
spectrum has the same number of bands as the target sensor.

3) Training details: During the training of the conditional
VQGAN, we optimize the two discriminators once after every
3 iterations of optimization of the other parameters. The whole
framework is trained with the Adam optimizer [83] and the
cosine learning rate [84] that is initially set to 10�5 after 400
epochs with the max-iteration number of 1000. For the latent
diffusion, we adopt the AdamW [85] optimizer and the training
can converge with an ideal latent code generation after 4000
iterations.

E. The Spectral Diversity Metrics
To evaluate the diversity of the generated HSI, we propose

two novel metrics that measure the diversity of the spectra. Un-
like the previous metrics that rely on pixel-level comparisons
with reference images, our metrics can handle cases where no
reference image is available.

We use a pre-trained spectral classification network S to
map the spectra from an HSI I 2 RH⇥W⇥nc into semantic
space inspired by Inception-Score(IS) [86]. The network con-
sists of four 1D-CNN layers and one fully connection layer,
and is trained on the same dataset as the synthesis method. It
uses an area with pixel-wise annotation.

The network S takes a spectrum s 2 R1⇥nc as input, and
outputs the softmax vector v 2 R1⇥ns .

We introduce the SD metric to measure the spectral diversity
within a single HSI, which is useful for methods that do
not support multiple HSI generation with diversity under the
same condition input. We also introduce the SDM metric to
measure the diversity between multiple HSIs, which is useful
for methods that support diversity synthesis under the same
condition input. The design of the two metrics is as follows.

1) Spectral Diversity of a Single Image: Suppose the gener-
ated HSI Ig , the network S outputs pixel-wise softmax vector
Vg = {vg = S(s)|s 2 Ig} 2 RHW⇥ns , which contains the
semantic information.

We believe that a spectrum with higher quality has a more
certain classification result, that is, the entropy of Vg is smaller,
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which is inspired by image generation [87]. Meanwhile, we
hope spectra of the same class have various softmax vectors.
Therefore, we divide the softmax vector Vg into ns groups ac-
cording to the class predicted by Vg . The marginal distribution
of each class p(yi) is shown in the following equation:

Vi = {vg|cg = argmax
cg=1,2,...,ns

vg = i}, i = 1, 2, . . . , ns

p(yi) = Es⇠pg [p(yi|s)] ⇡
1

N

NX

k=1

Vi(k)
(26)

Each vg in Vi is expected to be as far away from each
other as possible, and we represent this distance by the KL
divergence of each predicted conditional probability p(yi|s) =
{vg|cg = i} and the marginal distribution p(yi):

DKL(p(yi|s)kp(yi)) = Es⇠pgp(yi|s) log [p(yi|s)]
� p(yi) log [p(yi)]

(27)

The first term in equation (27) represents the negative num-
ber of the entropy of Vg , thus maximizing DKL(p(yi|s)kp(yi))
will somewhat minimize the entropy of Vg . In other words,
a large KL divergence represents a large spectral diversity
and also, to some extent, a good spectrum generation quality.
Thus the metric SD takes into account generation quality while
evaluating the spectral diversity.

We define the spectra diversity with the mean exponential
of the aforementioned distance of each class.

SD (Ig) =
1

ns

nsX

i=1

exp
�
Es⇠pgDKL(p(yi|s)kp(yi))

�
(28)

2) Spectral Diversity of Multiple HSI Images Under the
Same Condition: For methods that can generate multiple
HSIs given the same conditional RGB image, we provide
a computational metric SDM for the diversity synthesis.
Given a conditional RGB image C, the method generates
K HSIs Ig1, Ig2, . . . , IgK , with category softmax vectors
Vg1, Vg2, . . . , VgK output from S . The conditional distribution
is p(yi|c) = Vgi, i = 1, 2, . . .K. The spectral diversity is
calculated by the following equation:

p(y) = EIg⇠pIg
p(yi|c)

SDM = exp
⇣
EIg⇠pIg

DKL(p(yi|c)kp(y))
⌘ (29)

IV. EXPERIMENT

In this section, we present the datasets and experimental set-
tings to validate the diverse hyperspectral generation, show the
generation results of HyperLDM and conduct ablation studies
on it. Meawhile, we design downstream experiments to prove
that the diverse synthesis method is expected to improve the
accuracy of downstream tasks without hyperspectral sensors,
and achieve comparable results of real HSI.

A. Datasets and Experimental Setup
We evaluate our method on the IEEE grss dfc 2018 dataset,

which was collected by the National Center for Airborne Laser
Mapping (NCALM) from Houston University [29, 30]. The
dataset contains an image scene with spatial size 4172⇥1202

and 48 bands, covering a wavelength range of 380-1050 nm.
The bands 23,12,5 from the data are chosen as the conditional
RGB input. The dataset is cropped into 27 paired patches of
size 512⇥ 512, where 3 non-overlaping patches are used for
testing and others for training. For the data processing, we
simply normalize the data by dividing it by 4095 and input it
to the conditional VQGAN.

