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Abstract—Few-shot learning provides a new way to solve the
problem of insufficient training samples in hyperspectral clas-
sification. It can implement reliable classification under several
training samples by learning meta-knowledge from similar tasks.
However, most existing works perform frequency statistics, which
may suffer from the prevalent uncertainty in point estimates with
limited training samples. To overcome this problem, we recon-
sider the hyperspectral image few-shot classification (HSI-FSC)
task as a hierarchical probabilistic inference from a Bayesian
view and provide a careful process of meta-learning probabilistic
inference. We introduce a prototype vector for each class as latent
variables and adopt distribution estimates for them to obtain
their posterior distribution. The posterior of the prototype vectors
is maximized by updating the parameters in the model via the
prior distribution of HSI and labeled samples. The features of the
query samples are matched with prototype vectors drawn from
the posterior, thus a posterior predictive distribution over the
labels of query samples can be inferred via an amortized Bayesian
variational inference approach. Experimental results on four
datasets demonstrate the effectiveness of our method. Especially
given only 3 — 5 labeled samples, the method achieves noticeable
upgrades of overall accuracy against competitive methods.

Index Terms—Bayesian Meta-learning, few-shot learning, hy-
perspectral image (HSI) classification, prototype vector.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) contain abundant

spectral and spatial information, which is beneficial
to identifying ground objects effectively [1]], [2]. Generally,
hyperspectral image is widely used in many fields such as
agriculture [3]], forestry [4], and environmental monitoring [5]].
Hyperspectral image classification (HSIC) aims to assign each
HSI pixel a corresponding class label and has been studied
extensively over the past decades. However, annotating HSI is
time-consuming, expensive, and needs field knowledge which
leads to the limited sample size of HSIC tasks.

There are mainly three solutions for the limited sample
problem: feature extraction, data augment, and model learning.
Many methods target to extract more efficient feature expres-
sion [6]-[8]], including dimension reduction [9]—[12], manual
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image feature [13[]-[|16] and CNN feature extraction [[17]—[19].
ABNet [20] modified the backbone with enhanced effective
channel attention (EECA) to capture more discriminative
features and proposes AFPN and CEM for multiscale fea-
tures. LSLRR [21]] aims to enable the learned representations
to characterize the global and local structures of HSI, and
to present a classwise block-diagonal matrix. However, the
expression ability of the features is limited in the case of only
few annotations.

Data augment expands the training set by leveraging prior
knowledge either from the unlabeled samples or similar
datasets. For example, Generative Neural Network (GAN)
is widely used to generate pseudo samples and extend the
training dataset [22], [23]. Meanwhile, many semi-supervised
methods [24]-[26] choose some unlabeled samples and their
predicted label as the addition to the training set. Besides,
recent graph-based semi-supervised learning methods [27]]—
[31] have also achieved impressive performance on the task of
few-shot classification of hyperspectral images. The limitation
of these methods is that errors may accumulate and propagate
due to unreliable sample-label pairs.

Model learning methods acquire general knowledge on
massive learning tasks and utilize the knowledge to solve
new tasks, such as transfer learning [32]-[34] and meta-
learning [35]-[37]. Transfer learning transfers knowledge
learned from the source domain to the target domain and is
difficult to overcome domain gap [32]]-[34]]. By constructing a
large number of similar meta-tasks as compensation for few-
shot, meta-learning provides a new solution for few-shot tasks,
especially for those that only have 3 — 20 labeled samples per
class [38|]-[41]. Traditional machine learning methods learn
a mapping from data to label during the training stage and
adopt the learned mapping to predict the labels of unlabeled
samples. In contrast, meta-learning leverages massive meta-
tasks to learn a common solution of this kind of task during
the training stage, then adopts it to solve the testing task during
the testing stage.

Meta-learning-based few-shot learning methods have been
attracting growing interest in hyperspectral image classifica-
tion. On the one hand, practical HSIC application scenar-
ios mainly suffer from few-shot constrain due to the high
annotation difficulty and cost. On the other hand, although
methods like transfer learning and semi-supervised methods
have made progress in reducing the need for sample size, it
is still difficult for them to handle few-shot tasks. A deep
learning Few-shot learning method (DFSL) is designed for
HSIC [38§], it learns a metric space where training samples
of the same class are close to each other and the metric



space can work well on unseen samples. The probability
that the test sample belongs to each class is obtained by
calculating the Euclidean distance to prototype vector [42]] of
each class. Relation network [43] evaluates the relationship
between spatial-spectral features of different samples extracted
by embedding model [39], [44]. Deep cross-domain few-
shot learning (DCFSL) can handle the domain shift via the
conditional adversarial domain distribution strategy [41]]. Zhou
et al. [45] apply the meta-learning to hyperspectral few-shot
tasks, propose to train a linear classier on several labeled
samples, and optimize an embedding module by minimizing
the test error on query samples for each generated meta-task.
SSFT [46] utilizes a 3-D residual network with ECA module to
extract features, followed by a feature transformation module
to enhance feature diversity. SVD is applied to the transformed
features of each class, and then the subspace of each class is
obtained.

However, the spectra of the same object are variable and
different objects may have similar spectra, which brings great
challenges to few-shot classification methods. As shown in
fig[l] three samples randomly selected from ’Gravel’ in Pavia
University data set present different spectra, as do the three
samples from ’Self-Blocking Bricks’. Meanwhile, samples
from the two classes show some similarities. The existing
few-shot HSIC methods are based on frequency statistics
and directly determine the model by maximizing local/global
likelihood in the training stage, without paying enough at-
tention to the spectral variation phenomenon. Point estimates
under the constraints of a few labeled samples can cause
prevalent uncertainty, which may cause a large deviation in
label prediction.

Spectra from PaviaU

2000

D AT e Vg

PNy

1800

1600

lance

1400

Rad

1200 PaviaU_Gravel _0

PaviaU_Gravel 1
PaviaU_Gravel 2
PaviaU_Self-Blocking Bricks_0
PaviaU_Self-Blocking Bricks_1
PaviaU_Self-Blocking Bricks_2

1000

800

600 800 1000

Wavelength (nm)

1200 1400

Fig. 1: The prevalent phenomenon of samples from the same
class with different spectra and samples from different classes
with similar spectra in hyperspectral images.

