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Implicit 3D Scene Representation
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Abstract—Remote sensing image segmentation, as a challeng-
ing but fundamental task, has drawn increasing attention in
the remote sensing field. Recent advances in deep learning have
greatly boosted research on this task. However, the existing deep
learning-based segmentation methods heavily rely on a large
amount of pixel-wise labeled training data, and the labeling
process is time-consuming and labor-intensive. In this paper, we
focus on the scenario that leverages the 3D structure of multi-view
images and a limited number of annotations to generate accurate
novel view segmentation. Under this scenario, we propose a
novel method for remote sensing image segmentation based on
implicit 3D scene representation, which generates arbitrary-view
segmentation output from limited segmentation annotations. The
proposed method employs a two-stage training strategy. In the
first stage, we optimize the implicit neural representations of a 3D
scene and encode their multi-view images into a neural radiance
field. In the second stage, we transform the scene color attribute
into semantic labels and propose a ray-convolution network to
aggregate local 3D consistency cues across different locations.
We also design a color-radiance network to help our method
generalize to unseen views. Experiments on both synthetic and
real-world data suggest that our method significantly outperforms
deep convolutional networks (CNN)-based methods and other
view synthesis-based methods. We also show that the proposed
method can be applied as a novel data augmentation approach
that benefits CNN-based segmentation methods.

Index Terms—Remote sensing, Image segmentation, Implicit
neural representations, Neural radiance field.

I. INTRODUCTION

Remote sensing image segmentation, as a fundamental but
very challenging task, aims at classifying the input remote
sensing image pixel by pixel into different categories. Remote
sensing image segmentation is widely used in various appli-
cations, including building detection [1], road detection [2],
hyperspectral image classification [3] etc. With the rapid
development of deep learning technology, the segmentation
method based on convolution neural networks (CNN) has
achieved excellent performance and has become a research
hot spot. Despite the recent progress in this field, the training
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Fig. 1. In this paper, we study an interesting question - given a set of multi-
view remote sensing images, how do generate semantic segmentation outputs
from sparse annotations by leveraging 3D structural consistency between
different views? To answer this question, we propose a novel remote sensing
segmentation method based on implicit 3D scene representation and shows
superiority over state-of-the-art CNN-based methods.

of CNN-based methods may heavily rely on a large amount
of pixel-wise labeled data, while the labeling process is time-
consuming and labor-intensive. Recent remote sensing image
segmentation methods [4]–[8] place a greater emphasis on
2D texture features while disregarding 3D spatial information,
which results in a scene segmentation with poor view consis-
tency. To address the above problems, this paper studies an
interesting question: is it possible to improve remote sensing
image segmentation by leveraging 3D view consistency be-
tween different views, particularly, under the condition of a
limited number of labels (e.g. about 5% of total annotations)?
To answer this question, we propose a novel method for remote
sensing image segmentation based on implicit 3D scene repre-
sentation, which generates arbitrary-view segmentation output
from limited segmentation annotations. Fig. 1 shows an overall
idea of the proposed method.

Our approach can be viewed as an extension of 3D vision
in the direction of 2D visual understanding. Recently, the
novel view synthesis [9] and 3D scene representation [10],
[11] have aroused great research interest in the field of
vision and graphics. The representation of 3D scenes can be
divided into two groups, explicit representations, and implicit
representations. In explicit representations, such as mesh [12],
voxel [13], and TSDF [14], the 3D spatial information can be
conveniently accessed and edited. However, it also requires
a lot of storage space, and it is difficult to give an accurate
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Fig. 2. An overview of our method. Our method consists of two processing stages: an implicit representation stage and a semantic segmentation stage. In the
first stage, we utilize multi-view RGB images to extract implicit spatial information; in the second stage, we partially fix the parameters of the implicit neural
network and propose a ray convolutional network and a color radiation network to better produce the scene’s semantic attributes under sparse annotation.

representation of the details.
More recently, the implicit neural representation has shown

powerful capabilities in implicitly encoding 3D scenes [10],
[15], [16]. NeRF [15] is a high-profile work in this field
that renders photo-realistic novel-view images using optimized
density and color attributes. Specifically, it optimizes the
weights of a neural network to represent the mapping between
the spatial coordinates and corresponding 3D attributes. Com-
pared with explicit representation, implicit representation is
more flexible and shows greater potential. In this paper, we
propose an implicit representation-based method for the sce-
nario we focus on. The proposed method employs a two-stage
training strategy that differs from the conventional CNN-based
image segmentation paradigm to solve the scenario. In the first
stage, the implicit 3D representation of a scene is encoded in
the weights of Multilayer Perceptron (MLP) by optimizing
the density and color attributes of the spatial points in a
continuous volumetric representation. In the second stage, with
optimized density attributes and a few labels, color attributes
are transformed into semantic attributes. Finally, we render
the accurate segmentation results for each test view. Due to
insufficient annotation, the features of some spatial locations
cannot be fully optimized in the sparse view. To address this
issue, the color-radiance network and ray-convolution network
are proposed. The color-radiance network extracts 2D color
features and fuses them with 3D spatial features to improve the
accuracy of prediction results. The Ray-convolution integrates
the 3D features of local neighborhood sampled points within
a viewing ray to improve the network’s representation of the
semantic attributes.

