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Abstract—Remote sensing scene classification is an important
yet challenging task. In recent years, the excellent feature repre-
sentation ability of Convolutional Neural Networks (CNNs) has
led to substantial improvements in scene classification accuracy.
However, handling resolution variations of remote sensing images
is still challenging because CNNs are not inherently capable
of modeling multi-resolution input images. In this letter, we
propose a novel scene classification method with scale and
resolution adaptation ability by leveraging the recent advances in
Implicit Neural Representations (INRs). Unlike previous CNN-
based methods that make predictions based on rasterized image
inputs, the proposed method converts the images as continuous
functions with INRs optimization and then performs classification
within the function space. When the image is represented as a
function, the image resolution can be decoupled from the pixel
values so that the resolution does not have much impact on the
classification performance. Our method also shows great potential
for multi-resolution remote sensing scene classification. Using
only a simple Multilayer Perceptron (MLP) classifier in the pro-
posed function space, our method achieves classification accuracy
comparable to deep CNNs but exhibits better adaptability to
image scale and resolution changes.

Index Terms—Remote sensing images, scene classification,
implicit neural networks, resolution agnostic.

I. INTRODUCTION

W ITH the recent advances in high-resolution earth ob-
servation [1], [2], remote sensing scene classification

has shown increasing attention owing to its advantages for
various applications, including surveying and mapping, land
use identification, and urban planning.

To accurately obtain the semantic categories of ground
objects, some early methods were proposed by utilizing feature
engineering, exploring feature construction, feature extraction,
and feature selection in an effort to extract more effective
feature representation, such as color histogram [3], local binary
pattern [4], codebook [5], etc. Recently, deep learning has
greatly promoted the research of remote sensing scene classifi-
cation. Many visual image classification architectures, such as
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VGGNet [6], ResNet [7] and ViT [8] have been introduced to
remote sensing scene classification tasks. The excellent feature
representation ability of CNNs and Transformers has led
to substantial improvements in scene classification accuracy.
Zhang et al. [9] create a CNN-CapsNet hybrid architecture by
combining the benefits of CNN and CapsNet. Zheng et al. [10]
propose a technique for deep scene representation to address
the lack of geometric invariance of CNN activations. Liu et
al. [11] propose a multi-scale CNN architecture to address the
scale variability of objects in remote sensing images.

Despite the progress in deep learning based methods, remote
sensing scene classification still remains a challenge due
to the varying resolutions amongst different remote sensors.
Most previous methods rarely considered the applicability and
transferability in real-world application settings, i.e., the data
disturbances generated by diverse imaging environments and
remote sensors, which manifest mostly in the resolution dis-
parity across different domains. State-of-the-art deep learning
architectures, including CNNs and Transformers, are naturally
not capable of modeling multi-resolution input images, and
thus it is challenging to represent the homogeneity of hetero-
geneous remote sensing images in an effective manner.

Recently, the use of neural networks to approximate con-
tinuous space and temporal functions has become an emerg-
ing research topic, known as implicit neural representations
(INRs). INRs can represent the properties of a space point/time
point as a function of the corresponding coordinates. The
primary issue with INRs is preserving the high-frequency
details. To achieve this, position encoding (PE) [12] or periodic
activation function [13], also known as Sirens, is typically
used. Sirens consider the sinusoidal activation an essential
network component. Functa [14] with Sirens structure is the
first to explore deep learning in the function space of INRs for
tasks such as generative modeling, data interpolation and new
view synthesis. However, the datasets utilized in the preceding
tasks are quite straightforward.

In this letter, we propose a novel method named Resolution-
Agnostic Scene classification Network (RASNet), to improve
the transferability and mitigate the scene classification degra-
dation caused by resolution changes in different domains.
RASNet adheres to the following two steps: 1) Represent
remote sensing images as continuous functions by INRs.
In this stage, we present a Synthesizer that converts the
continuous coordinates into pixel values for the corresponding
location. As a result, each image can be represented by a
function, i.e., the Synthesizer’s weights. However, employing
all of the Synthesizer’s parameters for categorization will
add a significant burden. To address this issue, we propose
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a Modulator that can transfer low-dimensional latent code
to high-dimensional Synthesizer weights, hence facilitating
classification. Details are shown in Sec. II-C and Sec. II-D.
2) Design and train a classification network in the function
space. In the process of modeling an image as a function, the
image’s resolution can be decoupled from the pixel data so that
the impact on classification performance at various resolutions
can be greatly reduced. Ideally, the data points in the function
space no longer include resolution information.