To alleviate the contradiction between few-shot and spec-
tra variation, we re-examine the few-shot HSI classification
from a Bayesian view and develop a Bayesian Meta-learning
Few-Shot Classification solution (BMFSC), which conducts
distribution estimates for prototype vectors rather than point
estimates, as shown in fig. 2] Some researchers have suggested
that the human ability for few-shot inductive reasoning could
derive from a Bayesian inference mechanism [47], [48]]. The
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Fig. 2: (a) Prototype networks make point estimates on pro-
totype vectors, that is, a deterministic vector is obtained. The
result can be explicitly determined by the local/global likeli-
hood maxima of the training phase. (b) We make distribution
estimates on prototype vectors and assume that spectra of
the same class generally follow the same distribution. The
label of a query sample can be determined by comparing
the probability that its spectrum belongs to the corresponding
distribution of each class.

bayesian method learns the posterior distribution of model
parameters from a trade-off between its prior distribution
and the conditional likelihood of the observed data and
is believed to make better inference [49]], [50]. Bayesian
meta-learning combines the advantages of meta-learning and
Bayesian learning, learning task priors on massive similar
meta-tasks and obtaining the posterior distribution from the
task priors and data likelihood. Meanwhile, the bayesian meta-
learning method can also reduce the occurrence of over-fitting
of inner and outer optimization [S1]].

In BMFSC, we design a hierarchical probability model and
introduce a latent variable to factorize the posterior predictive
distribution of query set as integral of posterior for each latent
vector. The latent variable represents the prototype vector
of each class and its posterior is maximized by updating
the parameters of the inference network based on the prior
distribution of HSI and labeled samples. During the query
stage, features of the query samples are matched with each
prototype vector drawn from the posterior, thus a posterior
predictive distribution over the labels of query samples can
be inferred via an amortized Bayesian variational inference
approach. Experimental results prove the effectiveness of our
proposed approach against competitive methods.

The contribution of our work can be summarized as follows:

1) We design a Bayesian meta-learning method for hyper-
spectral few-shot classification and formalize the problem
in a probabilistic way. The predictive probability model
arises from a trade-off between its prior distribution and
the conditional likelihood of the observed data.

We construct a hierarchical probability model conditioned
on the common feature of the samples from each class,
called a prototype vector of this class. We use distribution
estimates for prototype vectors to cope with the contra-
diction between a few labeled samples and the spectral
variation.

2)

The rest of this paper is organized as follows. In section
II, we introduce related work briefly. In section III, we give
a process of meta-learning probabilistic inference in detail
and introduce our proposed few-shot classification method for



hyperspectral images. Details about the experimental setup and
results are reported in section IV. The conclusions are given
in Section V.

II. RELATED WORK
A. Bayesian Models

Given a set of observations O = (X,Y) = {(z:,y:)}/25
where x; € X is the data and y; € Y is the label, let H be a
hypothesis space of all mapping functions h : X — Y. Each
h € H can be regarded as a concrete possible description of
the model. Drawing h from a prior distribution p(h) and then
relating it to the observations O through the likelihood p(O|h),
a Bayesian model infers conditioning on data and computing

the posterior:

p(Olh)p(h)
p(0)
The posterior prediction distribution on labels y, of testing
data x, can be achieved by

p(:]0, z.) = / Py lhy 2 )p(RlO, @) dh ()

p(h|0) = (1)

In complex Bayesian models, the posterior calculation usu-
ally requires approximate inference methods, such as MCMC
[52] and variational inference [53]].

B. Bayesian Meta-learning

Deep learning has made amazing progress in the past
decades with the support of strong computing power, rich data,
and advanced solutions. However, there is still a long way to
go before leveraging neural networks in practical scenarios
where the data is scarce and requirements for accuracy are
critical. Meta-learning, which is known as learning how to
learn, can learn information from massive similar meta-tasks
and generalize that information to unseen tasks.

The comparison of the traditional machine learning
paradigm and meta-learning paradigm is shown in fig. [3| Take
a testing task to classify unlabeled samples into Alfalfa, Corn
and etc. for example. To solve this task, traditional machine
learning is to learn a mapping function 2 : X — Y on
the training set consisting of labeled samples from Alfalfa,
Corn and etc during the training stage. Once the mapping
function is determined, it will be applied to produce the
label corresponding to the test input during the testing stage.
However, in some practical scenarios, only a few labeled
samples are available so learning from scratch is impractical.
Meta-learning, which is one of the most popular learning
frameworks for few-shot tasks, can learn a priori from massive
similar meta-tasks during the training stage and generalize that
information to unseen testing tasks during the testing stage.

There are two views of the meta-learning problem: a deter-
ministic view and a probabilistic view [54]. The deterministic
view of meta-learning takes a training data set, a test sample,
and meta-parameters as input to produce the label correspond-
ing to that test sample straightforward. The probabilistic view
takes the training data set and a set of meta-parameters as
input, then performs a maximum likelihood inference over the
task-specific parameters.

Previous Bayesian non-deep learning meta-learners [35]—
[37] aim to extract “general knowledge” or “more intelligent
representations tuned to specific sub-domains of a task” from
previously learned information and then represent it as a prior
probability density in the space of model parameters. Once the
support set of the testing task is given, the general knowledge
will be updated and a posterior will be computed.

Bayesian principles have the potential to represent the
uncertainty of the model, conduct sequential learning, and
reduce over-fitting. However, computational concerns of the
posterior distribution overshadow the theoretical advantages
and make Bayesian models rarely applied in practical appli-
cation scenarios. Fortunately, variational inference is emerged
as a method to approximate the probability density through
optimization. The most progress in Bayesian meta-learning
has relied on latent variable models optimized with variational
inference.

C. Variational Auto-Encoder

Variational auto-encoder (VAE) [55] provides an efficient
way to approximate the posterior inference by leveraging the
Evidence Lower Bound (ELBO) to estimate the (variational)
lower bound on the marginal likelihood of data points.

Consider a dataset X = {w(i)}il containing N indepen-
dent and identically distributed samples, a recognition model
q(z | ) is an approximation to the intractable true posterior
p(z | ), where the unobserved variables z are interpreted as
a latent representation or code. The marginal likelihood is the
sum over that of each data point as shown in Eq. (3).

