

Article 3D Reconstruction of Remote Sensing Mountain Areas with TSDF-based Neural Networks

Zipeng Qi ^{1,2,3}, Zhengxia Zou ⁴*, Hao Chen ^{1,2,3} and Zhenwei Shi^{1,2,3}

- ¹ Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
- ² Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China
- ³ State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
- ⁴ Department of Guidance, Navigation and Control, School of Astronautics, Beihang University, Beijing 100191, China
- * Correspondence: zhengxiazou@buaa.edu.cn

Abstract: Remote sensing 3D reconstruction of mountain areas has a wide range of applications in surveying, visualization, and game modeling. Different from indoor objects, outdoor mountain 2 reconstruction faces additional challenges including illumination changes, diversity of textures, and highly-irregular surface geometry. Traditional neural network-based methods that lack discriminative features are difficult to handle the above challenges, and thus tend to generate incomplete and inaccu-5 rate reconstructions. Truncated Signed Distance Function (TSDF) is a commonly used parameterized representation of 3D structures, which is naturally convenient for neural network computation and computer storage. In this paper, we propose a novel deep learning method with TSDF-based repre-8 sentations for robust 3D reconstruction from images containing mountain terrains. The proposed method takes in a set of images captured around an outdoor mountain and produces high-quality 10 TSDF representations of the mountain areas. To address the aforementioned challenges, such as 11 lighting variations and texture diversity, we propose a View fusion strategy based on Reweighted 12 Mechanisms (VRM) to better integrate multi-view 2D features of the same voxel. A Feature En-13 hancement (FE) module is designed for providing better discriminative geometry prior in the feature 14 decoding process. Besides, we also propose a Spatial-Temporal Aggregation (STA) module to reduce 15 the ambiguity between temporal features and improve the accuracy of the reconstruction surfaces. 16 A synthetic dataset for reconstructing images containing mountain terrains is built. Our method 17 outperforms the previous state-of-the-art TSDF-based and depth-based reconstruction methods in 18 terms of both 2D and 3D metrics. Furthermore, we collect real-world multi-view terrain images from 19 the Google Map. Qualitative results demonstrate the good generalization ability of the proposed 20 method. 21

Citation: Zipeng Q.; Zhengxia Z.; Hao C.; Zhenwei S. Title. *Journal Not Specified* 2022, 1, 0. https://doi.org/

Received: Accepted: Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted to *Journal Not Specified* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). **Keywords:** TSDF-based 3D reconstruction, Spatial-Temporal information fusion, Multi-head cross attention, optical remote sensing, aerial image. 23

1. Introduction

Reconstruction of 3D scenes has a wide range of applications in remote sensing [1–7], 25 surveying [8], and game modeling. In computer vision and computer graphics, given a 26 single image or a set of images, 3D scene reconstruction is the process of capturing the 27 shape and appearance of real scenes. Outdoor mountains are an important ground feature 28 in remote sensing applications. In remote sensing field, most recent works of 3D scene 29 construction concentrate on using air-borne radar images. In this paper, we investigate the 30 problem of reconstructing 3D mountains using optical images from remote sensing scenes. 31 The low cost and easy availability of the reconstruction through optical images makes it 32 easy to acquire and implement from both airborne and spaceborne platforms. 33

The representation of 3D scenes is a prerequisite for 3D reconstruction. There are mainly three 3D data representation approaches widely used for 3D reconstruction: point

Figure 1. Different types of mountain areas: (a) vegetation-covered mountains, (b) rocky mountains, (c) snowy mountains.

cloud, mesh, and Truncated Signed Distance Function (TSDF). Among these approaches, point cloud representation is an irregular data structure for 3D structure, storing sparse 37 point-based data of objects. The limitation of the point cloud representation is that there is no connection between points and the lack of surface information of scenes or objects. 39 Mesh representation divides the surface of an object into many triangular patches with a tight graph structure. TSDF represents the 3D structure of an object by evenly dividing the 41 space into several voxels and storing the distance from each voxel to the surface. TSDF is 42 represented as a regular grid structure, which can be naturally processed by 3D convolution. 43 The above representations can be converted to each other easily. For example, point cloud and TSDF can be converted into Mesh using the Poisson reconstruction algorithm [9] and 45 Marching Cubes algorithm [10] respectively. 46

In recent years, TSDF-based neural networks [11–14] have drawn increasing attention 47 and have greatly promoted the research progress of the 3D reconstruction researches. 48 Recent TSDF-based networks mainly focus on indoor scene/object reconstruction problems. 49 These methods usually adopt a coarse-to-fine strategy to integrate features from different 50 resolutions, determine whether the voxel is within the truncated distance, and finally 51 generate the TSDF value of each voxel within the truncated distance. When the TSDF value 52 is obtained, the Marching Cubes algorithm [10] can be used to get the 3D mesh format 53 output. 54

Compared to indoor objects/scenes [15,16], the reconstruction of outdoor mountain 55 terrains we studied in this paper has more challenges. First, outdoor scenes may have 56 intense illumination variations due to the change of sunlight angle and intensity. Second, mountains may have a highly complex texture and topology compared to daily objects. 58 Fig. 1 shows three types of mountains commonly seen in outdoor scenes: (a) vegetation-59 covered mountains, (b) rocky mountains, and (c) snowy mountains. We found recent 60 TSDF-based networks [17–19] are difficult to model the truncated distance near complex 61 surfaces of the mountain where voxels are either ignored or assigned an ambiguous multi-62 view feature representation. Besides, the weak spatial correspondence makes it hard to 63 learn discriminative 2D features spatially. Some depth-based methods [20,21] are also used 64 for outdoor scene reconstruction, but they may suffer from poor result consistency. 65

