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Abstract: Abundant spectral information endows unique advantages of hyperspectral remote sensing
images in target location and recognition. Target detection techniques locate materials or objects of
interest from hyperspectral images with given prior target spectra, and have been widely used in
military, mineral exploration, ecological protection, etc. However, hyperspectral target detection is a
challenging task due to high-dimension data, spectral changes, spectral mixing, and so on. To this end,
many methods based on optimization and machine learning have been proposed in the past decades.
In this paper, we review the representatives of hyperspectral image target detection methods and
group them into seven categories: hypothesis testing-based methods, spectral angle-based methods,
signal decomposition-based methods, constrained energy minimization (CEM)-based methods,
kernel-based methods, sparse representation-based methods, and deep learning-based methods. We
then comprehensively summarize their basic principles, classical algorithms, advantages, limitations,
and connections. Meanwhile, we give critical comparisons of the methods on the summarized
datasets and evaluation metrics. Furthermore, the future challenges and directions in the area are
analyzed.
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1. Introduction

Remote sensing techniques play a vital role in both military and civilian applications [1,2].
Hyperspectral remote sensing obtains the rich spectral information of ground objects, which
provides unique advantages for probing and distinguishing various targets [3,4], and thus
plays a crucial role in the remote sensing image processing field. As a result, hyperspec-
tral target detection (HTD) has become a research hotspot in the field of hyperspectral
image processing.

Hyperspectral target detection utilizes the spectral information of each pixel in the
hyperspectral image (HSI) to determine whether the pixel belongs to a certain material.
It can be divided into two categories: one is known as target detection and the other
is anomaly detection. Target detection is the task of finding and localizing targets in a
hyperspectral image given the reference spectrum of the target. The reference spectra are
usually obtained from the spectral library or target pixels already identified in the scene.
Typically, only one or a few reference spectra of the target are available. Anomaly detection
marks the anomalous objects in HSI without the requirement of prior knowledge from
the target spectrum. Since anomaly detection highlights the target without clarity of the
interesting prior, it is not suitable for the targeted detection of objects of prior interest. In
this paper, we focus on target detection with a reference spectrum given to mark certain
targets and refer it to target detection later for brevity.
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Benefiting from the accurate detection of certain targets, target detection is widely
used in various fields. First, it is used to detect important military targets such as aircraft,
ships, airports, oil tanks, and landmines, and is thus of great importance for military
reconnaissance and strikes [5–7]. Second, in the field of forest science, it can be used for
the detection of new leaf growth [8] and the monitoring of forest diversity and structure
[9]. Third, in the field of mineral prospecting, hyperspectral target detection can be used
for the detection of iron oxides [10] and the detection of minerals in geothermal prospect
areas [11]. Finally, there are also a large number of applications in other civil fields, such as
post-disaster rescue [12], gas detection [3], and precision agriculture [13].

Nowadays, target detection methods have been developed from various advanced
techniques, including signal processing techniques, optimization techniques, and machine
learning techniques. In recent years, the booming development of deep learning has
injected new energy into the field. Although target detection methods have been extensively
developed and explored in many application areas, challenges still exist in this field due
to spectral variability, difficulty in the acquisition of the ground truth, etc. Therefore, a
comprehensive overview of the current status and future challenges of hyperspectral target
detection is crucial. We reviewed the previous review papers and found that most of them
suffer from the following problems:

(1) Incomplete introduction. Earlier reviews have combed through traditional target
detection methods [14–18], but they have not focused on the deep learning-based
methods that have emerged in recent years and are becoming mainstream.

(2) Insufficient relevance. Although some recent related reviews contain some relatively
advanced methods [19–21], they do not focus directly on the field of target detection,
but broadly on hyperspectral image processing, which is not relevant enough. In
addition, most of these reviews only list the advanced methods, and the summary
and comparison of these methods are not satisfactory.

(3) Neglect of connections between methods. Most of the existing reviews only focus on
the differences between the various methods and introduce each type of method inde-
pendently, neglecting to explore the connections between different types of methods.

To address the incomplete introduction, we add the summary of sparse representation-
based methods and deep learning-based methods to the traditional methods. To address the
insufficient relevance, we focus exclusively on target detection and analyze the problems
and challenges unique to the target detection task. To address the neglect of connections
between methods, we analyze the differences and connections between various types of
methods, and link the hyperspectral target detection methods together systematically.

In this paper, we focus on target detection and give a comprehensive review of
it. We systematically summarize and categorize the existing methods and give a brief
introduction to the representative algorithms. Meanwhile, we provide outlines of datasets
and evaluation metrics for target detection as well as an outlook on future challenges in
this paper. We hope the research in this paper will be useful to new researchers interested
in the field of hyperspectral target detection and to those who want to further their research
in hyperspectral target detection.

The remaining part of this paper is organized as follows: Section 2 provides a review
of target detection methods. Section 3 introduces the details about datasets and evaluation
metrics. Section 4 provides a comparison of the methods from the point of view of core ideas
and experimental results. Meanwhile, we point out the future challenges and directions in
Section 4. Finally, the conclusion is drawn in Section 5.

2. Target Detection Methods

In this section, we give a comprehensive review of the detection methods and divide
them into the seven following categories: hypothesis testing-based methods, spectral angle-
based methods, signal decomposition-based methods, constrained energy minimization
(CEM)-based methods, kernel-based methods, sparse representation-based methods, and
deep learning based methods. We first provide a general description of the basic ideas,
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advantages, and disadvantages of these seven categories in Section 2.1. After that, in
Sections 2.2–2.8, we provide specific descriptions of the seven categories of algorithms.

2.1. Overview

We first introduce one of the most classical hyperspectral target detection methods,
the hypothesis test-based methods, in Section 2.2. Such methods model the hyperspectral
target detection problem as a hypothesis testing problem and use the likelihood ratio as the
basis for determining whether a pixel is a target or not. In this category, different modeling
approaches can derive different forms of detectors. In Section 2.2, we also introduce the
concept of data whitening and use this concept to relate the different detectors in the
following subsections.

In Section 2.3, we introduced the spectral angle-based methods. The basic idea of this
type of detector is to match each pixel in the HSI using a known reference target spectrum.
This type of detector is easy to compute but has limited performance.

In Section 2.4, we model the hyperspectral target detection problem as a signal de-
composition problem from a signal processing perspective. By modeling the different
decompositions of the signal, we obtain different detectors. This type of detector is physi-
cally interpretable but often requires numerous prior information.

In Section 2.5, we construct the detector from the viewpoint of filtering and use
an optimization-based approach to optimize the detector. Specifically, constraining the
response of the target detector to the target spectrum minimizes the output energy of the
detector. This class of detectors is called constrained energy minimization (CEM) based
detectors. This type of detector is still widely used today because of its good suppression
of the background.

However, the basic forms of the above detectors are linear. As hyperspectral data often
have numerous nonlinear properties, it is therefore important to increase the nonlinear
detection capability of the detectors. In Section 2.6, we introduce the kernel method to
map the data to a high-dimensional space to remove the nonlinear properties in HSI. This
approach can handle nonlinear data better but has a huge computational overhead.

In recent years, data-driven methods have gradually become a research hotspot for
hyperspectral target detection due to the advantages of good detection performance and
robustness. In Section 2.7, we introduce the sparse representation-based methods. Such
methods reconstruct the target and the HSI by constructing a suitable dictionary and
performing detection on the reconstructed results. This type of method is effective against
spectral variability but relies on the construction of dictionaries. In Section 2.8, we introduce
deep learning-based methods. These methods either detect the target directly by building a
neural network model or first reconstruct the target and the HSI using the neural network
model, and then detect it later using traditional target detection methods. Deep learning-
based methods have high accuracy but suffer from problems such as a lack of data and
limited interpretability.