The proposed HyperLDM method is compared with
five state-of-the-art methods, including MSCNN [14],
HSCNN+ [88], FMNet [13], HASIC-Net [51] and HSR-
Net [45]. The methods all follow a data reconstruction
framework with residual blocks. HSCNN+ [88] uses multiple
residual blocks for feature mapping. MSCNN [14] designs a
multiscale deep convolution network. HASIC-Net [51] pro-
poses structure information consistency with attention layers.
FMNet [45] designs an adaptive receptive field and HSR-
Net [13] groups the bands according to the spectral response
function (SRF). For a fair competition, all the experiments are
conducted on a desktop PC with the Intel (R) Core (TM) i7-
7700K CPU @4.2GHz and an NVIDIA GeForce RTX 3090
GPU card, optimized adequately and the best parameters are
selected. The training process of HyperLDM consists of two
stages: the training of conditional VQGAN and the diffusion
in latent space. The training time of conditional VQGAN costs
about 4 hours and that of the diffusion in latent space costs
1.5 hours.

B. Diversity Generation of Hyperspectral Images

TABLE I
SIMILARITY METRICS TO THE REFERENCE HSI OF 10 RUNS GIVEN THE

SAME CONDITIONAL RGB IMAGE.

Time RMSE # MRAE # SAM # MSSIM " MPSNR "

1 388.74 0.0736 0.0585 0.9854 46.996
2 388.97 0.0736 0.0585 0.9854 46.990
3 386.43 0.0731 0.0581 0.9855 47.028
4 391.49 0.0741 0.0587 0.9854 46.959
5 388.25 0.0736 0.0585 0.9855 47.002
6 387.45 0.0735 0.0584 0.9855 47.010
7 389.34 0.0739 0.0586 0.9854 46.986
8 391.66 0.0741 0.0589 0.9853 46.959
9 388.42 0.0735 0.0584 0.9855 46.998

10 387.56 0.0735 0.0584 0.9855 47.012

Given a conditional RGB image, we synthesize diverse
latent codes in the latent space using the diffusion model, and
then decode them to various hyperspectral data by the decoder
T . The synthesized data share similarities with each other and
with the reference HSI, but also exhibit pixel-wise differences.
Table I shows the similarity metrics between the reference
real one and the 10 synthesized images under the same RGB
image. We use pixel-wise metrics RMSE, MRAE, SAM and
MPSNR, where SAM measures the spectral curve shape and
the quality of spectral information. We also use the structure
similarity index metric MSSIM for evaluating the quality of
spatial information. The results indicate that the diversity is
within a reasonable range. Fig. 2 shows the spectral curves at
the same pixel location generated by 10 runs. We can see that
the curves have small fluctuations and are very close to each
other.
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(b) Concrete
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(d) Soil
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(e) Roof
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(f) Road

Fig. 6. Comparison of generated spectra by different methods for ablation study. (a-f) show the spectra generation of different ground objects. wo-bilinear
represents replacing the bilinear upsample by deconvolution, wo-d denotes the removal of the joint discriminative learning. wo-res denotes removing resblocks
in FEM and replacing them with convolution. wo-ls means getting rid of the Ls loss.

of it is higher than real sensor imaging. SL-HGAN has the
closest response to real sensor imaging, contains even less
noise than the real band.

Table IV shows the performance of different comparison
methods on various indicators, including MRAE, RMSE,
SAM, MSSIM and MPSNR. The spectra generated by the
methods are shown in Fig. 12. From Table IV and Fig. 12, we
can find that HSRNet has an unauthentic generation and the
pixel-wise error is even more than three times the real spectral
reflectance. The spectra generated by HSRNet (shown in Fig.
12(a)) have many abnormal peaks as high as the maximum
imaging range 65535.

HSCNN+ uses DenseNet to learn the mapping between
RGB images and HSI, and gets reliable MPSNR as 38.95
and MSSIM as 0.9455. The spectra generated from HSCNN+
have a similar shape to the real ones, but the response values
are far from the real spectra. FMNet designs pixel-aware
receptive field and improves all the five indicators compared
with HSCNN+. Especially, the SAM of the FMNet decreases
42% from that of HSCNN+ and the spectra in Fig. 12 are
much more closer to the real ones than HSCNN+. However,
the spectra of FMNet of some objects such as road in (a) and
artificial turf in (e) still have shape deviation of the local band
compared with the real ones.

R2HGAN and SL-HGAN have good reconstruction re-
sults, the MPSNR of R2HGAN has been promoted 4.0323
from 42.8291of FMNet to 46.8614. The spectra generated
by R2HGAN are closer to the real ones than HSCNN+ and
FMNet as shown in Fig. 12. There are still some cases that
R2HGAN behaves not very well. For example, the spectrum
of soil in (b) generated by R2HGAN is quite different from
the actual spectrum at wavelength 700-1100nm.