N
logp(@™,2®), ... a™)) =Y "logpx™)  (3)
=1

It can be rewritten as
p(x", 2)
p(z | xW)g(z | D)
= Dict (a(z | @)l p(z | 29))) + £ (29).
“4)

Due to the non-negativity of KL-divergence, the second
term £ (x(V) is called the (variational) lower bound on the
marginal likelihood of datapoint <.

logp(x') > L (w(“)

= ot [Ing@(i)» z) —logq(z | m(i))}

log p(zV) = logg(z | V) -

(&)

The (variational) lower bound £ (:c(i)) can be rewritten as

Eq (2]t {— log q(z | :r,(i)) +logp(z) — logp(z) + logp(a:(i)7 z)}

= ~Drw(a(z | 2D)Ip(2)) + Eyzjpoy [logp(@® | 2)]
(6)

Ey(zjz) [logp(@? | 2)] is the likelihood after sampling
from the inference network g, which can be interpreted as the
reconstruction loss of the decoder. D, (q(z | x™)||p(2)) is
the KL divergence between the inference network q and the
prior network p.
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Fig. 3: Comparison of traditional machine learning and meta-learning during the training stage and testing stage for solving a
testing task (in orange box). Traditional machine learning aims at learning a mapping from data to label in the training stage
and adopt it to obtain the labels of testing samples. In the contrast, meta-learning aims at learning meta-knowledge, which can
propose a common solution of massive similar meta-tasks, during the training stage while generalize the meta-knowledge to
testing tasks.
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Fig. 4: An overview of our proposed method, BMFSC, for each task (whether meta-task or test task). Our approach aims
at providing a probabilistic solution for the hyperspectral image (HSI) few-shot classification (HSI-FSC) task. The prototype
vector w(® is treated as a latent variable and its posterior distribution is approximated based on the prior distribution of HSI and
support samples given. The prototype vectors drawn from the posterior are used to compute the posterior predictive distribution
over the labels of query samples. In meta-tasks, the parameters of the feature-extractor network 6 and inference network ¢ are
updated by minimizing the predictive performance on query samples. In testing tasks, since 6 and ¢ are learned, a feed-forward
inference is performed to obtain posterior distribution over the prototype vector and then the posterior predictive distribution.

Note ¢(z | @), p(x® | z) and p(z) are represented
by neural networks. When using variational inference in
the context of meta-learning, meta-parameters represent the
parameters of p(x® | z) and p(z), while task-specific
parameters represent the parameters of g(z | ().

III. MODEL

Few-shot learning provides a new solution for hyperspec-
tral image classification in the case the data is scarce and
requirements for model accuracy are critical. Meta-learning,
which is one of the most popular learning frameworks for
the few-shot task, can learn prior from massive similar meta-
tasks and generalize that information to unseen tasks. Bayesian
models relate the prior information to the observations through
the likelihood, infer conditioning on data, and compute the
posterior.

We assume the prior knowledge acquired from various few-
shot HSIC meta-tasks is about how to capture the discrimi-
nating features and how to infer the common features of the
samples from the same class, and the acquired knowledge is
learnable and generalizable. For convenience, we represent
the common features of the samples from a specific class
as the prototype vector of this class. Therefore, our model
has two main components, namely feature extraction network
and inference network. The parameters of feature extraction
network 6 are the knowledge about how to extract discrimi-
nating features, while the parameters of inference network ¢
are the knowledge about how to infer an approximate posterior
distribution over the prototype vector. The knowledge, €, and
¢ are obtained via various meta-tasks during the training stage
and adopted to new tasks during the testing stage.

To be specific, in a task ¢, support samples from class ¢ are



fed into the feature extraction network to extract distinguish-
able features of these samples. Once features of samples from
class ¢ are obtained, they are fed into the inference network.
The inference network performs inferences and outputs an ap-
proximate posterior distribution of the prototype vector of class
1. Features of query samples are obtained via the same feature
extraction network. The posterior predictive distribution over
the labels of query samples is calculated by matching features
of query samples and prototype vectors of all classes. Fig. ]
demonstrates the workflow of our proposed new method.

Given a training HSI data set D (Np > V), massive various
meta-tasks are generated from D. Each meta-task has the same
N and K as the testing task T. Note N and K represent the
number of classes and the number of labeled samples in each
class respectively. For each meta-task t, we sample N classes
from all classes of D to form a subset I'y (Np, = N) , so
as to guarantee each classification meta-task is different. We
assume knowledge about how to observe and how to infer
is learnable and generalizable. Therefore, the parameters of
feature extraction network 6 and the parameters of inference
network ¢ that acquired via various meta-tasks can be shared
among testing tasks. However, due to each task with different
support samples from different classes, the prototype vectors
w® are task-specific, even for the prototype vector of the
same class.

Since the data for all tasks will help ascertain the values
of the shared parameters, we will use point estimates for
feature extraction network parameters 6 and inference network
parameters ¢. In the training stage, our model is trained
via gradient descent. The parameters of feature extraction
network 6 and the parameters of inference network ¢ are
updated via various meta-tasks generated from the training
HSI data set. In the testing stage, the trained 6 and ¢ are
shared in different tasks. Meanwhile, we use distributional
estimates for prototype vectors w'® since only a few labeled
samples can help constrain them. Feature extraction of support
samples and query samples is followed by a feed-forward
inference procedure for the approximate posterior distribution
of prototype vectors. Then a posterior predictive distribution
over the labels of query samples is inferred.

A. Probability Expression

We draw on the inference processes that humans perform
in few-shot learning tasks. When we are to solve an N-
way K-shot hyperspectral classification task ¢, which aims
at classifying query samples in the query set Q) = {z,}
into N classes with IV x K support samples in the support set
S® = {(x4,ys)}, we compute the following posterior predic-
tive distribution on the labels of query samples Y = {y,}
based on support samples X gy = {xs}, labels of support
samples Yg) = {y,} and query samples X = {x,}:

p(Yoom | Xsw,Ysw, Xom) @)

Since the posterior predictive distribution is hard to be
calculated directly, we assume a hierarchical probability struc-
ture. We first infer the common features of the samples
from the same class, namely prototype vectors of all the

N classes. Then the labels of query samples Yo = {y,}
are predicted by the classifier by matching query features
and the inference result, prototype vectors. Therefore, our
model first extracts discriminating features of support samples
fo(Xsw) and features of query samples fo(Xow) via a
feature extraction network fy. Then the model aims at making
inferences for the posterior distribution of prototype vectors
w(®) based on support features fo(X g ) and labels of support
samples Ygu) = {ys}. We use distributional estimates rather
than point estimates for prototype vectors w(®) because only
a few labeled samples can constrain them. By introducing the
prototype vector as a hidden variable, the posterior predictive
distribution can be factorized as:

(Yoo | Xsw, Ysm, Xgm,0)

::fpﬁb“>PXQw,w“%Q)ﬂﬂw“)|XbunY%m7@dwi;
where w® = [w1,...,wn] and w; is the prototype vector
corresponding to the i class.