Suppose a hyperspectral image can be arranged as a matrix X = [x1 , x2 , ..., xN ] ∈
RL×N , where each column of X is an L dimensional spectral vector xi , N is the number of
pixels, and L is the number of wavebands. Suppose d is an L dimensional column vector
representing the target reference spectrum.

2.2. Hypothesis Testing-Based Methods

Target detection can be seen as a hypothesis-testing problem. Let H0 represent that
the target is absent, and let H1 represent that the target is present. A common approach to
solving hypothesis testing problems is to construct likelihood ratio testing. Let f0(xi |H0)
be the conditional probability density function of the observed spectrum xi under the
hypothesis H0 and f1(xi |H1) be the conditional probability density function of the observed
pixel xi under the H1 hypothesis. Then the likelihood ratio can be defined as:

Λ(xi) =
f0(xi |H0)

f1(xi |H1)
. (1)
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Let the threshold be τ. If Λ(xi) > τ, the hypothesis H1, which indicates the presence
of the target, is accepted, and if Λ(xi) < τ, the hypothesis H0, which indicates the absence
of the target, is accepted. In order to determine the likelihood ratio, two conditional
probability density functions f0(xi |H0) and f1(xi |H1) need to be known. The forms of the
conditional probability density functions are different under different forms of hypotheses.

Assuming that both hypotheses follow the Gaussian distribution and that their covari-
ance matrices are equal, the hypothesis testing model can be denoted as:

H0 : xi ∼ N(µb , Σ)

H1 : xi ∼ N(µt , Σ),
(2)

where µb and µt represent the mean vectors of the background and target, respectively, and
Σ represents the covariance matrix. Therefore, the likelihood ratio can be expressed as:

Λ(xi) =
exp

[
− 1

2
(
xi − µt)

⊤Σ−1(xi − µt)
]

exp
[
− 1

2
(
xi − µb)

⊤Σ−1(xi − µb)
] . (3)

Taking the logarithm of Λ(xi ) and ignoring the constant term, we yield the following
Matched Filter (MF) detector:

δMF(xi ) = k(µt − µb)
⊤Σ−1xi = w⊤

MFxi , (4)

where k is a normalization constant. Since the detector shown in Equation (4) has the same
form as the matched filter, it is called the MF detector.

The MF detector in this form requires access to prior background information, which
is usually not readily available. To solve this problem, we can also use the hypothesis
testing model in the following form:

H0 : xi = v ∼ N(0, Σ)

H1 : xi = as + v ∼ N(as, Σ).
(5)

where s in the above equation represents the pure target (or called endmember), indicating
that the spectrum contains only one material. When the reference target spectrum d is
also considered to be a pure target, the two are equivalent. In Equation (5), v represents
noise and a represents the abundance factor (the proportion of the endmember in the pixel).
Since a is a ratio, a > 0.

While assuming that the target and background covariance matrices are the same,
the above model additionally gives the two assumptions that the target is superimposed
from the pure target and background and that the background has the same mean value
under both H0 and H1 hypotheses. The MF detector derived from the above model can be
denoted as [22]:

δMF(xi ) = as⊤Σ−1xi . (6)

If we assume that a is known. Since a > 0, the detection performance of the detector
when a = 1 is the same as when a takes other values. Thus the MF detector can be
denoted as:

δMF(xi ) = s⊤Σ−1xi . (7)

If a is unknown, under the H1 hypothesis, the maximum likelihood estimate of a is:

a =
s⊤Σ−1xi

s⊤Σ−1s
. (8)

Combining Equations (6) and (8) yields a detector of the following form:

δAMF(xi ) =
(s⊤Σ−1xi )

2

s⊤Σ−1s
, (9)
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which is called Adaptive Matched Filter (AMF) detector [23].
To better establish the connection between the various methods, here we interpret

MF from the perspective of data whitening and derive more variant MF detectors. Data
whitening is a way to eliminate redundant information from the data. Chang [24] et al.
utilized the second-order data statistic of HSI to whiten the data. Specifically, the second-
order data statistic is used to characterize the background, and the second-order data
statistic is decorrelated to remove the background interference. In this case, the covariance
matrix-based whitening is called K-whitening. After K-whitening, xi can be denoted as:

x̃i = Σ−1/2xi, (10)

It is worth noting that the MF detector as shown in Equation (6) can be viewed as a
multiplication of s and xi using K-whitening, respectively, i.e.,

δMF(xi ) = a(Σ−1/2s)⊤(Σ−1/2xi ) = as̃⊤x̃i. (11)

Then setting a = 1 and using L2 normalization for s̃ and x̃i, respectively:

δNMF(xi ) =
s̃⊤x̃i

∥s̃∥ ∥x̃i∥
=

s̃⊤x̃i

(s̃⊤ s̃)1/2(x̃⊤i x̃i)1/2
. (12)

The target reference spectrum after K-whitening d̃ is used to approximate the pure
target after K-whitening s̃ in Equation (12), and then the detector is squared to obtain the
Adaptive Coherence (Cosine) Estimator (ACE) [25], which is denoted as:

δACE(xi) =

(
d̃⊤x̃i

)2(
d̃⊤d̃

)(
x̃⊤i x̃i

) , (13)

where d̃ = Σ−1/2d and x̃i = Σ−1/2xi. In fact, ACE can also be derived from the spectral
angle-based methods, which we will discuss in Section 2.3.

Kraut et al., proposed a detector called Adaptive Subspace Detector (ASD) for target
detection, which is originally derived by projecting in subspace and maximizing the signal-
to-noise ratio [28]. However, its formal equivalent is to replace the pure target s with the
target reference spectrum d in the MF detector shown in Equation (6), which is denoted as:

δASD(xi ) = κd⊤Σ−1xi , (14)

where κ is a constant, which normally has little effect on detection.
The hypothesis testing-based detectors represent the target detection problem as a

hypothesis testing problem and achieve detection of the target with the help of likelihood
ratio theory. In this case, both types of hypothesis introduce the assumption of obeying a
Gaussian distribution, and therefore their adaptation to non-Gaussian data is limited.

2.3. Spectral Angle-Based Methods

Spectral Angle Mapping (SAM) measures the similarity of spectral properties by
calculating the angle between two spectral vectors. The spectral angle between the spectrum
of the pixel to be measured xi and the reference spectrum of the targets d is defined as:

cos θ =
d⊤xi

∥d∥∥xi∥
. (15)

The Spectral Angle Mapping (SAM) detector is obtained by reformulating the spectral
angle in the form of a matrix calculation:

δSAM(xi) =
d⊤xi(

d⊤d
)1/2(x⊤i xi

)1/2 . (16)
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SAM simply matches the pixel with the reference target spectrum at the pixel level.
However, no prior information about the background is considered in the matching process.
Therefore, SAM has difficulties suppressing the background interference effectively.

To improve the background suppression performance of SAM, the data whitening
technique can be utilized. The reference target spectrum and the pixels in the HSI are
K-whitened separately, followed by SAM detection, and finally, the detection results are
squared to obtain the ACE [25], as shown in Equation (13). Therefore, ACE can also be
seen as a variant of SAM in form. By using K-whitening, the background suppression
performance of ACE is improved significantly compared to SAM, as also demonstrated
in the experiments in Section 5.1.2. However, SAM and ACE are limited in robustness to
spectral variability due to their over-reliance on a given reference target spectrum. Wang et
al., introduced the idea of iteratively reweighting to alleviate this problem [26]. Zeng et al.,
obtained the sparse tensor by 3D tensor decomposition of the original HSI and used SAM
to detect the sparse tensor, which effectively suppressed the background information [27].