Compared to R2HGAN, SL-HGAN recovers spectra

through the abundance inversion of objects in the spectral
library, so that the spectra have more actual physical meaning.
The recovery effect outperforms R2HGAN and other methods
except on MRAE. The MRAE of SL-HGAN is 0.076, which is
similar to the best 0.075 of R2HGAN. The MPSNR achieved
47.56 and MSSIM reached 0.9879, which improve the relia-
bility of spectral recovery through abundance inversion. The
spectra recovered from SL-HGAN are closest to the real ones
as shown in Fig. 12.

TABLE IV
A COMPARISON OF DIFFERENT METHODS ON OUR DATASET. FOR RMSE,
MRAE, SAM A LOWER SCORE INDICATES BETTER, WHILE FOR MSSIM

AND MPSNR A HIGHER SCORE INDICATES BETTER.

Method RMSE # MRAE # SAM # MSSIM " MPSNR "

HSRNet 19899.24 3.4615 1.1257 0.765 29.7306
HSCNN+ 986.6544 0.1737 0.1515 0.9455 38.9456

FMNet 697.9392 0.1177 0.0875 0.9729 42.8291
R2HGAN 466.7432 0.075 0.0596 0.9861 46.8614
R2HbSL 406.3703 0.076 0.0553 0.9879 47.5641

D. Analysis of the Recovered SAA and Abundance Map

In Fig. 14, we show the restored solar atmospheric ab-
sorption spectrum recovered from the SL-HGAN in (a), and
the real spectrum of solar radiation [83] is demonstrated in
(b). In (b), we paste the recovered SAA on the spectrum of
solar radiation from [83]. It can be found that the recovered
solar atmospheric absorption spectrum is consistent with the
actual sunlight at sea level after atmospheric absorption. Near
wavelength at 750nm and 950nm, there are oxygen (O2) and
water (H2O) absorption bands respectively in the sunlight
at sea level. The restored SAA managed to learn the trend
of sunlight at sea level in (b), the irradiance rising from

Fig. 2. Spectral diversity: spectra at the same location generated by HyperLDM 10 times, spectra of six different objects are shown in (a)-(f).

C. Comparison with Other Methods

The false-color images (bands 23, 12, and 5) of different
methods are shown in Fig. 3, along with their MPSNR values.
We can observe that HSRNet [45] fails to reconstruct the color
information of RGB bands accurately, and preserve only a
small amount of spatial structure. MSCNN [14] recovers more
spatial information than HSRNet [45], but introduces color
bias in false-color images especially for those with highlighted
buildings. By incorporating residual structure and deepening
the network, HSCNN+ [88] further alleviates the loss of spatial
and color information in false-color images. It can be seen
that except for the color deviation of test image # 1 and
the red building in the bottom left corner of test image #
2, the rest of the color and spatial information are restored.
FMNet [45], HASIC-Net [51] and HyperLDM (Ours) produce
false-color images that are visually similar to the real ones, and
HyperLDM (Ours) has highest MPSNR values for two of the
three images.

TABLE II
ACCURACY OF DIFFERENT METHODS ON THE DATASET. FOR RMSE,
MRAE, AND SAM, A LOWER SCORE INDICATES BETTER, WHILE FOR

MSSIM, MPSNR, AND SD, A HIGHER SCORE IS BETTER.

Method RMSE # MRAE # SAM # MSSIM " MPSNR " SD "

HSRNet 33380.94 9.0159 1.0416 0.5581 20.875 1.0000
MSCNN 2117.14 0.2859 0.1696 0.9555 37.945 2.4447
HSCNN+ 1015.51 0.1667 0.1559 0.9439 39.089 2.4583

FMNet 697.94 0.1177 0.0875 0.9729 42.829 2.4890
HASIC-Net 887.06 0.1116 0.1812 0.9642 44.508 1.5297
HyperLDM 515.99 0.1037 0.0724 0.9797 44.736 2.5014

We present the similarity metrics between different meth-
ods and the reference image in Table II, where the metrics
are the same as those in Section IV-B. We also report the

spectral diversity (SD) of each method, which quantifies the
spectral variation within a single image. A higher SD value
indicates better diversity. HSRNet [13] losts a lot of spectral
and spatial information, resulting in low similarity metrics.
The SD value is small because the spectral curves generated
by HSRNet [13] are severely distorted and can hardly be
correctly classified by the pre-trained classification network
S . MSCNN [14] greatly improves the realism of spectral
information synthesis and outperforms HSRNet [13] in various
metrics. At the same time, due to the more accurate spectral
curves, the spectral diversity value is increased by 144% (1.00
to 2.44). HSCNN+ [88] reduces RMSE by half compared
with MSCNN [14] (2117.14 to 1015.51) and improves MRAE
by 0.12, with the help of deep network and residual blocks.
Meanwhile, HSCNN+ [88] performs similarly to MSCNN [14]
on other metrics. FMNet [45] improves the shape of the
spectral curves by adaptive receptive field, reduces SAM by
nearly half of HSCNN+ (0.1559 to 0.0875), and improves the
spatial information of the generated HSI, which leads to a
large improvement in the structure similarity (from 0.9555 to
0.9729). HASIC-Net [51] improves MPSNR from 42.829 to
44.508, but decreases in other similarity metrics. Meanwhile,
the spectral diversity SD is greatly decreased. HyperLDM
(Ours) further improves the similarity metrics while enhancing
synthesis diversity. Most importantly, HyperLDM (Ours) can
generate multiple HSIs from the same conditional RGB image
input, as shown in section IV-B. However, the other methods
can only give a fixed output HSI without variation.