In this paper, we propose a novel TSDF-based network for robust 3D reconstruction from remote sensing images containing mountain terrains. Our method takes in a set of images captured around an outdoor mountain and produces high-quality TSDF volumes of the mountain areas. A coarse-to-fine reconstruction pipeline is adopted, where we first fuse the 2D features extracted from different multi-view images and then fuse features from different voxel resolutions. During the multi-view feature fusion procession, we propose a view fusion strategy based on reweighted mechanisms (VRM) to better integrate 2D features 72 on multiple views of the same voxel in 3D space. This module adaptive learns the weights 73 for different views and makes the reconstruction focus on more important 2D image regions. 74 We then design a spatial-temporal aggregation (SPA) module to fuse 3D features of the same 75 location in time series based on the local neighborhood. The SPA module can reduce the 76 ambiguity between temporal features and improve the smoothness of the reconstruction 77 surfaces. In the feature decoding process, we noticed that the large-scale depth value 78 and complex local geometric structure of the mountains may significantly increase the 79 difficulty of network training for conventional TSDF-based methods. To this end, we 80 propose a feature enhancement (FE) module with probability distribution encoding [22], 81 which can provide better discriminative geometry prior to the feature decoding process. 82 Similar to the NeRF setting, we use a set of high-frequency sine and cosine functions to 83 map continuous probability into a higher dimensional space to enable our decoder to more 84 easily approximate a higher frequency signed distance function. Our motivations and 85 observations can be summarized as follows: 1) The implicit representation for each 2D 86 feature point can increase the discriminative ability of 2D features. The proposed VRM 87 module can also reduce the influence of inaccurate 2D features caused by the camera 88 distortion; 2) The geometry consistency can be better maintained by fusing temporal 3D 89 features. Besides, we incorporate the cross-attention mechanism to eliminate the spatial 90 instability in the feature fusion. 91

To verify the effectiveness of the proposed method, we build a challenging dataset 92 that contains mountain images with different shapes, surface textures and rendered with 93 different lighting conditions. The test data and the training data are very different in 94 texture. For a fair comparison, we retrain the proposed model and open-source methods 95 on this dataset. The results show that our method can better reconstruct the mountain 96 geometry than other methods, even with limited training data. Furthermore, we also verify 97 the proposed method on real-world multi-view terrain images from Google Map. The 98 qualitative results show that the proposed method transfers well to real-world terrains 99 even those have different styles of texture from the training data. 100

The main contributions of our paper are summarized as follows:

- We investigate the problem of outdoor 3D mountain reconstruction and propose a new TSDF-based reconstruction method. A challenging synthetic dataset is built for this problem.
- We propose a feature enhancement (FE) module, view fusion via reweighted mechanism (VRM), and a spatial-temporal aggregation (STA) module to effectively utilize features from different 2D views and improve feature discriminative capability on voxels. With the above design, we outperform other state-of-the-art TSDF-based methods on our task.

2. Background and Related Work

Here we first give a brief introduction of the TSDF and then review some related topics, 111 including depth estimation, TSDF-based reconstruction, and implicit neural representation.

2.1. Truncated Signed Distance Function (TSDF)

Truncated Signed Distance Function (TSDF) [23] is a common method for representing surfaces in 3D reconstruction. In TSDF representation, the space occupied by the object or scene is evenly divided into several voxels. The value corresponding to each voxel represents the distance between the voxel and its nearest surface. The value is positive if the voxel is outside the surface, and negative if the voxel is inside the surface. Usually, the results of the TSDF can be converted into mesh structures using the Marching Cubes algorithm [10]. TSDF is an improvement based on the Signed Distance Function (SDF), which truncates long distances and only considers the value of voxel near the surface of the object. Therefore, in the case of parallel computing of graphics cards with large memory,

113

110

real-time reconstruction can be achieved by using TSDF. The truncation distance of each voxel corresponding to the current frame is written as follows:

$$tsdf = F(depth - P_z), \tag{1}$$

where the *depth* can be obtained by a depth camera, the P_z represents the z coordinate value in the camera coordinate system. F(x) is defined as follows:

$$F(x) = \begin{cases} \min(1, \frac{x}{|u|}) & x > 0\\ \max(-1, \frac{x}{|u|}) & x < 0 \end{cases}$$
(2)

where *u* represents the truncated distance. The weight of each voxel at the current frame can be calculated as $w \propto \cos \theta$, where θ is the angle between the projected ray and the surface normal vector and the value of *w* is proportional to the value of $\cos \theta$. During the camera shooting process, the TSDF corresponding to the voxels is continuously updated with the following formula:

$$TSDF_{i+1} = \frac{W_i \times TSDF_i + w_{i+1} \times tsdf_{i+1}}{W_i + w_{i+1}},$$

$$W_{i+1} = W_i + w_{i+1}.$$
(3)

where *i* represents the i_{th} view.

2.2. Depth estimation

MVSNet [20] is one of the first to use neural networks to predict dense depth maps. 116 MVSNet innovatively encodes camera parameters to construct cost volume and predicts 117 depth through 3D CNNs. Later on, DPSNet[24] introduces the plane sweep algorithm 118 where the depth prediction is transformed into a multi-class task and is learned in an end-119 to-end manner with neural networks. GPMVS [25] proposed a pose-kernel to measure the 120 similarity between frames as prior information. PatchmatchNet [21] introduces cascaded 121 patch match, which is fast, does not rely on 3D cost volume regularization, and has low 122 memory requirements. NerfingMVS [26] proposes to use neural radiance fields (NeRF) for 123 depth estimation and integrate learning-based depth priors into the optimization process. 124 When the depth estimation is completed, the Poisson reconstruction^[27] and Delaunay 125 triangulation[28] is usually used to reconstruct 3D mesh results. 126

2.3. TSDF-based reconstruction

In recent years, many researchers choose to directly predict the voxel-to-surface dis-128 tance for 3D reconstruction, which is also known as TSDF-based representation. Back in 129 the 1980s, the Marching Cubes algorithm [10] was proposed to find the location of surfaces 130 when obtaining TSDF results. Atals [11] extracts 2D features of images and projects them 131 into 3D space through corresponding camera parameters, where the 3D features are then 132 passed through a 3D CNN to predict the TSDF value of each voxel. NeuralRecon [13] 133 reconstructs the scene in real-time by incrementally predicting the TSDF values with a GRU 134 fusion module. Transformerfusion [14] utilizes the Transformer networks to model the 135 relations between different views and fuse their 2D features adaptively. NerualFusion [29] 136 performs the view feature fusion operation in a learned latent space that allows encoding 137 additional information and improves the reconstruction by combining the view-aligned 138 features. Most of the above-mentioned methods take a coarse-to-fine reconstruction strat-139 egy and have achieved good results. However, they are mostly designed for restricted indoor scenes and are difficult to apply to the outdoor mountain reconstruction problem 141 studied in this paper. 142

114

Figure 2. We adopt a coarse-to-fine pipeline to generate the reconstruction result. First, an encoderdecoder network extracts 2D features where the view fusion via reweighted mechanisms is proposed to generate more discriminative features. Then the view fusion module maps each level 2D feature to 3D volume through camera parameters. Furthermore, the spatial-temporal aggregation module eliminates the reconstruction ambiguity in timing. Finally, we update the memory bank with fused features and predict the TSDF value of each voxel.