2.4. Signal Decomposition-Based Methods

The signal decomposition-based approach considers the spectrum of each pixel as a
combination of different signal components, so that by applying signal decomposition to
each pixel, the target can be distinguished from other interference.

For a pixel xi to be measured in a hyperspectral image, it can be decomposed into a
known signal t and noise n. The known signal t can in turn be decomposed into a linear
combination of p target spectra Mα, where M =

[
m1, m2, . . . , mp

]
is a matrix consisting

of target spectra and α =
[
α1, α2, . . . , αp

]⊤ represents the abundance vector of each target
spectrum corresponding to M. Thus, xi is denoted as:

xi = t + n = Mα + n. (17)

If there is only one desired target, the remaining p− 1 targets are regarded as undesired
targets, so M can in turn be decomposed into a desired target spectral vector d = mj and
an undesired target spectral matrix U =

[
m1, m2, . . . , mj−1, mj+1, . . . , mp

]
. Thus, xi is

denoted as
xi = dαj + Uγ + n, (18)

where γ =
[
α1, α2, . . . , αj−1, αj+1, . . . , αp

]⊤ represents the corresponding abundance vector
of U. To eliminate the undesired target matrix U, the following operator is used to project
xi onto the orthogonal subspace of U:

P⊥
U = I − PU = I − UU#. (19)

Thus the Orthogonal Subspace Projection (OSP) detector [29] can be denoted as:

δOSP(xi ) = d⊤P⊥
U xi . (20)

Comparing Equation (7) with Equation (20), OSP is mathematically equivalent to
replacing the background elimination method from the inverse of the covariance matrix
Σ−1 of the MF detector to the projection operator P⊥

U .
OSP detects targets by suppressing undesired targets and enhancing the desired target,

and some researchers have developed similar algorithms from this idea. Du et al. proposed
signal-decomposed and interference noise (SDIN) based on OSP by considering interfer-
ence characteristics [30]. Chang et al. used Low-Rank and Sparse Matrix Decomposition
(LRaSMD) to decompose the pixels to be measured, replacing U with a low-rank matrix
and d with a sparse matrix, and introducing the data sphere whitening to further suppress
background information [31].

In addition to decomposing the pixel to be measured in the manner described above,
Thai et al. proposed to decompose the pixel to be measured into a form of target background
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and noise, called the signal-background-noise (SBN) model [32]. Unlike OSP, which focuses
on improving detection performance by extracting the desired target spectrum, SBN focuses
on improving target detection performance by suppressing the background.

2.5. Constrained Energy Minimization (CEM)-Based Methods

The basic principle of the constrained energy minimization detector is to design a
finite impulse response (FIR) filter that allows only the desired target signature to pass
while minimizing the energy output from other signatures [33]. Let the filter coefficient be
w. Then the output of the linear filter can be denoted as:

yi = w⊤xi. (21)

The number of the pixels in the HSI is N, so the average energy of the filter output is

1
N

N

∑
i=1

y2
i = w⊤

[
1
N

N

∑
i=1

xix⊤i

]
w = w⊤Rw, (22)

where R = 1
N ∑N

i=1 xix⊤i = 1
N XX⊤ represents the correlation matrix of the HSI. Minimizing

the average energy of the filter output while subject to the constraint w⊤d = 1, the optimal
coefficients of a CEM detector can be obtained by solving the following optimization
problem:

min
w

w⊤Rw

s.t. w⊤d = 1.
(23)

Using the Lagrange multiplier method to solve the above optimization problem, the
optimal closed-form solution wCEM is obtained as:

wCEM =
R−1d

d⊤R−1d
. (24)

Thus the CEM detector is:

δCEM(xi) = (wCEM)⊤xi =
d⊤R−1xi

d⊤R−1d
. (25)

We can also explain the CEM detector from another perspective. In addition to
K-whitening mentioned in Section 2.2, there is another form of data whitening known
as R-whitening. R-whitening utilizes the correlation matrix R to eliminate background
information and is denoted as:

x̄i = R−1/2xi. (26)

Therefore the CEM detector can also be derived from the R-whitening combined with
the MF detector. Firstly, the whitening method in Equation (11) is replaced by R-whitening
from K-whitening and approximating the pure target s with the target reference spectrum
d, i.e.,

δR−MF(xi ) = ad̄⊤x̄i = a(R−1/2d)⊤(R−1/2xi ) = ad⊤R−1xi. (27)

Assuming that the parameter a is unknown, the parameter a is determined by the
constraint δR−MF(d) = 1:

δR−MF(d) = 1 ⇒ a = (d⊤R−1d)−1. (28)

Substituting a, the detector is denoted as:

δR−MF(xi) =
d⊤R−1xi

d⊤R−1d
= (wCEM)⊤xi = δCEM(xi). (29)
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Therefore, the CEM detector can also be considered as the MF detector with R-
whitening and adaptive parameters.

Chang et al., extended the CEM detector by applying it to detect multiple targets,
that is, a matrix composed of desired target spectral vectors as a constrained matrix, and
minimizing the output of vectors in other undesired directions, and proposed the linear
constrained minimum variance (LCMV) detector [34]. Let the desired target spectral matrix
be D = [d1, d2, ..., dp], the optimization problem can be denoted as:

min
w

w⊤Rw

s.t. D⊤w = c,
(30)

where c = [c1, c2, ..., cp]⊤ is the constraint vector. Then the closed-form solution is:

wLCMV = R−1D(D⊤R−1D)c. (31)

Thus the LCMV detector is:

δLCMV(xi) = (wLCMV)⊤xi = x⊤i wLCMV = x⊤i R−1D(D⊤R−1D)c. (32)

The CEM detector can be viewed as an LCMV detector where the desired target spec-
tral matrix degenerates to the desired target spectral vector and the constraint degenerates
to 1, that is, D = d and c = 1.

In the real world, the same material will exhibit different spectral properties due
to different spatial and temporal factors. Some researchers have eliminated the spectral
variations by processing the input to the CEM detector. Zhang et al., proposed a Bayesian
Constrained Energy Minimization method (B-CEM) to infer the posterior distribution of
the true target spectrum from a given reference target spectrum [35].

Other researchers have borrowed the optimization-based idea of CEM to develop
more robust target detection algorithms by modifying the objective function and con-
straints. RHMF builds the objective function using high-order statistics with a spherical
constraint [36]. RMF uses high-order statistics to build the objective function and uses a
regularized term [37]. DFMF uses a difference-measured function to build the objective
function and utilizes the gradient descent method to find an optimal projection vector [38].
Shi et al. proposed a hyperspectral target detection algorithm that utilizes an inequality
constraint to guarantee that the outputs of target spectra, which vary in a certain set, are
larger than one [39].

The CEM detector is one type of linear detector, however, real hyperspectral images
often contain numerous nonlinear features, so it is critical to improve the non-linear de-
tection capability of the CEM detector. There are currently two main types of methods to
improve the non-linear detection performance of CEM detectors. The first type of method
directly extends the CEM detector, as shown in Equation (25), from a linear to a nonlinear
form. Zou et al. enhance the nonlinear detection by extending the constraints from linear
to quadratic [40]. Yang et al., extend the CEM to a more generalized nonlinear form using
the deep neural network rather than the FIR filter as the detector [41]. The second type
of method improves the nonlinear detection performance by combining multiple CEM
detectors. Zou et al., cascade the CEM detectors and suppress the background information
with the nonlinear function for the output of each layer to obtain the hierarchical CEM
(hCEM) detector [42]. Zhao et al., propose the Ensemble-based Constrained Energy Mini-
mization (E-CEM), which integrates the results of the detection of multiple CEM detectors
with different parameters with the help of ensemble learning techniques [43].