Our contributions are summarized as follows:
1. We propose a novel method to achieve the resolution-

agnostic remote sensing image classification by decomposing
the task into a data space transfer task and a classifier
construction task in the functional space.

2. We propose a network modulator to generate the modu-
lation parameters of the synthesizer, which reduces the dimen-
sion of the data sample in the function space and improves the
optimization of the latent codes.

3. We develop a residual Sirens network with perceptual
loss that allows the implicit neural synthesizer to employ
semantic context to optimize the latent codes and enhance the
performance of downstream classification tasks.

II. METHODOLOGY

A. Overview

The proposed RASNet decomposes scene classification into
two subtasks: 1. Optimize each image as a data point in
function space. 2. Create a classifier in the function space.
The proposed Modulator and Synthesizer constitute subtask 1,
as shown in Fig. 1. The Modulator converts the unique latent
code into the shift of bias of each fully connected (FC) layer
in the Synthesizer, a process known as shift modulation [14].

In subtask 1, the Synthesizer directly maps the coordinates
of image pixels to the corresponding pixel’s RGB values. In
addition to the Modulator and the Synthesizer, we also design a
Preceptor to increase the semantic expression capability. Both
the pixel-level consistency and the semantic-level consistency
are considered in the optimization. Since fitting each sample
demands a substantial amount of computation, meta-learning
is used to learn a better initialization to accelerate the op-
timization of the latent code in RASNet. The parameters of
Modulator and Synthesizer are shared across data to describe
the common structure of images, which not only reduces the
dimension of data points in the function space but also mines
the differences between data points.

In subtask 2, we aim to categorize the data (latent codes)
in the function space. We show that with the help of implicit
modulation and meta learning, only a few basic MLP layers
are sufficient to get considerable classification performance.

B. Revisiting the Implicit Neural Representation

This section provides a quick overview of the INRs. INRs
refer to a mapping Fθ : Rn → Rm, which encodes signals
such as amplitude, pixel value, 3D shape, etc. as a function
of time or spatial location. Taking representing an image as
an example, Fθ, usually an MLP, converts coordinates to
pixel values. The image is fitted by minimizing the mean
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Fig. 1. An overview of the Modulator and Synthesizer in our method.

square error (MSE) of the pixel value, so that each image
is determined by the parameter θ∗ of the optimized function
Fθ. Since Fθ decouples the image resolution, theoretically,
images of any resolution can be obtained by different sampling
intervals in Rn space.

C. The Synthesizer

The Synthesizer aims to map image coordinates to pixel
values, as shown in Fig. 1. The Synthesizer has N intermediate
residual layers that are written as follows,

hi = sin (ω(wT
i hi−1 + bi +mi)) + hi−1, (1)

where the sinusoidal periodic activation functions [13] are
embedded into the residual layers. hi−1 ∈ Rdi−1 and hi ∈ Rdi

are the hidden features of the (i − 1)th and ith layers,
respectively. wi ∈ Rdi−1×di and bi ∈ Rdi are the weight
and bias of the (i − 1)th linear layer. mi ∈ Rdi is the shift
bias produced by the Modulator, and ω is a pre-defined scale
factor. We set ω = 30 according to [13].

During the optimization, we build a Perceptor as a loss
function to introduce the global semantic consistency [15].
The Synthesizer’s total loss function is presented,

Ls =
1

H ×W

H∑
i

W∑
j

∥S(i, j;w, b,m)− I(i, j)∥22

+ λ(1− cos (P(Î; θ),P(I; θ)),

(2)

where H , W are the image height and width, w, b, m are the
weight, bias, and shift bias of the Synthesizer, I is the original
image, θ is the Perceptor’s parameters, Î is the synthesized
image using coordinates, and λ is a hyperparameter that
balances pixel value loss and perceptual loss. We set λ = 0.2.
The θ is fixed during the whole procedure.

D. The Modulator

Although the optimized Synthesizer parameters can be
already used for scene classification, we found that the number
of parameters far exceeds the image itself, which is not
friendly to downstream classification tasks. Some recent stud-
ies, e.g., Functa [14], propose taking a latent code to regulate
the frequency and phase of the periodic activation function.
Similar to Functa [14], we control the frequency and phase
of the activation in Synthesizer by adjusting the Synthesizer’s
bias shift. An input-sensitive Modulator instead of the basic



SUBMITTED TO GRSL 3

single-layer linear map in Functa [14] is proposed to address
the challenge of complex scenes in remote sensing images.