Fig 4 shows the spectral curves of different methods.
HSRNet [45] fails to generate the correct spectral curve,
and many of its bands have reflectance values outside the
range of spectral reflectance, as illustrated by Fig 4(a). For
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1 R2HGAN(39.600) 1 FMNet (49.594) 1 HSCNN+(50.254) 1 HSRNet (51.038) 1 DSE-L (50.735) 1 DSE-N (51.895) 1 Real

2 R2HGAN(40.680) 2 FMNet (49.965) 2 HSCNN+(51.996) 2 HSRNet (51.425) 2 DSE-L (51.280) 2 DSE-N (52.671) 2 Real

3 R2HGAN(47.606) 3 FMNet (50.333) 3 HSCNN+(52.114) 3 HSRNet (52.448) 3 DSE-L (52.036) 3 DSE-N (53.914) 3 Real

4 R2HGAN(42.759) 4 FMNet (49.165) 4 HSCNN+(49.664) 4 HSRNet (50.354) 4 DSE-L (48.745) 4 DSE-N (51.018) 4 Real

Fig. 12. False-color image of the recovered HSI for six typical test patches, Each row represents the effect of different methods on the test patches, and
each column represents the different test patches of the same method. Numbers before the methods represent different test patches and the end ones represent
the PSNR of the generated HSI. For example, 1 HSRNet (27.478) means it shows the false-color image of generated HSI of image 1 by HSRNet, and the
PSNR of the HSI is 27.478.

1 HSRNet (22.140) 1 MSCNN (35.674) 1 HSCNN+ (40.135) 1 FMNet (44.725) 1 HASIC-Net (47.949) 1 HyperLDM (46.830) 1 Real

2 HSRNet (20.076) 2 MSCNN (30.209) 2 HSCNN+ (38.187) 2 FMNet (40.589) 2 HASIC-Net (41.850) 2 HyperLDM (42.682) 2 Real

3 HSRNet (20.410) 3 MSCNN (32.045) 3 HSCNN+ (38.947) 3 FMNet (43.172) 3 HASIC-Net (43.725) 3 HyperLDM (44.695) 3 Real

Fig. 13. False-color image of the recovered HSI for six typical test patches, Each row represents the effect of different methods on the test patches, and
each column represents the different test patches of the same method. Numbers before the methods represent different test patches and the end ones represent
the PSNR of the generated HSI. For example, 1 HSRNet (27.478) means it shows the false-color image of generated HSI of image 1 by HSRNet, and the
PSNR of the HSI is 27.478.

Fig. 3. False-color visualization (band No. 23, 12, and 5) of the synthesis hyperspectral image with different methods: HSRNet [45], MSCNN [14],
HSCNN+ [88], FMNet [13], HASIC-Net [51] and HyperLDM (Ours). The reconstruction MPSNR is given along with the image ID. For example, 1 HSRNet
(22.140) means the result of HSRNet [23] on test image #1 with MPSNR equals 22.140.
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(f) Red Roof

Fig. 7. Comparison of generated spectra by different methods for ablation study. (a-f) show the spectra generation of different ground objects. wo-bilinear
represents replacing the bilinear upsample by deconvolution, wo-d denotes the removal of the joint discriminative learning. wo-res denotes removing resblocks
in FEM and replacing them with convolution. wo-ls means getting rid of the Ls loss.

(a) Deconv (b) Bilinear+Conv

Fig. 8. Abundance maps of deconvolution and bilinear upsample with
convolution in AIM. They show the abundance maps of ’Lawn Grass’ in
a test image. There is a noticeable checkerboard artifact in the abundance
map of deconvolution.

(a) All pixels (b) Typical pixels of 5 classes

Fig. 9. Abundance maps of deconvolution and bilinear upsample with
convolution in AIM. They show the abundance maps of ’Lawn Grass’ in
a test image. There is a noticeable checkerboard artifact in the abundance
map of deconvolution.

the details of HSI generation and select more spectra for
discrimination. Different from [24] chose S = 64 for GF-5
HSI with spatial resolution of 30m, we experiment on the
IEEE grss dfc 2018. Table III demonstrates the indicators of
the HSI recovered from different S. By comparison, we select
S = 16 and extract (128/16)2 = 64 spectra.