Because of its brief form, ease of use, and high reliability, the CEM method is often
used in combination with other methods to enhance target detection performance. Ren et al.
combined OSP and CEM to propose the Target Constrained Interference Minimization Filter
(TCIMF) to reduce the effect of interference signals on detection [44]. Gao et al. combined
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the Reed-Xiaoli (RX) anomaly detector with the CEM detector to improve the detection
performance in complex background situations [45]. In addition, the CEM detector has
also been used in the coarse detection stage of some deep learning-based target detection
methods [46,47].

2.6. Kernel-Based Methods

The kernel-based method can map the data to a high-dimensional space, where higher-
order information is used to detect the target, and thus the kernel-based method can better
explore the non-linear correlation between spectral bands compared to classical detection
methods. Consider the mapping xi → Φ(xi) , and Φ(xi) denotes the high-dimensional
pixel, the kernel can be defined as:

K(xi, xj) = Φ(xi)
⊤Φ(xj). (33)

Then the kernel matrix can be defined as:

K = Φ(X)⊤Φ(X). (34)

This definition represents the inner product of the projection of two data samples in
a high-dimensional space so that when using the kernel-based method, it is sufficient to
replace the inner product in the original detector expression with Equation (33). Most of
the classical algorithms discussed previously have been extended to the kernel version,
such as KMF [48], KASD [49], KSAM [50], KOSP [51], KCEM [52,53], KTCIMF [54], etc.

Taking KCEM as an example, after mapping to the kernel function space, the CEM
detector shown in Equation (25) becomes:

δKCEM(Φ(xi)) =
Φ(d)⊤Φ(R)−1Φ(xi)

Φ(d)⊤Φ(R)−1Φ(d)
, (35)

where Φ(R) = 1
N Φ(X)Φ(X)⊤ = 1

N ∑N
i=1 Φ(xi)Φ(xi)

⊤.
Then, due to the high dimensionality of Equation (35), computing Equation (35) is

almost impossible. Therefore, we can borrow the strategy, which is similar to that in
KPCA [55]. Let the jth eigenvalue of Φ(R) be λj and the eigenvector corresponding to λj
be vj, then there is

Φ(R)vj = λjvj =
1
N

N

∑
i=1

Φ(xi)Φ(xi)
⊤vj. (36)

Since Φ(xi)
⊤vj is a scalar, vj can be denoted as

vj =
1

Nλj

N

∑
i=1

Φ(xi)Φ(xi)
⊤vj =

N

∑
i=1

αi
jΦ(xi) = Φ(X)αj, (37)

where αj = [α1
j , α2

j , ..., αN
j ]

⊤ is a column vector. Then, multiplying both sides of Equation (36)
by Φ(X) derives

Φ(X)⊤Φ(R)vj = λjΦ(X)⊤vj. (38)

Combining with Equation (37) gives rise to

1
N

Φ(X)⊤Φ(X)Φ(X)⊤Φ(X)αj = λjΦ(X)⊤Φ(X)αj. (39)

Substituting kernel matrix K into Equation (39), we have:

1
N

K2αj = λjKαj ⇒ Kαj = Nλjαj. (40)
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Therefore, αj is the eigenvector of K associated with eigenvalue Nλj. αj can be

normalized by
√

λj to let α̃j = αj

√
λj and ∥α̃j∥ = 1 [56]. Then K can be denoted as

K = NÃΛÃ⊤, (41)

where Ã = [α̃1, α̃2, ...α̃N ] is the eigenvector matrix, using Λ1/2 to normalize A = [α1, α2, ..., αN ].
Therefore, Φ(R)−1 can be derived as:

Φ(R)−1 = VΛ−1V⊤ = Φ(X)AΛ−1A⊤Φ(X)⊤

= Φ(X)AΛ1/2Λ−2Λ1/2A⊤Φ(X)⊤

= N2Φ(X)
1

N2 ÃΛ−2Ã⊤Φ(X)⊤

= N2Φ(X)K−2Φ(X)⊤.

(42)

Substituting Equation (42) into Equation (35), the KCEM detector can be derived as:

δKCEM(Φ(xi)) = Φ(d)⊤Φ(R)−1Φ(xi)(Φ(d)⊤Φ(R)−1Φ(d))−1

= Φ(d)⊤Φ(X)K−2Φ(X)⊤Φ(xi)(Φ(d)⊤Φ(X)K−2Φ(X)⊤Φ(d))−1

= kiK−2kd(kdK−2kd)
−1,

(43)

where ki = [K(xi, x1), K(xi, x2), ..., K(xi, xN)]
⊤ is a column vector consisting of the kernels

between pixel xi and each pixel in X and kd = [K(d, x1), K(d, x2), ..., K(d, xN)]
⊤ is a column

vector including the kernels between pixel d and each pixel in X.
The kernel-based methods can better handle nonlinear problems, so they generally

have better detection performance than the classical algorithms. However, kernel-based
methods also suffer from excessive computational overhead, so a series of approaches, such
as Nyström [53,57], has been derived to speed up the computation.

2.7. Sparse Representation-Based Methods

Sparse representation-based methods use a linear combination of elements in the
dictionary to reconstruct the pixels in the HSI and then use the reconstructed pixels for
detection. Therefore, the pixel xi can be expressed as

xi = Abα′ + Atβ
′ = [Ab At]

[
α′

β′

]
= Aγ′, (44)

where Ab is an L × Nb dimensional background dictionary consisting of background
training samples (also called atoms), α′ is the abundance vector of Ab corresponding to
atoms, At is an L × Nt dimensional target dictionary consisting of target training samples,
and β′ is the abundance of At corresponding to atom [58].

Given a dictionary A, the reconstructed sparse vector for the pixel xi can be obtained
by solving the following optimization problem:

min
γ′

∥Aγ′ − xi∥2

s.t. ∥γ′∥0 ≤ K0,
(45)

where ∥ · ∥0 denotes l0-norm, which is defined as the number of nonzero entries in the
vector (or called the sparsity level of the vector) and K0 is a given upper bound on the
sparsity level [59]. Solving the above optimization problem with the greedy algorithm

leads to an optimal closed-form solution of the reconstructed sparse vector γ̂ =

[
α̂

β̂

]
.
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Applying the above reconstructed sparse vectors to target detection, the detector is
obtained as:

δSTD(xi) = ∥xi − Abα̂∥2 − ∥xi − At β̂∥2 (46)

If δSTD(xi) < τ′ with τ′ being a prescribed threshold, then xi is determined as a
target pixel; otherwise, xi is labeled as the background. The above method is called sparse
representation for target detection (STD).

Sparse representation-based methods do not require explicit assumptions about the
characteristics of the statistical distribution of the observed data, and by selecting the
elements of the dictionary appropriately, the algorithm is more robust to spectral variations
and more flexible [58,60]. However, sparse representation-based methods rely heavily
on the construction of dictionaries, which introduces potential instability. Therefore, it is
critical to mitigate this potential instability.

One idea is to prevent model overfitting by adding constraints to the optimization
problem as shown in Equation (45). Huang et al., introduce non-local similarity [61,62]
to preserve the manifold structure of the original HSI in the sparse representation [63].
Zhang et al., proposed SASTD to improve the detection performance of heterogeneous
areas by adaptively constructing a sparse representation model for each pixel by assigning
different weights to each neighboring pixel [64]. Huang et al., regularize the original
sparse representation model based on the convex relaxation [65] technique to get rid of the
problem that the solver may be trapped into a local optimum [66].