We design the structure of this input-sensitive Modulator
as an MLP, as shown in Fig. 1. The input mapping layer
transfers the latent code z to the layer modulation vector of the
first layer in the Synthesizer. Subsequent layers concatenate
the preceding modulation vector and the same latent code
z. Through this design, the loss gradient in the optimization
process can be easily back-propagated to the latent code z and
speeds up the optimization process. The formulation of the ith
layer can be written as:

x = [z,mi−1]

mi = ϕ2T
i max(0, ϕ1T

i x),
(3)

where z ∈ Rdz is the Modulator input, i.e., the latent code
vector. mi−1 ∈ Rdm and mi ∈ Rdm are the modulation
vectors generated by the (i−1)th and ith layers in Modulator,
as well as the (i − 1)th and ith bias shift in Synthesizer.
ϕ1

i ∈ R(dz+dm)×dm and ϕ2
i ∈ Rdm×dm are the parameters of

the Modulator linear layers. By mapping the low-dimensional
latent code to the bias shift of each layer in Synthesizer,
Modulator can modify the mapping function of Synthesizer.

E. Optimization Procedure

To jointly optimize the network parameters and image-
specific latent codes, the most straightforward way is to first
update the network parameters on the entire dataset and then
freeze the networks and update the latent for each image. How-
ever, we found that the optimization process is time-consuming
in this manner. Therefore, we introduce meta-learning to
initialize the parameters of Synthesizer and Modulator and
consider optimization of each image as a subtask [16].

We design the optimization process of images from eu-
clidean space to function space based on MAML [17].
Algorithm 1 provides the pseudo code. The biases of
the Synthesizer’s linear layers are initialized to all zero
and the weight of the first layer is initialized with
Uniform(− 1

nc ,
1
nc ), while the remaining layers are initialized

with Uniform(− 1
w

√
6
nc ,

1
w

√
6
nc ), where w = 30, where nc

denotes the number of input channels for each linear layer.
In the inner loop, the model parameters are fixed, and only

the latent codes are updated; in the outer loop, the loss is
calculated using the batch data and the model parameters of
the Modulator and Synthesizer are updated. After obtaining
θs and θm by meta-learning, we can go for the inner loop to
retrieve the latent code (i.e., data point in the function space)
of each sample. During meta-learning, we set Ni = 5. Fig. 2
demonstrates that a modest number of optimization steps (e.g.,
4) may provide a nice visualization, but in order to obtain high
accuracy on the downstream task, we take more steps.

F. The Classifier

We perform scene classification directly on the data points
in the function space, which not only saves memory, but also
reduces the effect of resolution variations on classification
performance. With a tiny MLP, we can achieve equivalent

Algorithm 1 Meta-learning to transform images to data points
in function space
Input: I, the input images
Input: Ne, the max epoch while learning
Input: Ni, the max inner loop while learning
Input: ϵ, ϵ′, the learning rate of the inner loop and the outer loop
Input: x, the coordinate vector
Output: θs and θm, weights of the Synthesizer and the Modulator

1: Initialize θs and θm
2: for i = 0 to Ne do
3: Randomly divide all samples to batch Bj ▷ j is batch id
4: for each Bj do
5: Set all zk → 0 ▷ k is sample id of Bj

6: for step = 0 to Ni do
7: zk ← zk − ϵ∇zLs(x, Ijk)|z=zk ▷ Ijk denotes the kth

sample in jth batch
8: end for
9: θ ← θ − ϵ′∇θ

1
|Bj |

∑|Bj |
k=0 Ls(x, Ijk) ▷ θ = {θs, θm}

10: end for
11: end for
12: Return: θs and θm
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Fig. 2. Visualization of optimized images. Rows show various image samples.
Columns show images reconstructed after various optimization iterations.

accuracy to popular CNN-based classification networks and
show better adaptation ability to image resolution changes.
The MLP only has 5 256-dim FC layers with ReLU activation,
resulting in low computational expense and rapid training
speed. More specifically in classification process, when all
training images are mapped to function points (latent codes),
these codes can be used to train the classifier. The well-trained
classifier can classify a new image after fitting the new image
into a latent code.