TABLE III
EXPERIMENT ON THE SPATIAL INTERVAL IN RGUS OF Ds

S in Ds RMSE # MRAE # SAM # MSSIM " MPSNR "

8 412.9026 0.0792 0.0563 0.9872 47.4404
16 406.3703 0.076 0.0553 0.9879 47.5641
32 432.4822 0.0829 0.0593 0.9864 46.743

C. Comparison with Other Methods

We compare our SL-HGAN with other state-of-the-art SSR
methods including HSRNet [71], HSCNN+ [54], FMNet [65]
and R2HGAN [24]. For fair competition, all these methods
are optimized adequately and parameters for the best results
are selected.

In Fig. 13, the false-color image of HSI generated by
different methods on six 256 ⇥ 256 test patches and their
MPSNR are shown. We can find that the spectral information
of HSI generated by HSRNet is completely lost and only part
of the spatial relationship is retained. HSCNN+ generates HSI
with color deviation and most spatial information is consis-
tent with the real one. FMNet correctly restores RGB color
information with a slight spatial distortion. R2HGAN and SL-
HGAN recover HSIs whose false color images are visually
indistinguishable from the real HSIs. SL-HGAN generates HSI
with higher MPSNR than that of R2HGAN.

The band generation of the methods is shown in Fig.
14. HSRNet loses most spatial information in many spectral
bands. Besides, other methods can recover the information of
different bands. For the recovery of the first band, HSRNet
generated a band that retains the spatial information but differs
greatly from the actual band. HSCNN+ and FMNet only
recover partial spatial information with noise. R2HGAN has a
restoration visually close to the real band, but the noise level

Fig. 4. Spectral curves on six objects generated by different methods: HSRNet [45], MSCNN [14], HSCNN+ [88], FMNet [13], HASIC-Net [51] and
HyperLDM (Ours).
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HSRNet 1 MSCNN 1 HSCNN+ 1 FMNet 1 HASIC-Net 1 HyperLDM 1 real HSI 1

HSRNet 5 MSCNN 5 HSCNN+ 5 FMNet 5 HASIC-Net 5 HyperLDM 5 real HSI 5

HSRNet 16 MSCNN 16 HSCNN+ 16 FMNet 16 HASIC-Net 16 HyperLDM 16 real HSI 16

HSRNet 48 MSCNN 48 HSCNN+ 48 FMNet 48 HASIC-Net 48 HyperLDM 48 real HSI 48

Fig. 14. Different bands of the generated HSI on three test images. Each row represents the effect of different methods on the same band, and each column
represents the different bands of the same method to generate HSI. Numbers before the methods represent different test images and the following ones
represent the index of the band. For example, 1 MsCNN 30 means it shows the 30th band in the HSI generated for image 1 by MsCNN.

(a) Tree (b) Gravel (c) Parking lot

(d) Grass (e) Building (f) Asphalt road

Fig. 15. Comparison of generated spectra by SL-HGAN with state-of-the-art methods. (a) shows the spectra generated by all the five methods, the HSRNet
generated spectra abnormal for all pixels, which has many peaks out of the normal spectral range. (b-f) eliminate the spectra recovered by HSRNet to facilitate
comparison.

Fig. 5. Band compare of the generated hyperspectral images. Each row contains a particular band generated by different methods: HSRNet [45], MSCNN [14],
HSCNN+ [88], FMNet [13], HASIC-Net [51] and HyperLDM (Ours). Each column shows different bands of one method.

a clearer comparison with other methods, the spectral curves
generated by HSRNet [45] are omitted in Fig 4(b)-(f). HASIC-
Net [51] loses information in a band at wavelength 593.8nm.
MSCNN [14] fails to recover spectral curves close to the
true ones in the visible wavelength range (400-780 nm), as
shown by Fig 4 (e)(f). As a result, severe color distortion on
the false-color image of MSCNN, as demonstrated by Fig 3.
HSCNN+ [88] has a similar problem in the red and near-
infrared bands (700-1100 nm), as indicated by Fig 4 (b)(e)
and (f). FMNet [13] and HyperLDM (Ours) generate spectral
curves that correctly simulate the shape and absorption peak of
the real spectral curve. However, FMNet [13] produces biased
spectral curves compared with the true radiation values on two
types of ground objects, Grass and road, as revealed by Fig 4
(b)(d). HyperLDM (Ours) reduces these biases and achieves a
realistic generation of spectral curves.

The typical bands synthesized by different methods are
shown in Fig 5. HSRNet has an abnormal brightness in some
bands, namely band 5, that exceeds the range of reasonable
reflection values, resulting in the outliers on spectral curves in
Fig 4 (a). MSCNN [14], HSCNN+ [88] and FMNet [13] fail to
synthesize realistic band 1, since they use a one-to-one fitting
framework that cannot fit well in start bands. HSCNN+ [88]
also fails to fit the last band (band 48). HASIC-Net [51] fails
to synthesize band 16 and results in an abnormal value in
the spectral curves as shown in Fig. 4. HyperLDM (Ours)
generates each band of the HSI more realistically, and even
produces bands with a lower noise level than the real ones, as

shown by band 1 in Fig 5.