To quantitatively evaluate our method, we build a multi-
view aerial remote sensing dataset named Carla-MVS based on
the well-known Carla simulation platform [17]. The proposed
method outperforms other CNN-based state-of-the-art image
segmentation methods under the condition of limited labeled
data. We also conduct qualitative experiments on real-world
remote sensing images from Google Earth, our results are
more accurate and view-consistent. Furthermore, our method
can also benefit downstream applications - we show that using
our generated segmentation results as a new data augmentation
strategy, the performance of CNN-based methods can be

significantly improved.

II. METHODOLOGY

A. Overview

In this paper, a two-stage implicit neural field optimization
method for remote sensing scene segmentation is proposed.
An overall of our method is shown in Fig. 2. 1) In the
implicit representation stage, we follow the NeRF [15] pipeline
and feed the 3D coordinates and the view angle of the 3D
locations to two multilayer perceptrons, i.e., a location-MLP
and a view-MLP. In this way, the coordinate-dependent density
attribute and view-dependent color attribute can be generated
for each 3D location. 2) In the semantic segmentation stage,
we effectively used the spatial information extracted from the
above stage to generate segmentation results. Specifically, we
freeze the weights of the Location-MLP so that the spatial
information implied by the density attribute can be reused.
A prediction head named Seg-MLP is then introduced to
generate semantic features based on density features. Consid-
ering the insufficiency of the annotation of limited views, we
also propose a ray-convolution network, where pixel features
are extracted and fused with semantic features. This enables
the model to properly employ spatial information and pixel
information to produce a more accurate segmentation output.

B. Implicit representation stage

In the stage of implicit representation, we aim at construct-
ing an implicit 3D representation of the target remote sensing
scene. The stage-1 process is shown in the left part of Fig 2.
Similar to NeRF [15], we sample spatial points along the
ray formed by each pixel in the multi-view image and then
estimate the attributes for each spatial point. We use spatial
point coordinates (x, y, z) and ray angle (θ,β) as inputs for
the NeRF MLPs Φnerf :

σi, ci = Φnerf (x, y, z, θ, β), (1)

where σi ∈ R1 and ci ∈ R3 are the density and color attributes
of the ith 3D location, respectively. After that, the pixel
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color corresponding to the ray is rendered through discrete
integration [15]:

Ĉ(r) =

N∑
i=1

exp
(
−

i−1∑
j=1

αjσj

)(
1− exp (−αiσi)

)
ci, (2)

where αi is the distance between two adjacent sample points
and N is the number of sample points along a ray. Finally,
we refer to the corresponding pixel in the RGB image as the
ground truth C(r) to optimize the implicit neural field.

Lrgb =
∑
r∈R

[
∥Ĉ(r)− C(r)∥22

]
. (3)

where R are the sampled rays within a training batch.

C. Semantic segmentation stage

After obtaining the implicit 3D representation of the target
scene, in the semantic segmentation stage, we aim at generat-
ing the semantic segmentation output given any view image.
Different from the first stage, we only feed the coordinates of
the spatial points into MLPs in the above branch. Owning
to the continuity of implicit neural representation and the
accuracy of the density attribute, the semantic features of
points within the public view region can be well optimized.

Considering the limited annotations, we design the color-
radiance network and ray-convolution network as follows:

1) Ray-convolution network: In remote sensing scenes, we
assume the semantic attribute of spatial points along a ray
is ideally consistent. The ray-convolution network enhances
the association between semantic attributes of neighborhood
points along a ray. We choose the 1× 3 convolution kernel to
process the semantic attributes of adjacent sampling points in
a ray rather than the typical n× n convolution kernel:

fi = Φcnn(fi−1, fi, fi+1), (4)

where the fi ∈ R1×1×128 is the feature of each spatial point
after the ray-convolution network. We then use the following
formulation to generate semantic features along the ray:

Ss(r) =

N∑
i=1

exp
(
−

i−1∑
j=1

αjσj

)(
1− exp (−αiσi)

)
si, (5)

where si ∈ R1×1×128 is the semantic features of the ith
sampling point.