III. EXPERIMENT AND ANALYSIS

A. Dataset Description

We conduct our experiments on the Gaofen Image Dataset
(GID) [18] to validate the efficacy of our method. In our
experiments, we only employ RGB bands from the fine land-
cover classification subset with 15 categories. Each class
contains 1000, 600, and 400 samples with image size of
56 × 56, 112 × 112, and 224 × 224 pixels, respectively. The
images are produced by the Gaofen-2 satellite multispectral
camera with a spatial resolution of 4m/pixel. To prepare our
training set, we sample 600 images with 56× 56 pixels from
each class, and resize them to 28 × 28 pixels. The training
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set is denoted as Dtr
28. To prepare our test set, we sample

200 images of 56 × 56, 112 × 112, and 224 × 244 pixels,
respectively. We then resize them to 28 × 28, 56 × 56, and
112×112 pixels, respectively. A center crop of 84×84 pixels
is applied to the 112 × 112 images. As a consequence, three
test sets (Dte

28, Dte
56, Dte

84) finally have a spatial resolution of
8m/pixel covering different ground scales.

B. Experimental Setup

Except for Synthesizer, which follows Sec. II-E to ini-
tialize its parameters, other networks are initialized by the
PyTorch default configuration. The Preceptor is a pretrained
Resnet18 [7]. In Sec. II-E, we set the number of training
epochs to Ne = 1000 and the number of inner loops to Ni = 5.
The optimizer in the outer loop is AdamW with a learning rate
of 1e − 5 and the inner is momentum SGD of 1e − 2. The
input coordinates are normalized to [−1, 1], and an additional
0.5 is added to the output. We employ 7 repetition blocks
with 256 neurons for the Synthesizer, i.e., N = 7 in Fig. 1.
Blocks in Modulator match the Synthesizer. The dim of the
optimized latent code is set to 512. The classifier is trained
for 100 epochs using AdamW with a learning rate of 1e− 4.
Notably, we only train the classifier using Dtr

28 since we want
to evaluate resolution changes. We employ Precision, Recall,
and F1 to measure the performance.

C. Comparison with State-of-the-art Methods

We compare the proposed RASNet with other deep learning-
based image classification methods, such as ResNet18 [7],
VGG16 [6], and INR-based Functa [14] on different test
datasets. Tab. I shows the comparison results except for Functa
as a part of ablation study in Tab. III. We have the following
observations. 1) When evaluated on Dte

28, RASNet has an up-
to-par performance, but is inferior to VGG16. This is because
we only utilize a tiny MLP classifier and there is still room
for accuracy improvement in data space transfer. 2) When the
spatial resolution is held constant, Res. = 8, and only the
scale of the scene varies in Dte

56 and Dte
84, the performance

of CNN-based methods drops significantly, whereas RASNet
still maintains the performance at a high score. This suggests
that RASNet can enhance the adaptability of various spatial
ranges, i.e., spatial dimension agnostic. 3) When we downsize
images from Dte

56 and Dte
84 to 28×28 (the same size as training

set Dtr
28), and modify the spatial resolutions, we observe that

CNN-based classifiers perform better, but still experience a
considerable performance decrease. RASNet still maintains
performance despite a slight drop, demonstrating that RASNet
can expand its adaptability at multiple resolutions, i.e., resolu-
tion dimension agnostic. In contrast to CNN-based approaches,
the modest decline of RASNet may be due to the loss of
image details at a low resolution, whereas this can be easily
fixed by encoding the input image at a higher resolution. 4)
With perceptor loss, RASNet∗ achieves sota. More information
is provided in Sec. III-D3. Furthermore, Fig. 3 reports the
confusion matrix, where the entry in the ith row and jth
column denotes the rate of images from the ith class classified
as the jth class. Tab. II displays the accuracy per class. Ponds

and irrigated land can be difficult to accurately categorize.
Pond is easily confused with river and lake, whereas irrigated
land is easily confused with other land and land-like area.

TABLE I
COMPARISONS ACROSS DIFFERENT TESTSETS. SIZE: THE HEIGHT AND

WIDTH OF THE IMAGE. RES.: THE SPATIAL RESOLUTION.

Testset Method Size Res. (m/pixel) Precision (%) Recall (%) F1 (%)

Dte
28

Resnet18 28 8 62.81 60.67 61.41

VGG16 28 8 67.93 65.57 66.63

RASNet 28 8 61.07 61.17 60.93

RASNet∗ 28 8 69.28 68.70 68.99

Dte
56

Resnet18 56 8 32.54 23.93 18.92
28 16 52.32 48.47 49.12

VGG16 56 8 57.61 51.47 52.71
28 16 59.73 54.83 54.57

RASNet 56 8 59.67 58.35 58.38
28 16 58.14 57.27 57.26

RASNet∗ 56 8 63.48 63.23 63.13
28 16 64.65 62.70 63.11

Dte
84

Resnet18 84 8 30.74 18.50 13.11
28 24 47.13 44.10 43.73

VGG16 84 8 55.32 48.43 47.43
28 24 56.94 49.13 47.92

RASNet 84 8 57.15 55.40 54.12
28 24 56.91 54.60 54.17

RASNet∗ 84 8 61.98 59.03 59.78
28 24 60.20 58.23 57.30
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Fig. 3. Confusion matrix of RASNet∗ on Dte
28.
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Fig. 4. Reconstruction accuracy (PSNR) on different optimization steps of
the Synthesizer w/ or w/o using our residual design.