D. Ablation Studies
To evaluate the design of the conditional VQGAN and the

diffusion model, we conduct ablation studies on the following
aspects: (1) The dimension nx and size K of the codebook,
the downsampling factor f = 2m and the conditional input of
the decoder for the conditional VQGAN. (2) The steps, noise
schedule and the SSIM loss Lssim for the diffusion process.

1) Design of the Conditional VQGAN: We use the similar-
ity metrics between the real images and the ones reconstructed
by conditional VQGAN after the encoding and decoding
process to evaluate its design. The results are shown in
Table III, where the default parameter settings are the same as
in experiment 2.

The dimension of the latent code in the codebook affects the
reconstruction accuracy. As experiments 1,2, and 3 in Table III
show, a larger nx preserves more information and leads to
a better reconstruction of HSI. However, the reconstruction
accuracy does not improve when the dimension of the latent
code reaches 32, so we set nx = 16.

In the experiments 4 and 5, we examine the influence
of the downsampling factor on the reconstruction accuracy.
The reconstruction accuracy decreases as the downsampling
factor increases, which implies that a lower downsampling
factor retains more spatial information in the latent code and
enhances the reconstruction accuracy. Since the reconstruction
accuracy does not improve significantly and the diffusion
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TABLE III
ABLATION STUDIES OF THE CONDITIONAL VQGAN, † DENOTES THE FINAL SETTING.

Name nx f = 2m K condition �1 �2 RMSE MRAE SAM MSSIM MPSNR

1 8 376.30 0.0801 0.0590 0.9846 45.920
2† 16 22 1024 ! 100 1000 356.34 0.0704 0.0522 0.9865 46.656
3 32 362.43 0.0740 0.0550 0.9860 46.369
4 21 349.15 0.0742 0.0551 0.9872 46.781
5 23 423.35 0.0825 0.0602 0.9824 45.346
6 512 378.72 0.0788 0.0585 0.9849 46.035
7 % 1231.9 0.2719 0.1118 0.8922 35.653
8 10 100 500.42 0.1117 0.0786 0.9756 43.097
9 100 100 426.69 0.0980 0.0717 0.9808 44.644

computation increases by 4 times when downsampling by
f = 21 instead of f = 22, we choose f = 22 as a trade-
off between accuracy and efficiency.

In experiment 6 in Table III, we reduce the codebook size
to 512 and observe a decrease in accuracy due to the loss of
information in the latent code. In the experiment 7, we remove
the conditional RGB input of the decoder and decode the
hyperspectral image only based on the latent code. This leads
to a significant drop in the similarity metrics, because the HSI
has a large number of bands that are hard to encode into the
latent space only, where both spatial and channel dimensions
are greatly compressed. Without the conditional RGB image
as auxiliary information, the decoder cannot recover the HSI
from the latent code with high MPSNR. In experiments 8
and 9, we change the loss weights �1,�2 and find the set of
� = 100,�2 = 1000 achieves the optimal similarity metrics.

In conclusion, the conditional branch is the only design
factor that greatly affects the reconstruction effect, and the
VQGAN design is fully robust. Therefore, we adopt the
design of experiment 2 in Table III, where the reconstruction
accuracy reaches an MPSNR of 46.656, and we assume that
this encoding and decoding process can enable the bidirec-
tional conversion between HSI and latent code with minimal
information loss during the conversion.

2) Design of the Diffusion Model: For the design of the
diffusion process, we conduct ablation study on the following
factors: (1) The diffusion steps; (2) The noise schedule; (3)
The weight �3 of SSIM loss Lssim; (4) The attention layers.
The spectral diversity and similarity metrics are shown in
Table IV. We use linear noise schedules and vary their max
values. For the attention layers, we add them to features of
resolution 4, 8.

We experiment with three different diffusion steps: 50, 100,
and 200. We observe that increasing the number of steps from
50 to 100 (experiments 1,3) improves the similarity and the
spectral diversity metrics, especially the spectral diversity of
multiple HSIs (SDM). Increasing the diffusion step from 100
to 200 (experiments 5,6) does not affect any of the metrics
significantly. Therefore, we chose T = 100 as the optimal
diffusion step.

For the noise schedule, we standardize it for different diffu-
sion steps by setting the maximum noise value to M and the
minimum value is 0.005M , and then compute the noise in the
tth step of the diffusion as 0.005M + M�0.005M

T�1 t. We varied
the maximum value as 0.01, 0.02 and 0.04 respectively. From

experiments 2 and 3 in Table IV, we observe that increasing
the maximum noise value from 0.01 to 0.02 substantially
improved the diversity of the generated images, especially
the SDM which increases from 4.8920 to 5.2420. Moreover,
when the noise maximum was increased from 0.02 to 0.04, the
diversity metrics were improved (experiments 5,7). Taking into
account the trade-off between the diversity and similarity of
the generated image and the real image, we selected M = 0.02
as the optimal maximum.