2.4. Implicit neural representation

Implicit neural representation is a recently emerged research topic in 3D reconstruction 144 and novel view synthesis. Implicit neural representation establishes a mapping between 145 continuous pixel values and discrete pixel coordinates in 2D space or view coordinates in 146 3D space. NeRF [30] is a representative of this group of the method. NeRF-in-the-wild [31] 147 utilized NeRF to model wild scenes with uncontrolled images. Very recently, implicit 148 neural representation is also introduced in tasks such as super-resolution [32,33], image 149 generation [34–36] and implicit 3D model generation [37–39]. A common idea of the above 150 methods is to encode discrete coordinates with high-frequency positional encoding to 151 improve the generative modeling capability on details. We also borrowed this idea in our 152 proposed feature enhancement module. 153

3. Materials and Methods

3.1. Overview

Fig. 2 shows an overview of the proposed TSDF-based method. The proposed method 156 consists of 1) an encoder-decoder network integrated by a feature enhancement (FE) module 157 to extract multi-scale discriminative 2D features from the input images, 2) a view fusion 158 module based on a reweighted mechanism (VRM) to map multi-view 2D features of 159 each scale to a 3D volume space, 3) a spatial-temporal aggregation (STA) module to 160 enhance current voxel features by incorporating neighborhood features from the last input 161 frames. We adopt a coarse-to-fine reconstruction pipeline and incrementally obtain detailed 162 reconstruction results by utilizing image features from different resolutions. In each stage 163 of the network, we verify whether the distance between each voxel and its nearest surface 164 is smaller than the truncated distance. If yes, the voxel features will be further processed 165

143

154

by the next stage. Note that we employ memory banks to restore the latest voxel features for each stage.

3.2. Feature enhancement module

Mountain texture is an important factor in terrain reconstruction. However, because 169 the camera is far away from the mountain, in some views, there are a lot of similar textures 170 in the captured images (see Fig. 6 and Fig. 7), which increases the difficulty for the network 171 to extract 2D features well. In order to solve the above problem, we design a feature 172 enhancement module to obtain discriminative features. The value of the TSDF of the voxels 173 corresponding to the same local surface should be similar, so we first predict an implicit 174 aggregation attribute for each 2D feature, where the features of the same aggregation 175 category belong to the same local surface. 176

Given a set of 2D features $\mathbf{F} \in \mathbb{R}^{h \times w \times c}$ (*c* is the channel dimension, which is {24, 40, 80} respectively in the process from coarse to fine) at each reconstruction stage, we employ an local aggregation network (i.e., two convolutional layers) to obtain contextrich per-pixel features $\mathbf{F}^{c} = \{\mathbf{f}_{i}^{c} \in \mathbb{R}^{n} | , i \in \{1, 2, 3, ..., hw\}$ (see Fig. 3). *n* is {16, 32, 64} respectively in different level features. We adopt a relatively low dimension *n* as the number of aggregation categories. For each feature vector \mathbf{f}_{i}^{c} , we normalize its value with a Softmax function to obtain \mathbf{p}_{i} since we expect similar texture features to generate similar probability distributions. To increase the distinguishability of aggregated attributes, and inspired by implicit representation and position embedding in the transformer, we multiply the probability distribution \mathbf{p}_{i} by a random Gaussian and map the result by a sin and cos function. This has been proved in [40] that it can increase the discrimination of the features. The position embedding can be written as follows:

$$F' = FC(cat(\sin(2\pi PB), \cos(2\pi PB)))$$
(4)

where $\mathbf{B} \in \mathbb{R}^{n \times m}$ (*m* is the increased feature dimension which is {24,24,24} respectively in the process from coarse to fine) is the random Gaussian matrix, and FC(·) is a fully connect layer for dimensional transformation. \mathbf{F}' the same as the original feature space. Finally, we combine \mathbf{F}' with the original features with element-wise addition.

Figure 3. Illustration of feature enhancement. A random Gaussian matrix is employed to enhance the feature discrimination capacity.

180

3.3. View fusion via reweighted mechanisms

After extracting the 2D features for each view, we transfer the 2D features to 3D features for the subsequent process. We enclose all the images of one frame-set and divide them into several voxels evenly with cubic-shaped fragment bounding volume (FBV). In the process of processing one frame-set, we establish a mapping between each voxel and the 2D features by camera parameters (see Fig. 4). Due to the overlapping contents between images of different views, one voxel often corresponds to multiple views. Previous methods [11,13] usually adopt simple feature averaging to integrate the multi-views 2D features. However, such an approach ignores the interaction and feature divergence between different views. The 3D information of the terrain is usually hidden in the content differences of different views. By simply averaging the features, it is difficult for the network to distinguish the feature differences between different views at the same location. In addition to this, the

168

features at the boundary region of the view may contain incorrect information due to camera distortion. To this end, we introduce a view reweighted mechanism (VRM) for better integrating multi-view features. By considering the effects of camera distortion, we set a larger weight to center pixels, where the weights are inversely proportional to the distance between the feature location to the center of the feature map. The importance of the *i*th view feature is defined as follows:

$$\beta_i = 1/\sqrt{(h_i - h_c)^2 + (w_i - w_c)^2 + \epsilon},$$
(5)

where ϵ is a positive number to prevent numeric overflow. The importance of each view is then mapped to (0, 1) through a Softmax layer. Since β_i only considers the spatial location of the feature in a single view. The relationship between features at the same location across different views needs to be integrated. By following the configuration of the attention layer in the Squeeze-and-Excitation networks [41], the final fused feature \mathbf{f}_{f} are defined as follows:

$$\mathbf{f}_{f}^{\prime} = \sum_{i=1}^{n} \gamma_{i} \mathbf{f}_{i}^{\prime},\tag{6}$$

where γ_i denotes the channel weight of the i_{th} view and is given by:

$$\gamma_1, \gamma_2 \cdots \gamma_n = \mathrm{MLP}(\sum_{i=1}^n \beta_i \mathbf{f}'_i),$$
(7)

where *n* is the number of views and \mathbf{f}'_i is the input 2D feature.