Another idea is to make a more accurate and compact representation of the target
and background dictionaries. Zhang et al. proposed SRBBH to construct a more reason-
able dictionary based on the binary assumption [67]. Wang et al. used spectral angle to
select background samples and trained the background dictionary using K singular value
decomposition (K-SVD) [68]. Guo et al., combined superpixel segmentation, discrimina-
tive structural incoherence, and adaptive embeddable features learning to construct more
meaningful target and background dictionaries [69].

In addition, sparsity is one of the inherent properties of hyperspectral data, so com-
bining sparse representation theory with other detection methods can effectively improve
the performance of target detection. Yang et al., introduced the sparsity of target pixels
into the CEM and the ACE detector and proposed SparseCEM and SparseACE [70]. Li et
al. combined sparse representation and collaborative representation to propose the CSCR
algorithm, which offers robust detection performance for HSI [71]. In recent years, some
methods integrating sparse representation theory and low-rank representation theory have
also been successfully applied to hyperspectral target detection [69,72].

2.8. Deep Learning-Based Methods

Due to the strong ability to extract nonlinear features and learn underlying distri-
butions, deep learning has been widely used for classification and feature extraction in
hyperspectral images over the past decade [73–76]. In recent years, there has been an
application of deep learning techniques in hyperspectral target detection [77,78].

Deep learning-based hyperspectral image target detection methods can be divided
into two categories based on whether the pipeline used for hyperspectral target detection
is end-to-end: one is “end-to-end detection”, i.e., to directly use the deep neural networks
to determine whether each pixel is the target or the background, and the other one is
“detection by reconstruction”, i.e., to use the deep learning model to first reconstruct the
original HSI and then perform target detection on the reconstructed HSI.

The advantage of “end-to-end detection” is that it can be optimized end-to-end with
low complexity, but the disadvantage is that it requires massive data to train the model.
“Detection by reconstruction” can obtain more essential features of the feature through
reconstruction, which reduces the complexity of subsequent detection tasks and simplifies
the design of detectors. However, it has the disadvantage that the optimization target
is not straightforward and the choice of reconstruction model has a large impact on the
detection results.
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2.8.1. End-to-End Detection

Early research has focused on direct detection using deep learning models. One idea is
to frame hyperspectral image target detection as a deep learning-based binary classification
problem, by setting the target pixels as positive samples and the background pixels as
negative samples. This allows target detection by training a neural network model for
classification to distinguish the target from the background. Du et al. use convolutional
neural networks (CNNs) to determine the class to which each pixel belongs [79]. Freitas et
al. introduce 3D convolution for target detection by considering spatial information based
on CNNs [77]. Qin et al. use Vision Transformer (ViT) [80] to learn global spectral-spatial
features of HSI for target detection [81].

Another idea is to set a pair of pixels belonging to the same target or background as
positive samples, and a pair of pixels belonging to the target and sample respectively as
negative samples, and train a neural network model to determine whether the input pairs of
pixels belong to the same class. For example, CNND [82], TCSNTD [83], and HTD-Net [84]
employ this idea. Although the neural network model in such cases is still essentially a
neural network for classification, this idea can fully leverage the known spectral prior to
transform the target detection problem into a similarity matching problem between the
pixel spectra to be measured and the known spectral prior.

However, both types of direct detection methods have some limitations in that the
number of samples used for training is insufficient and the positive and negative samples
are unbalanced. Therefore, most of the research on direct detection has focused on how to
overcome these problems.

One idea is to construct new sample data based on existing sample data. Du et al.
obtained the new data by simply subtracting the target and background [79]. With the
development of sparse representation models, Zhu et al. generated background samples
with the help of sparse representation methods and mixed the background samples with
the target before generating target samples [83]. Generative models based on deep learning
have recently made great development, and these models have proven to be beneficial for
training downstream tasks. As a result, researchers have started investigating approaches
to generate new hyperspectral data using these models.

For example, Zhang et al., used autoencoder (AE) to generate target samples and then
use the linear prediction (LP) strategy to find background samples [84] while Gao et al.,
relies on generative adversarial networks (GAN) [85] to generate additional target and
background samples [86].

Another idea is to explore methods that do not require excessive sample data, so some
researchers have turned their attention to few-shot learning. Few-shot learning refers to
learning from a small number of labeled samples [87], and Siamese Network is one of the
main approaches used to solving the problem of few-shot learning [88]. Siamese Network
connects a pair of neural networks with shared weights at the output and learns a function
that can measure the similarity between two samples [89]. In recent years, many methods
based on Siamese networks have been proposed, such as LRS-STD [90], Siamese fully
connected target detector (SFCTD) [91], Siamese transformer target detector (STTD) [92],
and meta learning-based Siamese network (MLSN) [93].

2.8.2. Detection by Reconstruction

HSI contains interference information that is not conducive to target detection. By
reconstructing the original HSI, a new representation that better reflects the characteristics
of the original HSI features can be obtained. Initially, researchers reconstructed HSI by
traditional methods such as band selection and then used detectors to perform detection
to eliminate redundant information and enhance useful information, thus improving de-
tection performance [94]. In recent years, generative models based on deep learning have
made great development, and some generative models such as autoencoder (AE), varia-
tional autoencoder (VAE) [95], and generative adversarial networks (GAN) can obtain the
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essential features in the original HSI compared with the traditional reconstruction methods,
and reconstruct the original HSI into a more convenient feature space for detection.

The most intuitive idea is to reconstruct HSI directly using generative models based on
deep learning. One of the most representative models is the autoencoder (AE). AE is a self-
supervised model consisting of an encoder and decoder that learns the essential features
of the input data and can remove noise and redundant information by reconstructing the
input data. Therefore, Shi et al. proposed DCSSAED [96] and 3DMMRAE [97] methods
by reconstructing hyperspectral images with the help of the AE model. The DCSSAED
method adds the constraint of maximizing the distance between the background and target
in the feature space during the training of SSAE, after which the reconstructed image is sent
to the RBF detector for detection. In the 3DMMRAE method, in contrast, AE is combined
with 3D convolution to introduce spatial information into the reconstruction to generate a
more complete representation, after which the hRBF detector is used for detection.

Based on AE, Kingma et al., proposed the variational autoencoder (VAE), which
converts the prediction of latent variables into the prediction of the distribution parameters
of latent variables. VAE has more advantages than AE in terms of generative ability,
continuity in latent space, interpretability, and training stability. Xie et al., reconstructed
HSI by utilizing the VAE model. After reconstruction, they weighted the feature maps and
then used morphological methods for detection [98].

Generative adversarial networks (GANs) reconstruct images by adversarial learning
between generators and discriminators, without minimizing reconstruction loss but using
discriminators to guide image reconstruction, achieving better reconstruction quality. Xie
et al., applied GANs to hyperspectral image reconstruction, using adversarial learning to
ensure the validity of the latent features extracted by the network, and the reconstructed
images are detected in the spatial dimension and spectral dimension, respectively [99].

In addition to directly utilizing generative models, some researchers have also com-
bined traditional reconstruction methods with generative models to obtain better recon-
struction results. For example, Xie et al., followed the VAE with band selection to obtain a
more detection-friendly representation of the original HSI [100]. Since the ultimate goal of
reconstruction is to facilitate target detection, the coarse detection results of the conven-
tional detector can be used to guide the reconstruction. Xie et al. use the coarse detection
results of the CEM detector to select the background, and later reconstruct the background
with the encoder-decoder structure [46]. Shi et al., use the CEM detector and Gaussian filter
to obtain the Region of Interest (RoI), and then use the RoI as the model input to reconstruct
the image [47].