2) Color-radiance network: As an additional branch, the
color-radiance network assists the model in predicting the
semantic attributes of points. Like other MLP-based modules,
the color-radiance network consists of a set of fully-connected
layers and Relu layers. Differently, the input is the color vector
(R,G,B) of the pixel corresponding to the ray, and the output
N(r) ∈ R1×1×128 as the overall features of the ray are to be
concatenated with Ss(r). The fused features are then fed into
the F2S prediction head (F2S: Fused features to Segmentation)
to get the final semantic results Ŝf (r) ∈ R1×L. The network
at this stage are optimized by referring to the segmentation
ground-truth S(r).

Lf = −
∑
r∈R

[ L∑
l=1

Sl(r) log Ŝl
f (r)

]
. (6)

where L is the number of classes and R are the sampled rays
within a training batch. In addition, we feed N(r) into another
classification layer, C2S-MLP (C2S: Color to Segmentation)
to obtain a semantic result Ŝc(r) ∈ R1×L and apply the
following loss to optimize the color-radiance network to ensure
the accuracy of N(r).

Lc = −
∑
r∈R

[ L∑
l=1

Sl(r) log Ŝc
l
(r)

]
(7)

D. Training details

Our proposed method is implemented with Pytorch and
trained on an RTX3090 GPU. We use Adam optimization to
optimize the networks, and all compared methods are retrained
on our dataset. We set the learning rate to 5e−4 in the first
stage and 1e−3 in the second stage. To make a fair comparison,
we set the number of optimizations in the first stage is 200000,
the same as seg-NeRF [18]. Similar to NeRF, we adopt two-
stage sampling to discretize the scene. In the first stage, we
evenly sample 64 points along a ray that passes through the
center of the camera and each pixel in the input image. In
the second stage, we further sample 192 points by importance
sampling based on the first stage results to make the points
more concentrated near the object.

III. EXPERIMENT AND ANALYSIS

We compare three well-known CNN-based segmentation
methods and a state-of-the-art NeRF-based segmentation
method: Unet [19] is designed with a skip connection to
effectively fuse the feature information between encoder and
decoder to preserve more details. Chen designed the atrous
convolution in Deeplab [7] that enlarges the receptive field
of the convolution kernel without additional computation.
Fu proposed Dual Attention Network (DANet) [8] to adap-
tively integrate local features and global dependencies. Seg-
NeRF [18] is a recently proposed NeRF-based framework for
semantic segmentation. We retrained all the compared methods
using our dataset, all using single-view images as input to the
network.

A. Dataset and Metrics

1) Dataset: We test on both synthetic and real-world data.
The synthetic dataset Carla-MVS (Carla multi-view segmen-
tation) consists of five subsets with images captured above
the urban environment from the open-source CARLA program
[17]. The statistics of the five subsets are shown in table I.
For each scene, only 3% - 6% images are annotated. The
real-world images are from Google Earth satellite images.
We estimate camera parameters for each image in all datasets
using COLMAP.

2) Metrics: Model performance evaluation is based on the
similarity of the segmentation results to the Ground Truths.
The current automatic evaluation metrics mainly include
mIoU, Avg Acc (Class Average Accuracy), and Total Acc
(Pixel Average Accuracy), which are used in [18]. For all the
metrics, a higher score means a better result.
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Fig. 3. Image segmentation results on the Carla-MVS dataset. The white boxes mark the wrong-segmentation regions. Compared with CNN-based and
NeRF-based methods, our method produces more complete and detailed results.

Fig. 4. Image segmentation result on real-world data from Google Maps.

TABLE I
DATASET STATISTICS

.

#views #annoations #classes size (pixels)

subset #1 100 3 20 512× 512
subset #2 100 4 18 512× 512
subset #3 100 5 18 512× 512
subset #4 80 5 19 512× 512
subset #5 85 5 19 512× 512

B. Experiments and Results

1) Segmentation accuracy: Since CNN is sensitive to view
changes and changes in the number of sample annotations, it
makes it difficult for CNN-based methods to obtain accurate
prediction results consistent with views. From Table II, we
can see our method increases the accuracy of the results
significantly compared to the CNN-based method, indicating
that using implicit neural representation and 3D consistency
helps overcome the aforementioned issues. By further incorpo-
rating the semantic features and color information, our model
outperforms the seg-NeRF [18].

2) Visual comparison: From Fig. 3, we can see our method
produces more complete and detailed results compared with
CNN-based methods and seg-NeRF. We also validated our

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS.