The motivation of the above spatial-weighted design is to mitigate the effects of 183 inaccuracy features at image boundary due to the camera distortion and distinguish the 184 contribution of 2D features from different views to the voxel. As a result, the center 185 features with realistic mountain textures are mainly utilized and this design can improve 186 the performance of fusing 2D features from different views. Note that spatial-weight and 187 channel-weight are equally important.

each voxel are fused by 1) spatial reweighting and 2) channel reweighting.

3.4. Spatial-Temporal aggregation module

We divide the input images into different frame-sets according to the sequence of 190 shooting views. In order to better process 3D information, we set overlapping views 191 in different frame-sets (for details, please refer to the experimental section). Different 192 frame-sets may correspond to voxels with the same coordinates in 3D TSDF volume. 193

After the VRM module, the 3D feature corresponding to the same voxel are different in 194 the fusion results of different frame-sets, which we define as temporal voxel features. The 195

Figure 4. Illustration of the proposed view fusion method. Corresponding multi-view 2D features of

7 of 18

temporal voxel feature can also be understood as the same voxel has different 3D features under different views as the camera moves. Merging different temporal voxel features benefits 3D representation learning. Very recently, NeuralRecon [13] proposes to fuse the features of the current frame with previous ones at the same locations. Note that the fusion is only performed at a single-voxel level, we refer to this approach as point-by-point fusion. Due to the complex structure of the mountain surface, point-by-point fusion may suffer from error accumulation problem, particularly when the current and previous results both have noises.

The accumulation of errors caused by this point-to-point approach can make the predicted results inaccurate. Since the local surface of the mountain has a certain continuity in structure, the corresponding TSDF value will not change significantly. Therefore, we design a spatial-temporal aggregation module to integrate previous neighbor representations into the current voxel via a cross-attention mechanism (see Fig. 5 for details).

Given a set of previous features

$$\mathbf{F}^{p} = \{ (f_{1}^{p}, c_{1}^{p}), (f_{2}^{p}, c_{2}^{p}), \dots (f_{m}^{p}, c_{m}^{p}) \}$$
(8)

and current features

$$F^{s} = \{ (f_{1}^{s}, c_{1}^{s}), (f_{2}^{s}, c_{2}^{s}), \dots (s_{n}, c_{n}^{s}) \}$$
(9)

where f_i^p and f_j^s are voxel features, c_i^p and c_j^s are corresponding coordinates (the dimension of voxel features is {24, 48, 96} respectively in different levels and the corresponding is 3-dimension vector), we first select the top *k* features f_j^p , $j = \{1, ..., k\}$ closest to f_i^s in the volume space (top*k*). Then, we apply the multi-head cross-attention (MHCA) [42,43] to relate current voxel features and top *k* previous features as follows:

$$f_i^{new} = \text{MHCA}(q, K, V), \tag{10}$$

where $q = MLP(f_i^s), K/V = \{MLP(f_i^p) | j = \{1, .., k+1\}\}.$

Since the TSDF values corresponding to the features in a neighborhood are relatively 210 continuous, the new features that incorporate spatial neighborhood information can effectively eliminate the instability of the feature fusion. Finally, we fuse f_i^{new} with the closest 212 previous feature (the voxel marked yellow in fig. 5) in a point-by-point way to further 213 enhance the details. We update F^P of the memory bank with the fused feature in a dynamic 214 fashion.

Figure 5. The multi-head cross-attention mechanism is employed to fuse the current feature with previous neighborhood ones. The resulting f_i^{new} is then fused with the closest feature (yellow voxel) in a point-by-point fusion way.

Modules	Input Demisons	OutPut Demensions
		Level1:24
Backbone	N_views*512*512*3	Level2:40
		Level3:80
EE	The input dimensions of the	The output dimensions of the three levels
ГĽ	three levels are correspondingly {80, 80, 80}	are correspondingly {80, 80, 80}
	The input dimensions	The output dimensions of Conv1
Aggregation notwork	of Conv1 in three levels are {80,80,80}	in three levels are $\{40, 40, 40\}$
Aggregation network	The input dimensions	The output dimensions of Conv2
	of Conv2 in three levels are { 40, 40, 40}	in three levels are {16, 32, 64}
VDM	The input dimensions	The output dimensions of MLP
V KIVI	of MLP in three levels are {24, 40, 80}	in three levels are {9, 9, 9}
	The dimension	The dimension of Queries
STA	of Queries in three levels are {24, 48, 96}	in three levels are {128, 128, 128}
SIA	The dimension	The dimension of Keys
	of Keys in three levels are {24, 48, 96}	in three levels are {128,128,128}
	The dimension	The dimension of Values
	of Values in three levels are {24, 48, 96}	in three levels are {128, 128, 128}
Last MLP	The input dimension of the last MLP in three levels are {24, 48, 96}	1

Table 1. The input dimension and output dimension of main modules

3.5. Implementation details

Networks details. We use the pre-trained MnasNet [44] as the backbone for extracting 217 2D features. We use torchsparse[45] to implement 3D sparse convolution. We set the 218 number of aggregation categories in the FE module for each stage as {16, 32, 64} respectively. 219 In SPA, we select 3 previous voxel features which are closets to f_i^s and send them to MHCA. 220 The parameter details of the main modules are shown in the Table 1. 221

Loss function. We train the model with binary cross-entropy (BCE) loss and l_1 loss, 222 where the former is used to tell where the voxel is within the truncation distance and the latter to regress the distance between the voxel and the surface. We follow [13] to apply log-transformation before the l_1 loss.