Once the posterior distribution of prototype vectors is
characterized by the support feature, namely p(w(t) |
Xgw,Ygw,0), we consider the predictive distribution for
labels of query samples that factor p(Yo« | Xgo, w® §) =
[Lz,equ p(yq | 24, w® 0). Without reliable assumptions on
query labels Yy ), this is the easiest way to guarantee a valid
stochastic process.

For an N-way K-shot hyperspectral classification task ¢, NV
classes form a subset I';. The probability that a query sample
T, € QW is classified into class i is given by:

( | (t) 6) efe(wq)'“’i (9)
PlYqg=1]| g, w7, = <~  _folz,)w.,
q q Zi’EF efe( a)'W;
where fg(x,) is the feature of the query sample x,.

This approach shifts the key of an N-way K-shot hyper-
spectral classification problem to parameterize the posterior
distribution of prototype vectors p(w™® | X gy, Yge), 0).

B. Approximation of the Posterior Predictive Distribution

Since the true posterior distribution of prototype vectors
is hard to solve directly, our approach takes a variational
inference approach to approximate the target distribution p
with a simpler distribution ¢* by minimizing their KL di-
vergence. The posterior predictive distribution over the labels
of query samples Y5+ = {y,} based on support samples
Xgw = {xs}, labels of support samples Ygu) = {ys}, and
query samples X = {x,} can be approximated by an
amortized distribution as follow:

7Yoo | Xsw, Ysw, Xgw,0)

= fp(YQ(t) | XQ({,),w(t), 9) . qd)(w(t) ‘ XS(t) 5 Ys(t) 5 G)dw(t)

(10)

where 6 is the parameters of the feature extraction network, ¢
is the parameters of the inference network.

A problem with this setup is that Evidence Lower Bound

contains an expectation w.r.t ¢, which indicates that we have

to be able to back-propagate into g. Since sampling is not



differentiable, we utilize the reparametrization trick, represent-
ing g(w® | Xgw,Ygw) by the mean (u) plus the variance
(o) times the noise (€): ¢(w® | Xgw,Ygi) = Bq + Oge.
Means and variances are determined by the inference network.
That is, the output of the inference network delivers mean-
field Gaussian parameters to parameterize the approximate
posterior distribution of prototype vectors. When drawn from
the approximate posterior, prototype vectors are sampled from
the implied distribution over the logits rather than directly
from the variational distribution. Given that a prototype vector
represents the common features of samples from its corre-
sponding class, a factorized Gaussian distribution is adapted
for qs(w® | Xgw, Yge,0) in this work. To perform quick
predictions on testing tasks, we amortize the approximate
posterior distribution directly on the extracted features fp(x):

N
0) = [ [ ao(w: | fo(Xsw), Ysw)

i=1
Y

do(w® | X0, Yoo,

C. Parameters Optimization on Meta-tasks

In order to acquire a model that can solve an V-way K -shot
hyperspectral classification task 7" on the test data set, we train
the model on various meta-tasks generated from the training
HSI data set D. For each meta-task ¢, different /N classes are
sampled from the set of all classes of D to generate a different
classification meta-task. The IV classes of ¢ are represented as
T'. Once T is determined, we sample K samples from each
class in T as support samples to form ¢’s support set S(*), and
sample other L samples from the remaining samples of each
class in T' as query samples to form t’s query set Q). The
optimal parameters of the inference network ¢* that can best
approximate the posterior predictive distribution, and thus are
found by minimizing average expected loss over tasks. The
optimal parameters of the feature extraction network 6* are
found by maximizing the predictive performance.

Intuitively, the quality of the approximate posterior pre-
dictive distribution can be evaluated by the KL-divergence
between the true and approximate posterior predictive distri-
bution:

KL[p(-) || q(-)]

(1) =p(Yom | Xsw, Ysw, Xgm,0) (12)

Q() = %(YQ(O | Xs(t)7Ys(t),XQ(t)79)

The goal of optimization is to minimize the value of the
KL-divergence, so the objective can be given as follows:

L(¢) = — 102 45 (Yow | Xow, 0
(¢) p(su]fE,QM)[Og%( ow | Xow,0)]

= — 1 Y t X 0, (t)’ 0
p(S(tIEQ(f,))[ ngp( QM | Qw,w )
o (WP | Xge, Y, 0)dw®]

13)

It is intractable to compute the log-probability in Equation
[I0] Therefore, we estimate the probability with A/ Monte

Carlo sampling, and our approach can be effectively optimized
in an end-to-end way. The training objective for the shared
parameters 6, ¢ becomes:

M
- t)
L®.9) ~ NLT Z log Z PV | Xgu,wp),0)
(14)
where w( ) is sampled from the approximate posterior dis-

tribution over prototype vectors, namely Wl ~ ge(w® |
Xgw,Ygw,0), L is the number of query samples per class,
N x L is the total number of query samples and 7T is the
number of the meta-tasks.

The optimization algorithm is shown in Algorithm 1. An
unbiased estimate of the optimization objective can be ob-
tained by computing the average of the results and can then be
optimized. From this perspective, the information about how
to observe (parameters ¢) and how to infer (parameters ¢) can
be learned during the procedure of scoring the approximate
inference process.

In the testing phase, support samples are the few labeled
samples in the testing data set, and query samples are exactly
all unlabeled samples to be classified. The trained feature
extraction network fp and the inference network ¢4 are fixed.
Similar to the training proceeding presented in Algorithm
1, the support samples Xy = {2, }5=V*X and all query
samples XQm = {acq} are input into the feature extraction
network fp to obtain supported features and query features.
And then support features are input into the inference network
gy to obtain four parameters of the approximate posterior
distribution over prototype vectors w*), namely means and log
variances for prototype vectors and biases. For each prototype
vector sampled from the obtained approximate distribution, the
probability that a query sample x, belongs to each class can

. fo(®g) w;
be calculated by p(y, = i | xq,w(t),a) = %

Ei/
Finally, all the predictions are averaged. :

Algorithm 1 Training Proceeding

Input: HSI dataset D = [(z1,¥1), ..., (®n,yn)], &; € RWXAXe

obtained by merging four training data sets.
Repeat
1. Sample N classes from all classes of D to form a subset I'¢ for a
meta-task t.