As shown in experiments 3 and 4, the introduction of the
SSIM loss Lssim with � = 0.1 leads to an improvement in the
similarity metrics and a decrease in spectral diversity SDM.
Additionally, the addition of the Attention layers has little
effect on the similarity with negligible difference in diversity
metrics, as shown in experiments 4 and 5. Meanwhile, from
experiments 5 and 8, we find little change in the metrics when
we increase the weight of Lssim to �3 = 1. In conclusion,
considering the trade-off between diversity and similarity of
the generated HSI and the reference ones, we choose to include
attention layers and Lssim with �3 = 0.1.

3) Comparison of diffusion in latent space and data space:
For the dataset, the values of the hyperspectral data follow
a long-tail distribution, where most of them are smaller than
10000 (97.71%) but the biggest value is 50898. For diffu-
sion in data space, the pre-processing of the data, especially
the normalization is challenging since it should satisfy two
requirements: 1) The data should follow N(0, 1) after N-
step diffusion. Therefore, the variance of the noise schedule
at each step should exceed a certain threshold. Moreover, a
suitable signal-to-noise ratio (SNR) at each step is essential for
successful prediction of high-dimensional noise. Consequently,
the normalized data should have a large magnitude. 2) The
data should not exceed the reasonable range at each step, and
should be constrained within the interval (-1,1). We attempt
three normalization methods as follows and find that the clamp
method obtains the best results.

1) Linear: Linear normalizing the data to (-1,1) results in
the data being overwhelmed by noise, and the SNR is
very low, making it difficult to predict the noise.

2) Clamp: We assume that the data follows a Gaussian dis-
tribution and calculate the mean µ and standard deviation
�, normalize the data by subtracting µ and dividing by
3�, and then clamp the data to (-1,1). This normalization
maintains 99.20% data but lose information at big values,
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TABLE IV
ABLATION STUDIES OF THE DIFFUSION MODEL, † DENOTES THE FINAL SETTING.

Name step noise max �3 Attention RMSE MRAE SAM MSSIM MPSNR SD SDM

1 50 0.02 0 539.82 0.1068 0.0743 0.9792 44.424 2.5114 4.5914
2 100 0.01 0 531.65 0.1061 0.0744 0.9793 44.501 2.4924 4.8920
3 100 0.02 0 524.13 0.1067 0.0752 0.9791 44.617 2.5037 5.2420
4 100 0.02 0.1 517.58 0.1014 0.0715 0.9799 44.660 2.5155 4.5026
5† 100 0.02 0.1 ! 515.99 0.1037 0.0724 0.9797 44.736 2.5014 4.5500
6 200 0.02 0.1 ! 517.33 0.1029 0.0726 0.9796 44.693 2.4975 4.6204
7 100 0.04 0.1 ! 526.18 0.1049 0.0727 0.9796 44.607 2.5122 4.7139
8 100 0.02 1 ! 522.52 0.1021 0.0716 0.9800 44.634 2.5018 4.5737

where the diffusion results may suffer big errors.
3) Nonlinear: Using a nonlinear function to map the values

to (-1,1) results in low gradients near large values that
are difficult to optimize.

TABLE V
TIME COST AND SIMILARITY METRICS OF THE DIFFUSION IN DATA SPACE

AND LATENT SPACE

Method RMSE # MRAE # SAM # MSSIM " MPSNR " Time #

Data 944.90 0.2418 0.1744 0.9606 39.491 47.162 s
Latent 515.99 0.1037 0.0724 0.9797 44.736 0.7743 s

The time cost and similarity metrics of the diffusion in data
space and latent space are shown in Table V. We can find
that diffusion in latent space has better similarity metrics and
faster synthesis than that in data space, which improves the
synthesis speed by over 60 times.

E. Rationality Analysis of Diversity Metrics

To verify the rationality of the designed diversity evaluation
metric, we examine it from the properties of the relationship
between the diffusion diversity and the noise variance. Ac-
cording to the sampling process of the diffusion model (step
5 in Algorithm 2), the variance �t of the random noise �tz
added at each step follows the posterior variance �̃t, which
is strongly correlated with the �t in the noise schedule, as
Eq. (25) shows. A bigger variance �̃t at each step increases
both the uncertainty of the sampled image, and the diversity of
multiple synthesized images under the same input conditional
image.

We analyze the relationship between the proposed diversity
metrics (SD, SDM) and the noise schedule, with the ablation
experiments on the noise schedule in Table IV. For experi-
ments 2 and 3, the maximum of the noise schedule is increased
twofold, which means the variance of the noise is doubled at
each sampling step. The spectral diversity metrics, both SD
and SDM, have a numerical increase, which represent the
improvement of the synthetic spectrum diversity, consistent
with the intuitive diversity change when the noise increases.
Similarly, doubling the noise variance of experiment 7 rela-
tive to experiment 5 increases the diversity of its synthetic
spectrum. The two diversity metrics (SD, SDM) also reflect a
similar numerical increase, which indicates their rationality.