Each input frame-set is assigned nine views, and any two neighboring frame-sets have 226 six overlapping frames. We employ the Adam optimizer with a 1e-3 learning rate. Since 227 we did not predict the depth map explicitly, we render the reconstructed mesh to the image 228 plane and estimate the depth values [11]. 229

To evaluate the performance of depth-based methods [24,25] in 3D metrics, we apply 230 the standard TSDF fusion method proposed in [23] to reconstruct mesh results with depth 231 results and compare them with ours. 232

4. Results

4.1. Dataset

We build a diverse and challenging synthetic 3D dataset for 3D reconstruction using 235 image containing mountain terrains. The dataset contains 3D models of 8 snowy mountains, 236 8 vegetation-covered mountains, and 8 rocky mountains. Some examples are shown in 237 Fig. 6 and Fig. 7. 238

We randomly select 4 models from each class terrain for training, 1 model for validation 239 and 3 models for testing. As result, we rendered 33 video clips, 12 for training, 3 for 240 validation, and 18 for testing. The training videos and the validation videos are obtained by 241 shooting around the mountain at a random height with a simulated camera. The test videos 242 were shot at two random heights for each mountain model. There is no overlap between 243 our training and testing sets. The light intensity during all video shooting is randomly set. 244

For each video, a keyframe is selected at an interval of 10 degrees. A total of 36 images 245 are selected for one video clip, and corresponding depth images and camera parameters are also recorded. The size of each image is rendered at 512×512 pixels. For each video, we 247 use the depth map and camera parameters to render the ground-truth TSDF. The size of the 248 voxel is set to 1m. The maximum depth is set to 120m. The reason is that we normalize the 249

216

223

224

225

length of all experimental models to around 120 meters in the Blender coordinate system to conveniently validate our method (relative to the size of the model, this distance is very far for normal scenes). The TSDF truncation distance λ is set to 3m.

Figure 6. Input images of six camera views corresponding to each type of mountain terrain in the training set.

Figure 7. Input images of six camera views corresponding to each type of mountain terrain in the testing set.

Table 2. The evaluation metrics of 2D depth estimation and 3D reconstruction used in our experiment.

	2D		3D
Abs Rel	$rac{1}{n}\sumrac{ d-d^* }{d^*}$	L1	$\operatorname{mean}_{t^* < 1} t - t^* $
Abs Diff	$rac{1}{n}\sum d-d^* $	Acc	$\operatorname{mean}_{p \in P}(\operatorname{min}_{p^* \in P^*} \ p - p^* \)$
Sq Rel	$\frac{1}{n}\sum \frac{ d-d^* ^2}{d^*}$	Comp	$\operatorname{mean}_{p^* \in P^*}(\operatorname{min}_{p \in P} \ p - p^* \)$
RMSE	$\sqrt{rac{1}{n}\sum d-d^* ^2}$	Prec	$mean_{p \in P}(min_{p^* \in P^*} p - p^*) < .05$
$\sigma < 1.25^i$	$\frac{1}{n}\sum \max(\frac{d}{d^*},\frac{d^*}{d}) < 1.25^i$	Recall	$mean_{p^* \in P^*}(min_{p \in P} p - p^*) < .05$
Comp	valid predictions	F-score	$(2 \times \text{Recall} \times \text{Pres}) / (\text{Prec} + \text{Recall})$

4.2. Comparison methods and metrics

The following methods are used for comparison: 1) traditional method: COLMAP [46], 254 which can process high-resolution images, but suffer from high time consumption; 2) depth-255 based methods: DPSNet [24] which takes the plane swap approach to directly predict the 256 depth map. The cost volume is constructed by a differentiable warping process, allow-257 ing end-to-end training; GPMVS [25] proposed a pose-kernel structure that encourages 258 similar poses to have resembling latent spaces. This strategy makes the depth predicted 259 by the model more complete. 3) TSDF-based methods: Atlas [11], an off-line method, 260 directly regresses the TSDF value of each voxel and reconstructs the surface geometry. 261 NeuralRecon [13], a real-time method to reconstruct the object surfaces. 262

We follow [11] and [47], and use the 3D geometry metrics and the 2D depth metrics to compare all the above-mentioned methods. The details of each metrics are shown in Tab. 2. Since DPSNet and GPMVS are specialized for depth estimation, we only compare these two methods on 2D metrics. For a fair comparison, we implement all these methods on our dataset using their open-source code.

Table 3. 3D reconstruction accuracy of different methods. The 1 voxel size and 1.5 voxel size represent the value of the corresponding threshold when calculating Prec and Recall. The method of calculating metric values are the same as Atlas [11] and NeuralRecon [13]

		1voxel size		1.5 voxel size						
Method	Layer	F-score↑	Prec↑	Recall↑	F-score↑	Prec↑	Recall↑	Acc↓	Comp↓	Time↓(ms)
DPSNet	double	0.67	1.00	0.50	1.05	1.53	0.80	49.59	51.47	175
GPMVS	double	0.29	0.20	0.48	0.467	0.32	0.88	62.03	49.74	186
Altas	double	14.86	14.84	15.46	24.92	21.24	23.11	10.81	5.15	11.7
NeuralRecon	double	43.16	65.54	34.26	55.09	84.25	43.77	1.10	7.90	32.0
Ours	double	52.16	65.87	44.26	64.63	81.23	55.00	1.76	4.53	35.4
COLMAP	single	82.55	99.45	71.21	87.55	99.72	78.68	0.40	1.47	420
NeuralRecon	single	56.60	71.93	48.69	65.61	83.63	56.43	0.88	5.63	32.0
Ours	single	64.03	76.94	56.22	70.00	82.90	61.82	1.40	3.82	35.4

4.3. Overall comparison on the synthetic dataset

Tab. 3 shows the quantitative evaluation results of different methods on the above2693D metrics. We can see our model achieves the best results compared with other neural270network methods.271

For the depth-based methods, the various shapes and textures of mountains make the depth-based methods difficult to learn useful geometric representations. There are also differences in the size of the mountains, so the estimated range of terrain depth also varies 273

253

greatly, which makes the depth-based model unable to adapt well to different terrains. Even for the same terrain, similar textures may correspond to different depths, so texture features alone cannot generate reasonable results. Besides, the compared methods predict inconsistent depth which makes it impossible to reconstruct the mesh results well. Our method outperforms previous methods for almost all 2D depth metrics, as shown in Tab. 4.