Recently, methods based on deep metric learning [101,102] and contrastive
learning [103–105] have also been migrated to the hyperspectral target detection task.
The ultimate goal of both deep metric learning and contrastive learning is to draw similar
samples closer and push away dissimilar samples in the feature space, but deep metric
learning is generally supervised, while contrastive learning is usually self-supervised.
For metric learning, Zhu et al. use a deep metric network to reconstruct the target and
background samples in the feature space and determine the target by computing the dis-
tance between the pixel to be measured and the target reference spectrum in the feature
space [106]. For contrastive learning, Wang et al., treat the augmented samples from the
same pixel as positive samples and the augmented samples from different pixels as neg-
ative samples, so the target detection is transformed into the matching of the pixel to be
measured and the target reference spectrum in the feature space [107].

3. Summary and Comparison

In Figure 1, we build a network that connects the algorithms mentioned in Section 2
based on the representative algorithms in each class.



Remote Sens. 2023, 1, 0 14 of 28

SAM

ACE

ASD/AMF

MF

OSP

SDIN

CSCR

STD

LCMV

CEM BLTSC

TSCNTD

K-whitening
& Square Normalization

& Square

Adaptive
Parameters

+ Constraints

Multiple
Targets

+Collaborative
  Representation

R-whitening

+Interference

+ AE

+ CNN

Spectral Angle-based Hypothesis Testing-
based CEM-based Deep Learning-

based

Sparse Representation-
based

Signal Decomposition-
basedKernel-based

KMF

KCEM

HTD-Net

DCSSAED

SRUN

......

Kernel Method

Kernel Method

Kernel Method

Figure 1. The relationship between the target detection algorithms.

According to Figure 1, we start from the SAM as shown in Equation (16). Using the
K-whitening as shown in Equation (10) for SAM and squaring it, we can obtain ACE as shown
in Equation (13). In addition, we can start from the MF as shown in Equation (11) and perform
normalization and K-whitening on it, which also yields ACE. Thus, the connection between the
spectral angle-based method and the hypothesis testing-based method is established.

The hypothesis test-based method is unconstrained, and the CEM shown in Equation (25)
can be obtained by adding constraints to MF and minimizing its output energy. At the
same time, the CEM method can also be seen as adding adaptive parameters shown in
Equation (8) to the MF and using R-whitening shown in Equation (26). Thus, the connection
between the hypothesis testing-based and CEM-based method is established.

Furthermore, it is observed that there is some formal similarity between the MF shown
in Equation (7) and the OSP shown in Equation (20). Thus, a connection between the signal
decomposition-based and hypothesis testing-based method is established.

The four classes of methods mentioned above can all be extended to the kernel version
according to Equation (33), so this establishes the connection between the kernel-based
methods and the four classes of methods mentioned above.

In recent years, deep learning-based methods are known as a hot research topic due to
their high accuracy. Deep learning-based methods are further divided into two types of
solution ideas: end-to-end detection and detection by reconstruction. Among them, sparse
representation-based methods can provide training samples for end-to-end detection (e.g.,
TSCNTD [83]), while traditional methods (e.g., CEM) can provide the prior information for
detection by reconstruction (e.g., BLTSC [46]).

In Table 1, we summarize the methods presented in Section 2. We summarize the basic
idea and limitation of seven categories of methods, and list some representative algorithms in
each category, summarizing the prior input information they need in practical applications.
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Table 1. Summary of methods.

Methodology Basic Idea Example Algorithms Input/Required Limitations

Hypothesis
testing

Calculating the likeli-
hood ratio under the

two hypotheses

MF [22] target d, HSI X

Limited performance on
non-Gaussian data

ACE [25] target d, HSI X

ASD [28] target d, HSI X

Spectral
angle

Calculating the cosine
similarity between

two spectral vectors
SAM target d, HSI X Limited robustness

to spectral variations

Signal
decomposition

Decomposing
the signal into

subspaces
according to
certain rules

OSP [29] target d, undesired target
matrix U, HSI X

Too much
input information

required
SDIN [30] target d, interference

subspace Ψ, HSI X

SBN [32] target d, background
matrix B, HSI X

CEM-based

Designing the FIR
filter that minimizes

the output energy
and allows only
the target to pass

CEM [33] target d, HSI X

Limited performance
on non-Gaussian

data

LCMV [34] target matrix D, target
constraint vector c, HSI X

TCIMF [44] target matrix D, undesired
target matrix U, HSI X

RHMF [36]
target d, HSI X, tolerance ϵ
,high-order differentiable

function G(x)

hCEM [42] target d, HSI X, tolerance
δk

ECEM [43]

target d, HSI X, window
number n, detection layer
number k, CEM number

per layer m

Kernel-based
Mapping the data to
a high-dimensional

kernel space

KSAM [50] target d, HSI X, kernel
function Φ(x)

High computation
and memory cost

KMF [48] target d, HSI X, kernel
function Φ(x)

KOSP [51]
target d, undesired target
matrix U, HSI X, kernel

function Φ(x)

KCEM [52] target d, HSI X, kernel
function Φ(x)

Sparse representation

Utilizing a linear
combination of
elements in the

dictionary to
represent the HSI

STD [58] dictionary A, HSI X

Potential instability
due to different

dictionaries

CSCR [71]

dictionary A, HSI X,
regularization parameter

λ1,λ2, window size
win,wout

SASTD [64]
dictionary A, HSI X,

sparsity level l, window
sizes ws, ww, wb

SRBBH [67]

dictionary A, HSI X,
sparsity level l,

dual-window sizes wOWR,
wIWR
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Table 1. Cont.

Methodology Basic Idea Example Algorithms Input/Required Limitations

Deep learning

Learning the intrinsic
patterns and

representation of
sample data using

neural networks etc.

TSCNTD [83] target d, HSI X

Low data availability
and limited model

transferability

HTD-Net [84] target samples T, HSI X

DCSSAED [96] target samples T, HSI X,
adjustable parameter σ1,σ2

SRUN [98]

target d, HSI X,
parameters depth d,

number of hidden nodes h,
regularization parameter

α, threshold τ

BLTSC [46]

target d, HSI X,
normalized initial

detection result D1,
parameter λ

3DMMRAED [97] target d, HSI X, number of
iteration i

4. Datasets and Metrics
4.1. Datasets

Hyperspectral target detection datasets typically consist of HSIs and ground truth
maps, which can be used to evaluate the target detection performance of an algorithm.
For some data-driven algorithms, the datasets can also be used as training samples. Some
common datasets and their basics are shown in Table 2. Researchers often crop a part of the
dataset to perform experiments for target detection.

Table 2. Commonly used datasets for target detection.

Dataset Sensor Spatial Size
(Pixels) Spectral Bands

Size of the
Part Used for

Target
Detection

(Pixels)

Number of
Target Pixels

Cuprite [98] AVIRIS 512 × 614 224 250 × 191 39
San Diego [99] AVIRIS 400 × 400 224 200 × 200 134
Airport-Beach-

Urban [108]
AVIRIS and

ROSIS-03 100 × 100 224 100 × 100 /

HYDICE
Urban [96] HYDICE 307 × 307 210 80 × 100 21

HYDICE
Forest [84] HYDICE 64 × 64 210 100 × 100 19

Cooke City
[109] HyMap 280 × 800 126 100 × 300 118

Some of the datasets mentioned in Table 2 are shown in Figure 2, which include the
cropped hyperspectral image and the corresponding ground truth map.
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Figure 2. Some of the commonly used datasets cropped by researchers, with false-color image and
ground truth. (a) Cuprite [98]. (b) San Diego [99]. (c) Airport-Beach-Urban [108]. (d) HYDICE
Forest [84]. (e) HYDICE Urban [96]. (f) Cooke City [109]. A suffix of 1 represents the pseudo-color
image (like a1), a suffix of 2 represents the ground truth (like a2).