Methods mIOU Total Acc Avg Acc

subset #1

Unet [19] 23.92 74.51 33.28
DANet [8] 9.73 65.41 12.00

Deeplabv3 [7] 18.89 74.04 22.90
Seg-NeRF [18] 55.73 93.87 62.09

Ours 58.03 94.33 64.94

subset #2

Unet [19] 31.73 85.31 36.88
DANet [8] 13.91 75.16 17.83

Deeplabv3 [7] 16.64 75.26 21.68
Seg-NeRF [18] 34.81 85.89 43.07

Ours 38.46 86.50 47.29

subset #3

UNet [19] 38.72 90.07 43.07
DANet [8] 15.79 75.15 19.76

Deeplabv3 [7] 20.52 81.19 24.05
Seg-NeRF [18] 41.85 91.20 48.78

Ours 43.53 90.47 49.41

subset #4

UNet t [19] 41.94 91.85 44.79
DANet [8] 26.78 80.00 31.07

Deeplabv3 [7] 30.42 82.34 34.83
Seg-NeRF [18] 57.24 95.29 61.33

Ours 59.14 95.72 66.02

subset #5

UNet [19] 26.63 88.19 29.82
DANet [8] 8.53 74.12 10.72

Deeplabv3 [7] 11.90 77.64 14.61
Seg-NeRF [18] 41.44 88.80 51.33

Ours 43.77 91.52 51.56

method on real-world data, as shown in Fig 4. Compared to
UNet, our results are more consistent from various perspec-
tives and have better visual effects.

3) Ablation study: We evaluate the effectiveness of different
components of our method, including the color-radiance net-
work and the ray-convolution network. The results are shown
in Table III.

• Effectiveness of the ray-convolution network: From Ta-
ble III, we see the ray-convolution network improves the
average mIoU about by 3.1% compared to its baseline.
This indicates integrating semantic features along a ray
makes the rendering output more consistent with the
ground truth.
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TABLE III
RESULTS OF OUR ABLATION ON RAY-CONVOLUTION NETWORK AND COLOR-RADIANCE NETWORK. FOR BREVITY, WE USE R FOR THE

RAY-CONVOLUTION AND C FOR THE COLOR-RADIANCE NETWORK.

Ablations mIoU on Carla-MVS Dataset

Our baseline R C subset #1 subset #2 subset #3 subset #4 subset #5 Avg accuracy

✓ 53.19 24.70 41.22 55.22 39.38 42.74 ± 10.99
✓ ✓ 55.70 35.53 41.03 55.84 41.08 45.84 ± 8.36
✓ ✓ ✓ 58.03 38.46 43.53 59.14 43.77 48.59 ± 8.39

• Effectiveness of the color-radiance network: The color-
radiance network fuses color features and semantic fea-
tures, which further improves the accuracy of the model
by 2.7%, as shown in Table III. Fig. 3 also suggests our
results are more detailed and complete.

4) Downstream validation: Our method can be also used as a
novel approach for data augmentation. We take UNet [19] as a
baseline and test whether our method can benefit segmentation.
From Table IV, we see that UNet’s performance on the Carla-
MVS has been significantly improved with our method.

TABLE IV
SEGMENTATION ACCURACY IMPROVEMENT OF UNET [19] BY USING OUR

METHOD AS A DATA AUGMENTATION STRATEGY.

mIOU Total Acc Avg Acc

subset #1 57.85 (↑ 33.93) 94.30 (↑ 19.79) 64.64 (↑ 31.36)
subset #2 38.65 (↑ 6.92) 89.86 (↑ 4.55) 43.24 (↑ 6.36)
subset #3 43.48 (↑ 4.76) 90.93 (↑ 0.86) 48.57 (↑ 5.50)
subset #4 50.68 (↑ 8.78) 94.69 (↑ 2.85) 53.40 (↑ 8.61)
subset #5 42.94 (↑ 16.31) 91.41 (↑ 3.22) 48.69 (↑ 18.87)

IV. CONCLUSION

We propose a novel method for remote sensing image
segmentation based on implicit neural representation. Under
the spare annotations, we achieve more accurate and detailed
results compared to CNN-based methods. We propose a ray-
convolution network to integrate semantic features in a ray
space and a color-radiance network to fuse the pixel color
features. Experimental results show that our strategy effec-
tively eliminates the model’s sensitivity to view change under
a limited number of labels, resulting in more accurate and
view-consistent segmentation results. Moreover, our results
can be viewed as a new data augmentation strategy that helps
improve the performance of CNN-based remote sensing image
segmentation methods.
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