For TSDF-based neural networks, we focus more on the 3D metrics, where F-score 280 can better reflect the visual effects of the results. Since 3D information is often contained 281 in the disparity of different views, the joint processing of features from different views is 282 important. However, Atlas [11] extracts the features of each view separately, which results 283 in inconsistent semantic information in the 3D space, and results in a low F-score. Neural-Recon [13] integrates the temporal features at a single-voxel level to improve robustness. 285 However, due to its relatively insufficient 2D features and the possibility of error accu-286 mulation of voxel features, some voxels were deleted by mistake, resulting in a low recall 287 rate and poor integrity. Compared with NeuralRecon, our proposed model improves the F-score and recall by 9.5 % and 11.3% respectively. From the visualization results in Fig 8, 289 we can see our method can have a more complete reconstruction of the mountain surface. 290 Note that we did not show the colored results because our paper focuses on TSDF-based 291 representations rather than textures. In addition, in order to compare with COLMAP, we use the same way as in NerualRecon [13] to generate single-layer results. Although the 293 results of COLMAP in Fig. 8 are more complete, COLMAP produces the wrong topology with some holes being filled incorrectly and over-smooth results. Tab. 3 shows that our 295 method surpasses NerualRecon in almost all 3D metrics. Although, COLMAP can achieve a higher F-score but be ten times slower than ours. 297

Our results are TSDF-based forms that can be easily converted to Mesh, Point cloud and other formats. These are the explicit 3D data formats that can be simply imported into software such as Unity for further editing (modifying the terrain, combining multiple terrains, etc.). In this way, it will greatly reduce modeling time and effort.

Method	Abs Rel \downarrow	Abs Diff↓	Sq Rel↓	RMSE↓	$\delta < 1.25^i \uparrow$	Comp↑
GPMVS	0.90	44.74	60.92	50.39	0.17	84.04
DPSNet	0.44	24.80	14.77	27.09	0.29	84.10
NerualRecon	0.12	3.23	1.71	5.02	0.83	70.22
Ours	0.04	2.16	0.64	3.81	0.97	63.90

Table 4. Depth estimation accuracy of different methods. We use the same method in NeuralRecon [13] to calculate the metric values.

4.4. Generalizing to real data

To further verify the adaptability of the proposed method to the real-world data, we randomly extract multi-view terrain images from Google Map. The real terrains include one vegetation-cover mountain, one rocky mountain, and one snowy mountain. The real data have different styles of textures from training data. The validation videos are also obtained by shooting around the real terrains at a random height.

There are two challenges on real terrains: 1) The texture of real terrains is very different from that of training mountains;2) the real terrains have a more complex geometrical structure. The above increases the difficulty of reconstructing and requires the model to be able to adapt to different types of textures.

Since it is difficult to obtain the ground truth of real terrains, we only show the qualitative results. (In Fig. 11, Fig. 9, and Fig. 10), we show three groups of reconstruction results using our method. The small images on the left are the six views randomly shot by the camera, and the large image on the right is the reconstruction result. The results show that our method trained on synthetic data has good transferability to real terrains

Figure 8. Qualitative results on our dataset. Compared to GPMVS [25] and NerualRecon [13], our method can produce much more complete reconstruction results. Notice that COLMAP generates single layer results and tend to give over-smooth result(some holes are wrongly filled).

Figure 9. The real data of vegetation-covered mountain terrain. The small images on the left are the six views randomly shot by the camera, and the large image on the right is the reconstruction result.

5. Discussion

In this section, we analyze carefully the benefits and drawbacks of the proposed strategy. To demonstrate the effectiveness of our method, we incrementally add the proposed 310

Figure 10. The real data of rocky mountain terrain. The small images on the left are the six views randomly shot by the camera, and the large image on the right is the reconstruction result.

Figure 11. The real data of snowy mountain terrain. The small images on the left are the six views randomly shot by the camera, and the large image on the right is the reconstruction result.

modules (FE, VRM, STA) to the baseline in section 5.1. In section 5.2, we focus on the limitations of our model. 320

5.1. Ablation study

To verify the effectiveness of our designed modules, we conduct ablation studies on the proposed three key components, i.e. Feature enhancement (FE), view reweighted mechanism (VRM), and Spatial-temporal aggregation (STA). Starting from a baseline using a normal 2D encoder-decoder and normal view fusion-based 3D feature generator, we incrementally add the three components.

From Tab. 5, we can observe STA, VRM, and FE can bring improvement on the Fscore of our model by 8.7%, 3.7%, and 2.2%, respectively. The above results show that 329

the modules we designed for images reconstruction can improve the performance of the network and get better reconstruction results. We can also observe that our STA 331 induces further improvement of F1-score against NeurlRecon by 3.7%. The quantitative 332 results indicate that the aggregation with neighborhood voxel features can benefit 3D 333 reconstruction. We also visualize the reconstruction results of our models in Fig. 12. We 334 can observe that the reconstruction quality improves when incrementally adding the three 335 modules. When the STA module is added, the top area of the terrain becomes flat and 336 the whole is smoother. This is because the local spatial features can reduce the ambiguity 337 between temporal features. 338

The qualitative comparison of our ablation experiment is shown in Fig. 12. In Fig. 12 ³³⁹ (b), we can see that the VRM module can better convert 2D features into 3D features. As ³⁴⁰ a result, the results become more complete. The result of Fig. 12 (c) also removes some ³⁴¹ discontinuous regions, which shows that the FE module can improve the network to extract ³⁴² more distinguishable features from 2D images, which is more conducive to predicting an ³⁴³ accurate TSDF for each voxel. In conclusion, both quantitative and qualitative experiments ³⁴⁴ show that our proposed modules is beneficial for the task of terrain reconstruction. ³⁴⁵

The Table. 5 also shows the memory usage in testing process. The memory computation is reduced with our proposed modules due to the powerful ability of added modules to neglect the computation of a lot of voxels that are not near the mountain surface. 348

Table 5. Ablation study on the proposed three modules, i.e. Feature enhancement (FE), view reweighted mechanism (VRM), and Spatial-temporal aggregation (STA).