4.2. Evaluation Metrics
4.2.1. Receiver Operating Characteristic (ROC) Curve and Area under ROC Curve (AUC)

To evaluate the detection performance of the algorithms, the receiver operating charac-
teristic (ROC) curve and the area under the curve (AUC) was used for quantitative analysis.
By changing the threshold τ, we can obtain different detection probability PD and false
alarm probability PF. PD and PF can be calculated by the following procedure:

PD(τ) =
TP

TP + FN
, PF(τ) =

FP
FP + TN

, (47)

where TP and FN denote the number of target pixels correctly detected and the number
of pixels that are indeed targets but not detected under the threshold τ, while FP and TN
denote the number of background pixels incorrectly detected as targets and the number of
background pixels correctly detected under the threshold τ.
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For a given threshold τ, (PF(τ), PD(τ)) can be obtained by Equation (47), which is
regarded as a point on the Cartesian coordinate system. By setting different τ, different
points on the coordinate system can be obtained. The curve formed by these points is
called ROC. The area enclosed by the ROC and PF axes is called AUC. This area can be
mathematically expressed using the integral as follows:

AUC =
∫ 1

0
PD(τ)dPF(τ). (48)

However, in practice, PD and PF are not continuous and PF is not equally spaced, so
the trapezoidal rule is generally used to approximate the solution.

4.2.2. 3D-ROC

To evaluate the detection performance more precisely, Chang et al. proposed 3D-
ROC curves by generating three 2D ROC curves for (PD, PF), (PD, τ), (PF, τ) and the
corresponding AUC(PD ,PF)

, AUC(PD ,τ), AUC(PF ,τ) to evaluate the detector effectiveness,
target highlighting ability and background suppression ability, respectively [110]. In
addition, based on the three AUCs mentioned above, Chang developed two more indicators
for a comprehensive evaluation, calculated as follows:

AUCOA = AUC(PD ,PF)
+ AUC(PD ,τ) − AUC(PF ,τ) (49)

AUCSNPR =
AUC(PD ,τ)

AUC(PF ,τ)
(50)

AUCOA measures the overall performance by weighting three 2D metrics. Since larger
AUC(PD ,PF)

and AUC(PD ,τ) correspond to better performance, their weights are positive,
while smaller AUC(PF ,τ) corresponds to better background suppression performance, hence
the negative weights. SNPR draws on the concept of signal-to-noise ratio, where the target is
considered as information and the background as noise. The larger AUCOA and AUCSNPR,
the better performance of the detector.

5. Discussion

In this section, we summarize and compare the methods mentioned in this paper and
give our views on future research directions.

5.1. Experiments
5.1.1. Acquisition of the Target Spectrum

In target detection methods, the reference spectrum of the target is always needed.
However, the acquisition method is not consistent in previous papers, which makes it
difficult to make fair comparisons of detection performance between methods.

The current methods for selecting target spectrums are mainly three different ap-
proaches: (1) averaging the spectra of all target pixels, (2) randomly selecting the spectrum
of one or a few pixels among all target pixels as the detection spectrum, and (3) select-
ing the spectra of the corresponding class in the spectral library. However, all the above
methods have some problems. Method (1) is costly to acquire, method (2) may introduce
randomness, and the spectra in the spectral library used in method (3) are measured in a
library environment, which differs greatly from the real world, and some targets have not
been included in the spectral library.

To tackle the above problems, we propose a method that takes both real-world prior
information and randomness into account. Assuming that the spectral properties of neigh-
boring target pixels are connected, so the target region can be segmented into k regions, and
then one representative pixel from each region is selected as the reference target spectrum,
and the target spectrum vectors of the k pixels are averaged if only one reference target
spectrum is needed for detection.



Remote Sens. 2023, 1, 0 19 of 28

Specifically, k-means clustering is performed on the set of location sittings of each
target in the ground truth, and the target pixel closest to the center of each cluster is taken
as the representative target pixel in each region, and its corresponding spectrum is taken as
the reference target spectrum.

5.1.2. Experiment Performances

We experiment with some of the algorithms mentioned in Section 2 that are open
source in code and evaluate performance on San Diego and Cuprite datasets.

A. San Diego dataset
For the San Diego dataset, the size of the cropped image used for the experiment is

200 × 200 and the target to be detected is 3 airplanes with a total of 134 pixels. The target
reference spectrum is obtained by the criterion mentioned in Section 5.1.1 with the number
of cluster centers k = 3.

For hCEM, we set the tolerance δk to less than 10−6. For ECEM, we set the number
of windows to n = 4, and fix the detection layers and the number of CEMs per layer to
k = 10 and m = 6. For CSCR, the parameters λ1, λ2 and the window size (win, wout)
are fixed to 10−1, 10−2 and (11, 5), respectively. For BLTSC, we set the threshold of the
binarization of coarse detection result ϵ and the detection parameter λ to 0.15 and 10. We
used 3D-ROC analysis and selected five metrics AUC(PD ,PF)

,AUC(PD ,τ),AUC(PF ,τ), AUCOA,
and AUCSNPR, mentioned in Section 4.2, to comprehensively evaluate the detection perfor-
mance of the algorithms, as shown in Table 3. The detection results of the algorithms are
shown in Figure 3. The 2D ROC curves and 3D-ROC curves of the algorithms are shown in
Figure 4.

Table 3. 3D-ROC analysis for some algorithms in the San Diego dataset. Bold indicates the best value
under the metric, and underline indicates the second-best value under the metric.

Methodology Algorithm AUC(PD ,PF ) AUC(PD ,τ) AUC(PF ,τ) AUCSNPR AUCOA

Hypothesis
testing

MF 0.8969 0.4031 0.2190 1.8405 1.0810
ACE 0.8955 0.1910 0.0051 37.2919 1.0814

Spectral
angle SAM 0.7633 0.1969 0.0900 2.1869 0.8701

CEM-based
CEM 0.8937 0.3968 0.2103 1.8872 1.0803

hCEM 0.9916 0.5128 0.0155 33.1421 1.4890
ECEM 0.9922 0.5243 0.0150 34.9697 1.5015

Sparse repre-
sentation

model
CSCR 0.9842 0.6060 0.4776 1.2688 1.1126

Deep
learning BLTSC 0.8999 0.1428 0.0018 80.7670 1.0409

From Table 3 and Figure 4, CSCR and ECEM have better target highlighting perfor-
mance. BLTSC and ACE have better background suppression performance on our San
Diego dataset. On the three metrics indicating comprehensive detection performance,
ECEM and hCEM performed better on the AUC(PD ,PF)

and AUCOA metrics, and BLTSC
and ACE performed better on the AUCSNPR metric.



Remote Sens. 2023, 1, 0 20 of 28

Figure 3. The detection results of algorithms on the cropped San Diego dataset. (a) The first band
of the image. (b) ground truth. (c) MF. (d) SAM. (e) ACE. (f) CEM. (g) hCEM. (h) ECEM. (i) CSCR.
(j) BLTSC.