D. Ablation Study
1) Residual Connection: To improve the optimization, our

RASNet designs a residual mapping between layers, as de-
picted in Fig. 1. Fig. 4 shows the reconstruction accuracy
(PSNR) w/ or w/o using residual mapping. It can be seen
that the proposed residual design in Synthesizer increases the
accuracy, optimization speed, and stability significantly.
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TABLE II
THE ACCURACY PER CLASS OF RASNET∗ ON Dte

28 .
industrial land shrub land natural grassland artificial grassland river lake pond urban residential rural residential traffic land paddy field irrigated land dry cropland garden plot arbor woodland

Precision (%) 68.52 77.08 87.62 84.76 58.91 62.95 63.39 62.50 74.21 70.75 67.81 40.89 78.38 74.07 67.32
Recall (%) 74.00 74.00 92.00 69.50 59.50 79.00 35.50 67.50 70.50 75.00 79.00 46.00 72.50 50.00 86.50

F1 (%) 71.15 75.51 89.76 76.37 59.20 70.07 45.51 64.90 72.31 72.82 72.98 43.29 75.32 59.70 75.71

TABLE III
ABLATION STUDY ON THE MODULATOR AND PERCEPTOR. OURS (W/O

MODULATOR) IS THE INR-BASED FUNCTA.

Testset Method Size Res. (m/pixel) Precision (%) Recall (%) F1 (%)

Dte
28

w/o Modulator 28 8 59.90 58.90 58.20

w/ Perceptor 28 8 69.28 68.70 68.99

Dte
56

w/o Modulator 56 8 57.11 55.57 54.44
28 16 56.33 53.87 53.46

w/ Perceptor 56 8 63.48 63.23 63.13
28 16 64.65 62.70 63.11

Dte
84

w/o Modulator 84 8 53.13 51.53 51.48
28 24 54.12 50.60 51.99

w/ Perceptor 84 8 61.98 59.03 59.78
28 24 60.20 58.23 57.30

2) Modulator: Datasets such as CelebA [19] are frequently
used in INRs of natural images. It is easy to optimize these
data due to the simple image content and similar image
structures. However, remote sensing scenes are more complex
and diverse. We take Modulator in place of Shift Modulation
in Functa [14] to get modulations. We show that this design
is superior to that of Functa, as evidenced by Tab. III.
Furthermore, if we simply utilize the Synthesizer without the
Modulator to optimize each latent code (the weights of the
entire Synthesizer), the function space dim will increase from
512 to 0.5M. The classifier will face a considerable hurdle.

3) Perceptor: Scene classification can benefit from the
regional/global receptive field, whereas the INRs reconstruct
images solely at the pixel level. For this purpose, we propose
Perceptor to regularize semantic consistency. The w/ Perceptor
rows in Tab. III shows accuracy gains with the Perceptor. The
adaptability in various scene scales and spatial resolutions also
shows superior to that of Resnet18 and VGG16.

IV. DISCUSSION AND CONCLUSION

In this letter, we propose a novel method named RASNet for
remote sensing scene classification. RASNet is designed based
on the recent advances of INRs and can adapt to both scale and
spatial resolution changes. Using INRs, the proposed RASNet
transforms images from pixels to the function space, where
they are then classified. Our method achieves classification
accuracy comparable to deep CNNs yet shows much better
adaptivity to image scales and resolution changes. We show
that for complex and diverse scenes and large-scale images,
the proposed modulation of INRs is necessary for accurate
classification. Also, a basic MLP classifier can produce results
on par with CNNs, but the BN layer, the optimizer, etc. must
be considered specially. The method is “resolution-agnostic”
within a certain range, and it can’t perform well in extreme
cases, the performance of which is still better than that of
CNNs. Our future research will consider hyper-networks, multi
scales, transformers, etc. to handle high-resolution images and
improve downstream performance.
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