Method	FE	VRM	STA	F-score	Prec	Recall	memory consumption
baseline	×	×	×	50.09	77.55	39.44	2.2GB
NeurlRecon	×	×	×	55.09	84.25	43.77	<4GB
ours	\checkmark	Х	×	60.68	67.22	57.74	3.7GB
ours	\times	\checkmark	\times	62.23	75.72	55.35	3.6GB
ours	\times	×	\checkmark	58.79	76.49	48.93	4.4GB
ours	\checkmark	\checkmark	\times	62.72	77.44	55.37	2.1GB
ours	\times	\checkmark	\checkmark	62.45	75.70	54.71	2.2GB
ours	\checkmark	×	\checkmark	63.12	70.31	58.86	2.1GB
ours	\checkmark	\checkmark	\checkmark	64.63	81.23	55.00	2.2GB

Figure 12. The visualization result of ablation experiments. (a) Our baseline; (b) NerualRecon (c) STA; (d) STA+VRM; (f) STA+VRM+FE; (g) Ground truth.

5.2. Limitations and Future

As we discussed above, our designed module can improve the integrity and accuracy 350 of images reconstruction that contains mountain terrains. However, the textures of the 351 images in our current dataset are blurry, so applying textures to the reconstructed model is 352 not the focus of our work. Our further work is to reconstruct multi-view high-definition 353 images that can paste clear textures on the reconstructed terrain. Besides, in the future, we 354 will collect more types of mountains to expand our dataset. Our model can be more fully 355 trained to adapt to different input images, which in turn can achieve better reconstruction 356 of the real terrain in the google map. Furthermore, We are also interested in researching that 357

reconstructing images captured from widely varying distances that is a very interesting but challenging problem. The key is to extract effective texture features from multi-resolution images, which is very important and critical in many tasks.

6. Conclusions

In this paper, we propose a novel TSDF-based method for 3D reconstruction from 362 images containing mountain terrains. Different from existing methods that only fuse tem-363 poral features of the same voxel, we introduce neighbor information to smooth the current 364 voxel representation via cross-attention. We further propose feature enhancement and 365 reweighted mechanisms to enhance the discriminative capacity of 2D features. Extensive 366 experiments on our proposed dataset verify the effectiveness of our method. Our method 367 outperforms several state-of-the-art methods in terms of both 3D and 2D metrics. The 368 visual evaluation also illustrates the completeness and refinement of our reconstruction. In 369 addition, the results on real terrains show that our method has a good ability to adapt to 370 real styles of textures. Our method can effectively learn the geometry of the mountain from 371 a small number of videos. 372

 Author Contributions: : Conceptualization, Z.Z.; methodology, Z.Q., Z.Z and Z.S; validation, Z.Q.;
 373

 formal analysis, Z.Q. and Z.Z.; writing—original draft preparation, Z.Q.; writing—review and editing,
 374

 Z.Q., H.C. and Z.Z.; visualization, Z.Q. All authors have read and agreed to the published version of
 375

 the manuscript.
 376

Funding: The work was supported in part by the National Natural Science Foundation of China under the Grant 62125102.	377 378
Institutional Review Board Statement: Not applicable.	379
Informed Consent Statement: Not applicable.	380
Data Availability Statement: Not applicable.	381
Acknowledgments: Thanks to all editors and commenters.	382

Conflicts of Interest: The authors declare no conflict of interest.

References

- Li, H.; Chen, S.; Wang, Z.; Li, W. Fusion of LiDAR data and orthoimage for automatic building reconstruction. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2010, July 25-30, 2010, Honolulu, Hawaii, USA, Proceedings, 2010.
- 2. Xiong, B.; Jiang, W.; Li, D.; Qi, M. Voxel Grid-Based Fast Registration of Terrestrial Point Cloud. Remote Sensing 2021, 13, 1905. 388
- Schiavulli, D.; Nunziata, F.; Migliaccio, M.; Frappart, F.; Ramilien, G.; Darrozes, J. Reconstruction of the Radar Image From Actual DDMs Collected by TechDemoSat-1 GNSS-R Mission. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 2016.
- Aghababaee, H.; Ferraioli, G.; Schirinzi, G.; Pascazio, V. Corrections to "Regularization of SAR Tomography for 3-D Height Reconstruction in Urban Areas" [Feb 19 648-659]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of 2019, 12, 1063–1063.
- Wang, M.; Wei, S.; Shi, J.; Wu, Y.; Tian, B. CSR-Net: A Novel Complex-valued Network for Fast and Precise 3-D Microwave Sparse Reconstruction. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 2020, PP, 1–1.
- Yang, Y.C.; Lu, C.Y.; Huang, S.J.; Yang, T.Z.; Chang, Y.C.; Ho, C.R. On the Reconstruction of Missing Sea Surface Temperature Data from Himawari-8 in Adjacent Waters of Taiwan Using DINEOF Conducted with 25-h Data. *Remote Sensing* 2022, 14.
 https://doi.org/10.3390/rs14122818.
- Zhang, E.; Fu, Y.; Wang, J.; Liu, L.; Yu, K.; Peng, J. MSAC-Net: 3D Multi-Scale Attention Convolutional Network for Multi-Spectral Imagery Pansharpening. *Remote Sensing* 2022, 14. https://doi.org/10.3390/rs14122761.
- Williams, S.; Parker, L.T.; Howard, A.M. Terrain Reconstruction of Glacial Surfaces : Robotic Surveying Techniques. *Robotics and Automation Magazine IEEE* 2012, 19, 59–71.
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Proceedings of the fourth Eurographics symposium on Geometry processing, 2006, Vol. 7.
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM siggraph computer graphics 1987, 21, 163–169.