2. Sample K samples from each class in I" to form support set S(*) =
{(xs,ys)}, and sample other L samples from remaining samples of
each class in T to form query set Q¥ = {ax,}.

. Feed support samples X ¢(;) = {xs} and query samples Xom = {xq}

(95}

to a feature extraction network fy to obtain support features fy (X S(U)

and query features fo (X 0] )

4. Feed support features fy (X SW) to a inference network g4, to obtain
the parameters of the approximate posterior distribution over prototype
vectors w(?), namely means and log variances for prototype vectors and
biases.

. Sample prototype vectors w® from the obtained approximate
distribution q¢ {X ) Yg(t) 9).

. Compute the probablhty that a query sample x4 is classified into class ¢
conditioned on prototype vectors w® with Equation

. Approximate the posterior predictive distribution in Equation [10] with M
Monte Carlo sampling. Parameters 6 and ¢ are optimized with Equation

wn
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D. Implementation Details

The architecture of the feature extractor network and the
inference network for BMFSC can be chosen arbitrarily. Li et
al. [56] indicates that 3-D CNN with small 3 x 3 x 3 kernels are
effective for hyperspectral image classification. In this paper,
we fix the size of the 3-D convolution kernels to 3 x 3 x 3.
More detailed information for the two networks is summarized
in fig. [6|and [5} where FC represents Fully Connected layer and
BN represents Batch Normalization.

Fig. [B] shows the architecture of our feature extractor net-
work fp. When the feature extractor network takes a sample
as input, the output size of its extracted feature is 192. Fig. [6]
presents the architecture of our inference network g, (“Num-
ber of Filters/Kernel Size”). The inference network takes
features of K support samples as input, and output mean-field
Gaussian parameters to parameterize the approximate posterior
distribution of prototype vectors. The function of the Fully
Connected layer is to integrate the highly abstracted features
obtained after multiple convolutions. We apply the exponential
linear unit (ELU) as our active function of inference network
primarily for two reasons: 1) The output value of ELU can be
negative, thus ELU has a similar effect of Batch Normalization
but with lower computational complexity. 2) ELU has the char-
acteristic of soft saturation, which makes it relatively robust
to noise in the inactive state. The mathematical expressions of

ELU with 0 < « is f(x){ 2’(ew_1) fci(()) ’

IV. EXPERIMENTAL SETUP

We evaluate BMFSC on few-shot hyperspectral image clas-
sification tasks, where the number of labeled support samples
per class (shot) K and the number of classes (way) N change
during the test stage. All the experiments are conducted using
python on a workstation with an Intel(R) Core(TM) i7-10700K
processor (3.80 GHz), 64 GB of memory, and Nvidia GeForce
RTX 2080 Ti.

A. Datasets

1) Training Set: To learn the parameters of feature extrac-
tion network 6 and the parameters of inference network ¢ via
various meta-tasks generated from the training HSI data set,
we aggregate four publicly available HSI datasets to a large

training HSI data set D. This training HSI data set D ranges
from field parcel to urban areas and shows different spatial
resolutions, which guarantees sample diversity. Detailed in-
formation of the four data sets, namely the Kennedy Space
Center (KSC) data set, the Chikusei dataset [[57], the Houston
dataset, and the Botswana dataset is presented in Table E}

The Kennedy Space Center (KSC) data set has 13 classes
with more than 100 samples, while the Chikusei data set has
19, the Houston data set has 15, and the Botswana data set
has 13. The training HSI data set D has 60 classes in total
with 100 samples per class. Note that BS-Nets [58] is adapted
to select 100 bands in order to ensure the dimensions fed to
the feature extractor fy are consistent.

2) Testing Set: To evaluate the classification performance of
BMFSC, several experiments are performed on three popular
datasets: the Indian Pines (IP) data set, the Salinas Valley (SV)
data set and the Pavia University (PU) data set. For the three
data sets, 100 pixels are randomly selected from each class
for testing. Table [[]introduces the details of the three datasets.
Similarly, 100 bands were selected via BS-Nets [58] to feed
into the feature extractor fy.

B. Parameter Settings

The number of tasks per batch, the number of episodes, the
way (number of classes N for each task t), the shot (number
of support samples for each class K), and the learning rate
need to be set in advance. In this paper, the number of tasks
per batch is set to 4 because of the limited computing power.
The number of episodes is set to 15,000. The way N is set
to be the same as the number of classes of the testing tasks.
The learning rate is set to 0.001. For the shot numbers, we
respectively set 1,2, 3,4,5,10, 15, 20. In order to make a fair
comparison, we followed the existing work [38] and set the
query number L to 19.

For 16-way 5-shot tasks, the window size is set to 5,7,9
and 11 respectively, the corresponding overall accuracy on the
testing data sets changes, which is reported in fig. [/} In general,
the size of the windows will influence the classification
performance. Fig. /| demonstrates that both a small size of the
window (e.g., 5,7) and a large size of the window (e.g., 11)
greatly decreases the overall classification accuracy. Therefore,
the optimum parameter for window size seems to be 9. In this
paper, the window size is set to 9. Therefore, when input into
the network, each sample is a data cube of 9 x 9 x 100.

V. EXPERIMENT

Several parameter setting experiments are conducted to
figure out the optimal number of query samples per class L and
the optimal window size. The performance of BMFSC-G that
adopts the Gaussian distribution to approximate the posterior
distribution over prototype vector and BMFSC-D that adopts
the Dirichlet distribution are compared. We also conduct a 5-
way 5-shot HSIC toy experiment to evaluate the approximate
inference performed by the inference network. Experiments on
four data sets prove the effectiveness of our proposed approach
against competitive baselines in a few-shot setting.



TABLE I: Detailed information of the four data sets that constitute the training set, namely the Kennedy Space Center (KSC)
data set, the Chikusei data set [57]], the Houston data set, and the Botswana data set.

Dataset Sensor No. of band Wavelength Spatial resolution Size No. of sample No. of class
KSC AVIRIS 176 400 — 2, 500nm 18m 512 x 614 5,211 13
Chikusei ~ Headwall Hyperspec-VNIR-C 128 343 — 1,018nm 2.5m 2,517 x 2,335 77,592 19
Houston ITRES-CASI 1500 144 364 — 1046nm 2.5m 349 x 1,905 15,029 15
Botswana EO-1 145 400 — 2,500nm 30m 1,476 x 256 3,248 14

TABLE II: Detailed information of the four testing data sets, namely the Indian Pines (IP) data set, the Salinas Valley (SV)

data set and the Pavia University (PU) data set.