F. Improvement on Downstream Task
To evaluate the impact of the hyperspectral image

(HSI) synthesis, particularly the diversity synthesis on the
downstream tasks, we design an experiment involving a
hyperspectral classification task. This experiment allows us
to verify the performance promotion of HSI synthesis in the
downstream tasks.

We repartition the training and testing sets from the
grss dfc 2018 dataset for hyperspectral generation according
to the pixel-wise annotations area and ensure that the labeled
data is all located in the testing set for the generation task. The
labeled data consists of 4 596⇥ 601 patches with 20 classes.
75% of the labeled data is used for classification training and
25% for testing. The classification model is designed with a
U-Net [78] consists of 10 residual blocks.

We use three metrics to measure the downstream classifica-
tion accuracy on different types of data: overall accuracy (OA),
average accuracy (AA), and Kappa coefficient () [9, 89].
Table VI shows the results for three types of data: RGB data,
synthetic HSI data, and real HSI data. For synthetic HSI data,
we vary the synthesis times to generate diverse HSI from 1
time to 10 times for training. For example, ’Synthesis 2⇥’
means that we conduct HyperLDM 2 times to produce twice
as many hyperspectral images as the real HSI for training. The
testing data is also generated from the testing RGB images.

TABLE VI
ACCURACY OF THE DOWNSTREAM CLASSIFICATION TASK

Name Training Data Testing data OA " AA "  "

1 RGB RGB 0.7366 0.3529 0.4598
2 Synthesis 1⇥ Synthesis 1⇥ 0.7868 0.4643 0.5732
3 Synthesis 2⇥ Synthesis 1⇥ 0.7866 0.4739 0.5724
4 Synthesis 3⇥ Synthesis 1⇥ 0.8312 0.5130 0.6454
5 Synthesis 5⇥ Synthesis 1⇥ 0.8378 0.5244 0.6594
6 Synthesis 10⇥ Synthesis 1⇥ 0.8399 0.4931 0.6578
7 Real HSI Real HSI 0.8335 0.5074 0.6524

Table VI shows that the pixel-level classification using
HSI images generated with RGB images as conditional input
achieves higher values of all three metrics (OA, AA, and
) than using RGB images alone (Experiment 2). Doubling
the training data by running HyperLDM twice (Experiment
3), does not affect the classification metrics significantly.
However, increasing the number of synthetic HSI training
images by three times (Experiment 4) leads to a comparable
classification accuracy with real HSI images (Experiment 6),
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benefiting from the diverse spectral synthesis. Remarkably,
running HyperLDM on synthetic data multiple times to further
enhance the diversity of training images results in even higher
accuracy than that on real HSI data. Enlarging the amount of
training data from 5⇥ to 10⇥ does not improve the classi-
fication accuracy further (Experiments 5 and 6), suggesting
that the spectral diversity reaches the saturation point at 5⇥
synthesis.

In summary, the synthetic hyperspectral images improve
the accuracy of the pixel classification compared with using
the RGB images. Moreover, generating diverse HSI enhances
the classification accuracy even more, matching or surpassing
the accuracy of the real HSI data. HyperLDM can potentially
lower the reliance of object recognition tasks on costly HSI
imaging and attain similar recognition accuracy by using only
RGB data and diverse HSI generation.

V. CONCLUSION

Hyperspectral imaging is expensive and often suffers from
low spatial resolution. Hyperspectral synthesis has emerged
as an important means to reduce imaging costs and improve
spatial resolution, especially using RGB images as input. In
this paper, we propose a novel HSI synthesis method based
on the diffusion model, which supports diverse hyperspectral
image synthesis for the first time, as far as we know. The dif-
fusion model takes both generation quality and diversity into
account, and the diverse generation simulates the phenomenon
of spectral variation in real imaging. To avoid direct prediction
of the noise with the same high dimension as HSI, we design
a conditional VQGAN that maps the hyperspectral image into
the latent space and it reduces the dimension of noise predic-
tion, speeds up the diffusion inference process, and improves
its stability. Furthermore, we propose two new metrics, SD
and SDM, to measure the diversity of generated spectra in
semantic space, which is inspired by the Inception score (IS).
We verify their rationality by analyzing their relationship with
noise variance in the diffusion sampling process. Finally, the
experimental results show that HyperLDM generates spectra
that are both accurate and diverse. The downstream classifi-
cation experiments demonstrate that diverse HSI synthesis is
of great significance to downstream tasks. This is expected
to achieve similar ground object observation and recognition
results without using expensive HSI imaging. In the future,
we aim to accelerate the synthesis process by applying model
distillation methods [65].
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