Figure 4. 3D-ROC curve on the cropped San Diego dataset along with its three generated 2D ROC
curves. (a) 3D ROC curve. (b) 2D ROC curve of (PD, PF). (c) 2D ROC curve of (PD, τ). (d) 2D ROC
curve of (PF, τ).

B. Cuprite dataset
For the Cuprite dataset, the size of the cropped image used for the experiment is

250 × 191 and the target to be detected is buddingtonite, which occupies 39 pixels. The
target reference spectrum is obtained by the criterion mentioned in Section 5.1.1 with the
number of cluster centers k = 3.
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For hCEM, we set the tolerance δk to less than 10−6. For ECEM, we set the number of
windows to n = 4, and fix the detection layers and the number of CEMs per layer to k = 10
and m = 6. For CSCR, The parameters λ1, λ2 and the window size (win, wout) are fixed to
10−1, 10−2, and (11, 5), respectively. For BLTSC, we set the threshold of the binarization
of the coarse detection result ϵ and the detection parameter λ to 0.15 and 8. We used
3D-ROC analysis and selected five metrics AUC(PD ,PF)

, AUC(PD ,τ), AUC(PF ,τ), AUCOA and
AUCSNPR mentioned in Section 4.2 to comprehensively evaluate the detection performance
of the algorithms, as shown in Table 4. The detection results of the algorithms are shown in
Figure 5. The 2D ROC curves and 3D-ROC curves of the algorithms are shown in Figure 6.

Table 4. 3D-ROC analysis for some algorithms in Cuprite dataset. Bold indicates the best value under
the metric, and underline indicates the second-best value under the metric.

Methodology Algorithm AUC(PD ,PF ) AUC(PD ,τ) AUC(PF ,τ) AUCSNPR AUCOA

Hypothesis
testing

MF 0.9743 0.5050 0.2585 1.9534 1.2208
ACE 0.9489 0.1825 0.0096 19.0289 1.1218

Spectral
angle SAM 0.9119 0.4146 0.1743 2.3779 1.1522

CEM-based
CEM 0.9759 0.5097 0.2573 1.9808 1.2283

hCEM 0.9918 0.3984 0.0197 20.2127 1.3705
ECEM 0.9792 0.6534 0.0805 8.1122 1.5520

Sparse repre-
sentation

model
CSCR 0.9709 0.8997 0.7931 1.1344 1.0775

Deep
learning BLTSC 0.9620 0.2658 0.0083 31.8302 1.2194

Figure 5. The detection results of algorithms on the cropped Cuprite dataset. (a) The first band of
the image. (b) ground truth. (c) MF. (d) SAM. (e) ACE. (f) CEM. (g) hCEM. (h) ECEM. (i) CSCR.
(j) BLTSC.

From Table 4 and Figure 6, CSCR and ECEM have better target highlighting perfor-
mance, while ACE and BLTSC have better background suppression performance on our
Cuprite dataset. On the three metrics indicating comprehensive detection performance,
ECEM and hCEM performed better on the AUC(PD ,PF)

and AUCOA metrics and BLTSC
and hCEM performed better on the AUCSNPR metric.
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Figure 6. 3D-ROC curve on the cropped Cuprite dataset along with its generated three 2D ROC
curves. (a) 3D ROC curve. (b) 2D ROC curve of (PD, PF). (c) 2D ROC curve of (PD, τ). (d) 2D ROC
curve of (PF, τ).

5.2. Future Challenges
5.2.1. Spectral Variability

During the acquisition of the HSI, changes in the atmosphere, illumination, environ-
mental conditions, etc., may cause the same ground objects to exhibit different spectral
characteristics. In contrast, two different ground objects may also exhibit the same spectral
characteristics under certain conditions. In addition, due to the low spatial resolution
of the HSI captured by the hyperspectral sensor, each pixel of the target is likely to be a
mixture of target and non-target features, and the target, in this case, is called a sub-pixel
target [111,112]. The presence of subpixel targets also brings about variations in the spectral
features in the real HSI.

Such properties of HSI are known as spectral variability [113], which brings diversity
to the spectral signature of the target and makes detection much more difficult. To tackle
this problem, future solutions may be attempted in two ways. The first is to increase
the number of reference target spectra to better characterize the target by obtaining more
diverse samples of the target. The second is to enhance the robustness of the algorithm
to spectral variability by mining the essential information in the existing target reference
spectra and fully integrating spatial information to overcome the degradation of accuracy.

5.2.2. Acquisition of the Ground Truth

Experimental data with ground truth is difficult to obtain and requires time-consuming
and costly fieldwork by professionals. Some recent deep learning models can achieve pixel-
level accurate annotation on natural images [114,115]. Therefore, the development of
automatic annotation methods adapted to hyperspectral images has become an important
way to obtain more experimental data with ground truth.
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5.2.3. Causal Real-Time Detection

Hyperspectral images are typically acquired by pushbroom or whiskbroom sensing
modes, using line-based or pixel-based scanning, respectively [116]. The special imaging
mode requires that the information used by the real-time detector must be before the pixel
to be measured and cannot use future information that has not yet been acquired [117].
For pushbroom sensing, a full row of hyperspectral images is acquired per scan, so the
pixels available for detection are the current row and the row before it; for whiskbroom
sensing, a single pixel is acquired per scan, so the pixels available for detection are only all
the pixels before the current pixel. We refer to hyperspectral target detectors that follow
this particular type of detection pattern as causal real-time detectors [118]. Hyperspectral
target detection in causal real-time is important for tasks such as military reconnaissance
and disaster relief, but there is a lack of research on related algorithms. In recent years,
autoregressive models naturally have causality and have made great progress in the fields
of image generation [119–121] and text prediction [122,123], so hardware-friendly and
real-time autoregressive methods may be the important way to solve this problem.

5.2.4. Challenges in Deep Learning-Based Methods

Deep learning methods can better extract the features and latent information of HSIs
and have been shown to have better detection performance in target detection compared
to other methods, which is an important research direction for future target detection
algorithms. However, deep learning-based methods have some unique problems compared
to other methods at present.

First, the unbalanced numbers between different samples. The number of target and
background samples contained in hyperspectral images is unbalanced, which can have
a significant impact on model performance. For this problem, data augmentation, few-
shot learning, and self-supervised learning have proven their effectiveness, and further
development of these techniques may be required in the future.

Second, high computational and time overhead. Compared with traditional methods,
deep learning-based methods improve detection accuracy but are also accompanied by
a surge in the number of parameters and computational complexity. In addition, for
new HSIs, deep learning-based methods often need to be re-trained, which consumes
a lot of computational and time resources. For this, the generalization ability of the
model to different data can be enhanced by improving the model design or increasing the
training data.

Third, weak physical interpretability. Deep learning-based methods are purely data-
driven methods, which are limited in physical interpretability and overly dependent on the
quality of the data used for training. Therefore, such problems can be solved by combining
data-driven methods with physically driven methods.

With the accumulation of data and the development of deep learning techniques,
the reliability of deep learning-based methods will gradually increase. Therefore, deep
learning-based methods may become the mainstream of hyperspectral target detection
algorithms in the future.

6. Conclusions

In this paper, we review comprehensively the target detection methods including
classical algorithms and deep learning-based methods. After in-depth research, we divide
the methods into seven categories and introduce the basic principles as well as classical
and modified algorithms, respectively. We also give an outline of the datasets and evaluate
metrics of target detection. We also analyze the relationship between the seven categories
of methods and their advantages and limitations and experiment on the typical methods.
Finally, we point out future challenges and directions. We hope this review will help related
researchers comprehend target detection and start their research quickly.
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