Dataset Sensor  No. of band Wavelength Spatial resolution Size No. of sample No. of class

Indian Pines AVIRIS 200 400 — 2, 500nm 20m 145 x 145 10, 249 16

Salinas Valley AVIRIS 204 400 — 2, 500nm 3.Tm 512 x 217 54,129 16

Pavia University ROSIS 103 430 — 860nm 1.3m 610 x 340 42,776 9
design. It can be observed that the proposed BMFSC gets
% a significant performance boost compared with deterministic
_ FSL methods (DFSL+NN [38]], DFSL+SVM [38]]), DCFSL
°§SU [41], CMFSL [59], CESL [31]]) given a few labeled samples.
:“-‘:)m A possible reason is BMFSC can propose multiple potential
< solutions when there might simply not be enough information
60 —— Indian Pines in a small dataset for a new task. Especially for a small number
. - ::]‘lz,a;?.?‘“eyrmy of support samples per class,1 — 5, BMFSC is proven to be

[

7 9
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Fig. 7: Assuming the posterior distribution over the prototype
vector is a Gaussian distribution, classification accuracy varies
as the window size increases.

A. Classification performance

In this section, we compare the classification performance
of BMFSC with DFSL [38]]), DCFSL [41]], CMFSL [59]
and CFSL [31]]. All the comparison methods are specifically
designed to solve the few-shot hyperspectral image classifi-
cation problem. The numerical results for the classification
models above are compared with BMFSC in detail with the
shot (numbers of support samples per class K) ranges in
1,2,3,4,5,10,15,20. Classification maps for few-shot hy-
perspectral image classification models are compared with
BMEFSC when given 5 support samples.

Overall accuracy is reported in Classification maps
for different classifiers on the four testing data sets with 5
support samples are presented in figs. [§] to [I0] The time
taken by BMFSC in model training and testing is presented
in Table [Vl Table [V] to [VIIl show the individual class-wise
accuracies of the different methods on the three testing data
sets, namely the Indian Pines data set, the Salinas Valley
data set and the Pavia University data set. From Table
the results of the experiments prove that the overall accuracy
of every classification method generally increases with the
increase of support samples per class K. For the performance
on the three datasets, we can find BMFSC performs better
than others generally, which indicates the superiority of our

effective.

The overall accuracy and standard deviation (percentage)
of the different methods on the Indian Pines Data Set
are presented in Table Compared with DFSL+NN and
DFSL+SVM methods (using point estimates for prototype
vectors), BMFSC (using distributional estimates) increases OA
by 17.21% given only 3 labeled samples, 14% given 5 labeled
samples. It indicates that using distributional estimates for
prototype vectors is effective. It can be observed from fig.
that BMFSC can perform better classification on samples
from corn-mintill, grass tree, and soybean-mintill. Similar
conclusions can be drawn with the results on the Salinas Valley
data set and the Pavia University data set reported in [[II] and
figs. [0] and [0}

Experimental results show that there are performance dif-
ferences between BMFSC and other methods. One possible
reason for the difference in performance is that BMFSC adopts
distribution estimates, while other comparison methods adopt
point estimates. For the performance difference on different
classes, a possible reason is that for these classes, samples
from the same class do not strictly follow the same Gaussian
distribution. Therefore, the Gaussian distribution assumption
used in our method cannot bring a noticeable improvement on
these classes.

B. Ablation Experiments

To prove the effectiveness of the novelty, we have conducted
three ablation experiments on the architecture of the feature
extraction network (FE1, FE2), the estimates fashion (point
estimates, PE and distribution estimates, DE), the approximate
distribution type (Gaussian, Dirichlet). The results are shown
in Table VIIL.



TABLE III: Overall accuracy and standard deviation (percentage) of the Different Methods on the Four Test Data Sets, namely
Indian Pines Data Set,Salinas Valley Data Set, and Pavia University Data Set. K is the number of labeled samples as support
from each class. Best results are highlighted in bold.

Dataset Methods K=1 K=2 K=3 K=4 K=5 K=10 K =15 K =20

DFSL+NN 48.19 + 5.60 58.60 £+ 5.53 64.05 +4.10 61.73 +3.44 67.84 +1.29 76.49 +1.44 78.62 £+ 1.59 81.74 +£0.95
DFSL+SVM  49.36 + 7.82 58.46 + 4.61 60.59 + 5.09 64.20 £ 5.69 64.58 +2.78 75.53 £ 1.89 79.98 £+ 2.23 83.01 +1.67

DCFSL 41.87+5.90 50.97 £ 5.52 55.67 + 3.84 57.55 + 4.50 60.35 £ 3.99 71.00 £ 1.84 7772 £2.29 79.53 +£1.29
p CMFSL 43.42 + 3.57 52.61 £ 4.23 58.32 &+ 3.67 62.33 +2.48 64.47 £ 2.14 73.40 £ 2.08 78.71 £1.55 82.34 = 1.66
CFSL 41.85 £ 5.57 52.48 £ 4.84 59.37 £ 3.11 63.70 £+ 3.16 66.64 £ 2.40 76.21 £ 2.55 81.51 +£0.95 82.60 £+ 5.24
BMFSC 56.67 +3.27 67.35+2.08 81.26+0.98 81.55+0.75 81.84+088 8342+073 84.01+067 84.89+0.68

DFSL+NN 81.19+3.76 82.73+3.55 86.66 + 2.26 87.21+£1.25 88.40 £+ 1.54 89.86 + 1.69 92.15+1.24 92.69 £+ 0.98
DFSL+SVM 77.28 +4.83 80.82 + 3.86 84.86 +2.14 85.43 +4.04 85.58 £+ 1.87 89.73+1.24 91.21+1.64 93.42+1.25