361

384

- Murez, Z.; van As, T.; Bartolozzi, J.; Sinha, A.; Badrinarayanan, V.; Rabinovich, A. Atlas: End-to-end 3d scene reconstruction from posed images. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. Springer, 2020, pp. 414–431.
- Choe, J.; Im, S.; Rameau, F.; Kang, M.; Kweon, I.S. Volumefusion: Deep depth fusion for 3d scene reconstruction. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 16086–16095.
- Sun, J.; Xie, Y.; Chen, L.; Zhou, X.; Bao, H. NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15598–15607.
- Bozic, A.; Palafox, P.; Thies, J.; Dai, A.; Nießner, M. Transformerfusion: Monocular rgb scene reconstruction using transformers. *Advances in Neural Information Processing Systems* 2021, 34.
- Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H. ShapeNet: An Information-Rich 3D Model Repository. *Computer Science* 2015.
- Li, W.; Saeedi, S.; McCormac, J.; Clark, R.; Tzoumanikas, D.; Ye, Q.; Huang, Y.; Tang, R.; Leutenegger, S. Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes dataset. arXiv preprint arXiv:1809.00716 2018.
- Grinvald, M.; Tombari, F.; Siegwart, R.; Nieto, J. TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction 2021.
- Kim, H.; Lee, B. Probabilistic TSDF Fusion Using Bayesian Deep Learning for Dense 3D Reconstruction with a Single RGB
 Camera. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020.
- Hardouin, G.; Morbidi, F.; Moras, J.; Marzat, J.; Mouaddib, E.M. Surface-driven Next-Best-View planning for exploration of large-scale 3D environments. *IFAC-PapersOnLine* 2020, *53*, 15501–15507.
- Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 767–783.
- Wang, F.; Galliani, S.; Vogel, C.; Speciale, P.; Pollefeys, M. PatchmatchNet: Learned Multi-View Patchmatch Stereo. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14194–14203.
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in neural information processing systems, 2017, pp. 5998–6008.
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. Kinectfusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE international symposium on mixed and augmented reality. IEEE, 2011, pp. 127–136.
- 24. Im, S.; Jeon, H.G.; Lin, S.; Kweon, I.S. Dpsnet: End-to-end deep plane sweep stereo. *arXiv preprint arXiv:1905.00538* **2019**.
- Hou, Y.; Kannala, J.; Solin, A. Multi-view stereo by temporal nonparametric fusion. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2651–2660.
- Wei, Y.; Liu, S.; Rao, Y.; Zhao, W.; Lu, J.; Zhou, J. Nerfingmvs: Guided optimization of neural radiance fields for indoor multi-view stereo. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 5610–5619.
- 27. Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. *ACM Transactions on Graphics (ToG)* **2013**, *32*, 1–13.
- Labatut, P.; Pons, J.P.; Keriven, R. Robust and efficient surface reconstruction from range data. In Proceedings of the Computer graphics forum. Wiley Online Library, 2009, Vol. 28, pp. 2275–2290.
- Weder, S.; Schonberger, J.L.; Pollefeys, M.; Oswald, M.R. NeuralFusion: Online Depth Fusion in Latent Space. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3162–3172.
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance fields for view synthesis. In Proceedings of the European conference on computer vision. Springer, 2020, pp. 405–421.
- Martin-Brualla, R.; Radwan, N.; Sajjadi, M.S.; Barron, J.T.; Dosovitskiy, A.; Duckworth, D. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7210–7219.
- Chen, Y.; Liu, S.; Wang, X. Learning continuous image representation with local implicit image function. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8628–8638.
- Xu, X.; Wang, Z.; Shi, H. UltraSR: Spatial Encoding is a Missing Key for Implicit Image Function-based Arbitrary-Scale Super-Resolution 2021.
- Skorokhodov, I.; Ignatyev, S.; Elhoseiny, M. Adversarial generation of continuous images. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10753–10764.
- Anokhin, I.; Demochkin, K.; Khakhulin, T.; Sterkin, G.; Korzhenkov, D. Image Generators with Conditionally-Independent Pixel Synthesis 2020.
- 36. Dupont, E.; Teh, Y.W.; Doucet, A. Generative Models as Distributions of Functions 2021.
- Chen, Z.; Zhang, H. Learning Implicit Fields for Generative Shape Modeling. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
- Mescheder, L.; Oechsle, M.; Niemeyer, M.; Nowozin, S.; Geiger, A. Occupancy Networks: Learning 3D Reconstruction in Function Space 2018.
- Park, J.; Florence, P.; Straub, J.; Newcombe, R.; Lovegrove, S. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. *IEEE* 2019.

436

441

- 40. Tancik, M.; Srinivasan, P.P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.T.; Ng, R. Fourier features let networks learn high frequency functions in low dimensional domains. *arXiv preprint arXiv:2006.10739* **2020**.
- 41. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
- Wen, Z.; Lin, W.; Wang, T.; Xu, G. Distract Your Attention: Multi-head Cross Attention Network for Facial Expression Recognition. arXiv preprint arXiv:2109.07270 2021.
- 43. Xu, X.; Hao, J. U-Former: Improving Monaural Speech Enhancement with Multi-head Self and Cross Attention. arXiv preprint arXiv:2205.08681 2022.
 473
- Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2820–2828.
- Tang, H.; Liu, Z.; Zhao, S.; Lin, Y.; Lin, J.; Wang, H.; Han, S. Searching efficient 3d architectures with sparse point-voxel convolution. In Proceedings of the European Conference on Computer Vision. Springer, 2020, pp. 685–702.
- Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4104–4113.
- 47. Eigen, D.; Puhrsch, C.; Fergus, R. Depth map prediction from a single image using a multi-scale deep network. *arXiv preprint arXiv:1406.2283* **2014**.