DCFSL 74.29 £ 2.34 81.83 +2.04 83.14 £ 3.15 87.72 £ 1.76 88.34 £ 0.94 90.82+3.01 92.85 +0.92 93.95 £ 0.56
sv CMFSL 76.40 £+ 4.64 80.67 +1.94 84.64 £+ 2.65 86.60 = 1.75 87.51 £ 1.67 90.89 + 1.62 92.22 +1.04 92.81 +£0.78
CFSL 75.69 £+ 3.18 81.34 +2.68 85.30 & 3.30 88.13 £ 1.63 89.24 £2.01 92.36 & 1.04 93.52+0.94 94.14 £0.71
BMFSC 75.46 + 1.95 80.95 +1.01 94.83+0.55 95.24+1.97 95944+0.38 96.07+0.34 96.13+0.33 96.45+0.29

DFSL+NN 49.99 +8.25 62.12 +4.52 68.80 + 5.61 73.25+4.91 80.81 £+ 3.12 84.79 +2.27 86.68 +2.61 89.59 £+ 1.05
DFSL+SVM 53.88 +6.32 58.88 +8.12 64.06 + 6.12 66.74 £ 7.37 72.57 +£3.93 84.56 +1.83 87.23 +1.38 90.69 £+ 1.29

DCFSL 59.62 £ 8.23 67.16 + 7.68 72.21 £ 4.02 78.59 + 1.37 78.73 £1.20 84.81 + 3.51 87.02 + 3.26 90.53 £ 1.25
PU CMFSL 58.37 £ 9.89 68.94 + 7.05 73.61 £6.25 80.29 £ 3.00 80.58 £ 3.10 86.46 & 4.13 89.16 & 3.80 91.54 £ 2.23
CFSL 60.51 £+ 6.57 73.29 £4.71 77.45 £ 5.34 83.66 +2.17 84.26 £ 4.11 89.09 +4.03 91.44+3.56 94.42+0.91
BMFSC 61.48+254 7577+139 8277+090 83.73+1.67 8565+0.71 87.08 +0.56 87.88 £0.51 88.00 £ 0.47

(a) GT (b) DESL+NN (c) DFSL+SVM (d) DCFSL (e) CMFSL (f) CFSL (g) BMFSC

Fig. 8: Classification maps for the Indian Pines data set with 5 support samples. (a) Ground-truth. (b)—(e) Classification maps
for different classifiers. (b) DFSL+NN. (c) DFSL+SVM. (d) DCFSL. (e) CMFSL. (f) CFSL. (g) BMFSC.

(a) GT (b) DFSL+NN (c) DFSL+SVM (d) DCFSL (e) CMFSL (f) CFSL (g) BMFSC

Fig. 9: Classification maps for the Salinas Valley data set with 5 support samples. (a) Ground-truth. (b)—(e) Classification maps
for different classifiers. (b) DFSL+NN. (c) DFSL+SVM. (d) DCFSL. (e) CMFSL. (f) CFSL. (g) BMFSC.



(a) GT

(b) DFSL+NN (c) DFSL+SVM

(d) DCFSL

(e) CMFSL (f) CFSL (g) BMFSC

Fig. 10: Classification maps for the Pavia University data set with 5 support samples. (a) Ground-truth. (b)-(e) Classification
maps for different classifiers. (b) DFSL+NN. (¢) DFSL+SVM. (d) DCFSL. (e) CMFSL. (f) CFSL. (g) BMFSC.

TABLE VII: Class-wise accuracies on Pavia University Data

TABLE IV: Time Taken by BMFSC in Model Training and  Set.

Testing
Data Set  Train + Validation Time  Test Time
PU 23883s (6.63h) 5.25s
SV 63850s (17.73h) 7.79s
1P 66266s (18.41h) 1.99s

TABLE V: Class-wise accuracies on Indian Pines Data Set.

Accuracy
Class = K L pESL+NN DFSL+SVM DCFSL CMFSL CFSL BMFSC
1 5 6626 7427 47.04 82.2 7183 783 7851
2 5 18644 79.94 74.51 8774 8414 8698 8499
3 5 2004 76.56 74.7 6746 6197 7225 8285
4 5 3059 87.76 94.68 9316 9397 9448 8845
5 51340 99.93 99.26 99.49 9.6 9952 997
6 5 5004 85.58 78.35 7732 7675 7644 964
7 51325 90.3 95.86 8118 7894 8567  93.6l
8 5 3677 87.4 65.21 6673 7182 803 7529
9 5 o 85.43 97.68 9866 9932 992 96.09
0A 80.52 7331 83.65 80.58 8426  85.61
Kappa 75.28 66.37 78.7 7499 7961 8144

K is the number of support samples. L is the number of query samples.

TABLE VIII: The ablation experiments. We finally selected the
last setting.

Settings
FE FE qu D Gaussia Dirichle Ip SV PU
v ' v 59.22 +1.27 82.26 +0.24 80.13 +0.34
v s v 64.52 + 3.13 83.96 + 1.64 81.67 + 1.65
v v v 73.60 +2.11 88.04 4+ 1.51 82.76 + 2.66
v v v 80.85 4+ 0.24 88.87+0.19 81.08 +0.25
v v v 81.84+0.88 9594+038 85.65+0.71

Accuracy
Class K L ppgI4NN DFSL+SVM DCFSL CMFSL CFSL BMFSC

1 5 41 91.3 97.83 9537 9927 9585 100
2 5 1423 4055 37.18 4326 4377 4865  62.04

3 5 825 5145 79.76 57.95 5605 5833  90.6

4 5 232 60.34 77.22 80.6 7935 7935 962
5 5 478 91.93 853 7291 749 7485  98.14
6 5725 90 90.96 8796 7717 8713 90.82

7 5 23 100 100 9957  99.13 987 100
8 5 473 90.17 94.14 8626 8679  89.01  98.54

9 515 100 100 99.33 9933 98.67 100
10 5 967 58.44 64.4 6244 6235 613 6821
11 52450 6346 40.37 62.75 5611 5907 734
12 5 588 55.99 78.92 4872 4699 4617 882
13 5 200 94.63 92.68 99.35 99 9845  99.02
14 51260 8625 80.55 85.4 8347 8301  90.43
15 5 381 75.91 94.82 6660 7583 7669 9637
16 s 88 100 100 97.61 977 97.27 100
0A 6732 65.84 66.81 6447 6664 8165
Kappa 63.19 62.11 6264 5999 6246  79.28

K is the number of support samples. L is the number of query samples.

TABLE VI: Class-wise accuracies on Salinas Valley Data Set.

Accuracy
Class K L prgryNN DFSL+SVM DCFSL CMFSL CFSL BMFSC
| 5 2004 99.7 99.1 99.4 9752 9958 100
2 5 3721 99.41 94.79 9976 9844 9935  99.87
3 51971 99.04 91.8 9196  92.64 9237 9939
4 5 1389 99.28 977 99.55 9897 9895  99.07
5 5 2673 93.69 95.26 92.7 93.04 9337 9686
6 5 3954 99.72 97.75 9952 9954 9915 100
7 5 3574 99.25 99.69 9888 9686 9806  99.53
8 511266 68.13 45.94 7457 69.17 7426 8756
9 5 6198 98.86 99.05 99.59 9897 9924 9939
0 5 327 94.87 95.39 8642 8485 8458  98.05
1 51063 99.44 98.88 96.61 9821 9779  97.94
2 5 192 99.9 99.9 9993 9941 9882 100
13 5 911 100 100 99.3 99.68 9874 100
14 5 1065 99.25 99.35 9885 9888  97.63  98.97
15 5 7263 68.51 88.95 7538 7436 7763 8847
16 5 1802 98.17 100 9222 8725  90.09 99
0A 88.12 85.68 8934 8751 8924 9534
Kappa 86.81 84.19 88.17  86.14 8806  94.81

K is the number of support samples. L is the number of query samples.

“FEl is the feature extraction network in DFSL [38].

bFE2 is the feature extraction network in fig.

“PE is point estimates.

4DE is distribution estimates.

¢Gaussian to approximate the posterior distribution over prototype vector.
/Dirichlet to approximate the posterior distribution over prototype vector.

Both the proposed architecture of the feature extraction
network and distribution estimates contribute to the superi-
ority of our method. For the posterior distribution over the
prototype vector, since Gaussian distribution and Dirichlet
distribution are commonly used in the field of hyperspectral
image processing, both Gaussian and Dirichlet are considered.
We conduct an experiment to evaluate which distribution can
better approximate the posterior distribution over the prototype
vector. It can be drawn from Table VIII that the Gaussian
distribution is more suitable to approximate the posterior
distribution of the prototype vector. The probable reason why
Gaussian distribution is a better choice for our method might
be two-fold. On one hand, hyperspectral images are generally
considered to follow a mixture of Gaussian distributions. On
the other hand, Dirichlet distribution is more suitable for ap-



plication scenarios where the number of Gaussian distributions
producing the data is unknown and hence the number of
clustering cannot be determined.

C. The approximate inference

BMFSC formalizes the few-shot hyperspectral image clas-
sification problem in a probabilistic way and provides a
careful process of meta-learning probabilistic inference. The
key of the proposed method, BMFSC, is the feed-forward
inference procedure for approximate posterior distribution over
prototype vectors gg(w'®) | Xge), Yg,0). Because only
when the inference process is able to get appropriate posterior
distributions over prototype vectors can we draw appropriate
prototype vectors from it, which is the premise and basement
of more reliable classification performance.

To evaluate the approximate inference performed by the
inference network, we conduct a 5-way 5-shot HSIC toy
experiment. We train a model via gradient descent on various
5-way 5-shot meta-tasks generated from the training HSI data
set and evaluate its performance on the testing 5-way 5-shot
task 7'. For each meta-task ¢, we sampled different 5 classes
T" from all classes of the training data set in order to generate
a different 5-way 5-shot meta-task. For each class in ', we
draw 5 support samples and 10 query samples to form the
support set S®) and the query set Q*. Totally, 1,000 various
meta-tasks are generated. Once the optimal parameters of
the feature extractor network 6* and the optimal parameters
of the inference network ¢* are derived via meta-tasks, we
apply them to solve the testing task 7. The approximate
posterior distribution over the prototype vector is inferred
by the learned parameters ¢. Then the posterior predictive
distribution over the labels of query samples Yo = {y,}
based on support samples Xgu) = {xs}, labels of support
samples Y = {ys}, and query samples Xt = {24} can
be obtained.

We draw a prototype vector of class 1 w; from the ap-
proximate posterior distribution over the prototype vector of
class 1 delivered by the inference network. Similarly, prototype
vectors of 5 class w;,¢ = 1,...,5 are sampled from their
corresponding approximate posterior distribution. The feature
of a query sample from the first class can be considered as a
sample from the true posterior distribution for the prototype
vector of the first class. Therefore, the similarity between
the extracted feature of the query sample from the first class
(Query from Class 1 in fig. [TT) and the prototype vector of
its corresponding class (PV of Class 1 in fig. [[I) can to
some extent reflect the similarity between the true posterior
distribution and the approximate posterior distribution over
prototype vector. In fig. [TT] we show the inferred five prototype
vectors of the 5 new classes of the testing task 7' and the
extracted feature of a query sample from the first class of
the testing task 7. Note the output size of the extracted
feature and inferred prototype vector is 192. To offer direct and
easy observing, we add bias 5, 10, 15, 20, 25 to each prototype
vector respectively.

It can be observed that the extracted feature of the query
sample (Query from Class 1) is almost consistent with the

prototype vector of its corresponding class (PV of Class 1) and
they show roughly the same change tendency. To account for
this, cosine similarity is adapted to measure the similarity be-
tween the query feature and each prototype vector. The cosine
similarity between the query feature and the prototype vector
of the first class is far closer to 1. Therefore, the inference
procedure can obtain appropriate posterior distributions over
prototype vectors w®), though we directly focus on the pos-
terior predictive distribution and minimize the predictive KL
divergence KL[p(YQ(t) | XQ(t) s X5<t) s Ys(t) s 9) H qd¢ (YQ(t) |
XQ(t) 5 XS(t) s Ys(t) s 0)]

VI. CONCLUSION

We propose a Bayesian Meta-learning solution for few-shot
classification in hyperspectral images called BMSFC. We build
a hierarchical probability model from the Bayesian view and
provide a process of meta-learning probabilistic inference. The
prototype vectors are introduced as latent variables and their
posterior is obtained to acquire the posterior predictive distri-
bution over the labels of test samples. During the test stage,
rather than using gradient-based optimization, we perform
a feed-forward inference procedure for amortizing posterior
distribution over the prototype vectors. All the processes
are under a meta-learning framework and meta-knowledge
from the similar few-shot classification tasks are learned on
other extraneous datasets of known labels. Experiments on
four common datasets show the superiority of our method
especially when only a few samples are given. BMFSC may
provide new thinking of investigation in hyperspectral image
few-shot classification, and even other applications, such as
the fast object detection and instance segmentation of remote
sensing images.
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