
Citation: Zipeng Q.; Zhengxia Z.; Hao

C.; Zhenwei S. Title. Journal Not

Specified 2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

3D Reconstruction of Remote Sensing Mountain Areas with
TSDF-based Neural Networks
Zipeng Qi 1,2,3, Zhengxia Zou 4∗, Hao Chen 1,2,3 and Zhenwei Shi1,2,3

1 Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
2 Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China
3 State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
4 Department of Guidance, Navigation and Control, School of Astronautics, Beihang University, Beijing 100191,

China
* Correspondence: zhengxiazou@buaa.edu.cn

Abstract: Remote sensing 3D reconstruction of mountain areas has a wide range of applications 1

in surveying, visualization, and game modeling. Different from indoor objects, outdoor mountain 2

reconstruction faces additional challenges including illumination changes, diversity of textures, and 3

highly-irregular surface geometry. Traditional neural network-based methods that lack discriminative 4

features are difficult to handle the above challenges, and thus tend to generate incomplete and inaccu- 5

rate reconstructions. Truncated Signed Distance Function (TSDF) is a commonly used parameterized 6

representation of 3D structures, which is naturally convenient for neural network computation and 7

computer storage. In this paper, we propose a novel deep learning method with TSDF-based repre- 8

sentations for robust 3D reconstruction from images containing mountain terrains. The proposed 9

method takes in a set of images captured around an outdoor mountain and produces high-quality 10

TSDF representations of the mountain areas. To address the aforementioned challenges, such as 11

lighting variations and texture diversity, we propose a View fusion strategy based on Reweighted 12

Mechanisms (VRM) to better integrate multi-view 2D features of the same voxel. A Feature En- 13

hancement (FE) module is designed for providing better discriminative geometry prior in the feature 14

decoding process. Besides, we also propose a Spatial-Temporal Aggregation (STA) module to reduce 15

the ambiguity between temporal features and improve the accuracy of the reconstruction surfaces. 16

A synthetic dataset for reconstructing images containing mountain terrains is built. Our method 17

outperforms the previous state-of-the-art TSDF-based and depth-based reconstruction methods in 18

terms of both 2D and 3D metrics. Furthermore, we collect real-world multi-view terrain images from 19

the Google Map. Qualitative results demonstrate the good generalization ability of the proposed 20

method. 21

Keywords: TSDF-based 3D reconstruction, Spatial-Temporal information fusion, Multi-head cross 22

attention, optical remote sensing, aerial image. 23

1. Introduction 24

Reconstruction of 3D scenes has a wide range of applications in remote sensing [1–7], 25

surveying [8], and game modeling. In computer vision and computer graphics, given a 26

single image or a set of images, 3D scene reconstruction is the process of capturing the 27

shape and appearance of real scenes. Outdoor mountains are an important ground feature 28

in remote sensing applications. In remote sensing field, most recent works of 3D scene 29

construction concentrate on using air-borne radar images. In this paper, we investigate the 30

problem of reconstructing 3D mountains using optical images from remote sensing scenes. 31

The low cost and easy availability of the reconstruction through optical images makes it 32

easy to acquire and implement from both airborne and spaceborne platforms. 33

The representation of 3D scenes is a prerequisite for 3D reconstruction. There are 34

mainly three 3D data representation approaches widely used for 3D reconstruction: point 35
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Figure 1. Different types of mountain areas: (a) vegetation-covered mountains, (b) rocky mountains,
(c) snowy mountains.

cloud, mesh, and Truncated Signed Distance Function (TSDF). Among these approaches, 36

point cloud representation is an irregular data structure for 3D structure, storing sparse 37

point-based data of objects. The limitation of the point cloud representation is that there 38

is no connection between points and the lack of surface information of scenes or objects. 39

Mesh representation divides the surface of an object into many triangular patches with a 40

tight graph structure. TSDF represents the 3D structure of an object by evenly dividing the 41

space into several voxels and storing the distance from each voxel to the surface. TSDF is 42

represented as a regular grid structure, which can be naturally processed by 3D convolution. 43

The above representations can be converted to each other easily. For example, point cloud 44

and TSDF can be converted into Mesh using the Poisson reconstruction algorithm [9] and 45

Marching Cubes algorithm [10] respectively. 46

In recent years, TSDF-based neural networks [11–14] have drawn increasing attention 47

and have greatly promoted the research progress of the 3D reconstruction researches. 48

Recent TSDF-based networks mainly focus on indoor scene/object reconstruction problems. 49

These methods usually adopt a coarse-to-fine strategy to integrate features from different 50

resolutions, determine whether the voxel is within the truncated distance, and finally 51

generate the TSDF value of each voxel within the truncated distance. When the TSDF value 52

is obtained, the Marching Cubes algorithm [10] can be used to get the 3D mesh format 53

output. 54

Compared to indoor objects/scenes [15,16], the reconstruction of outdoor mountain 55

terrains we studied in this paper has more challenges. First, outdoor scenes may have 56

intense illumination variations due to the change of sunlight angle and intensity. Second, 57

mountains may have a highly complex texture and topology compared to daily objects. 58

Fig. 1 shows three types of mountains commonly seen in outdoor scenes: (a) vegetation- 59

covered mountains, (b) rocky mountains, and (c) snowy mountains. We found recent 60

TSDF-based networks [17–19] are difficult to model the truncated distance near complex 61

surfaces of the mountain where voxels are either ignored or assigned an ambiguous multi- 62

view feature representation. Besides, the weak spatial correspondence makes it hard to 63

learn discriminative 2D features spatially. Some depth-based methods[20,21] are also used 64

for outdoor scene reconstruction, but they may suffer from poor result consistency. 65

In this paper, we propose a novel TSDF-based network for robust 3D reconstruction 66

from remote sensing images containing mountain terrains. Our method takes in a set of 67

images captured around an outdoor mountain and produces high-quality TSDF volumes of 68

the mountain areas. A coarse-to-fine reconstruction pipeline is adopted, where we first fuse 69

the 2D features extracted from different multi-view images and then fuse features from 70

different voxel resolutions. During the multi-view feature fusion procession, we propose a 71
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view fusion strategy based on reweighted mechanisms (VRM) to better integrate 2D features 72

on multiple views of the same voxel in 3D space. This module adaptive learns the weights 73

for different views and makes the reconstruction focus on more important 2D image regions. 74

We then design a spatial-temporal aggregation (SPA) module to fuse 3D features of the same 75

location in time series based on the local neighborhood. The SPA module can reduce the 76

ambiguity between temporal features and improve the smoothness of the reconstruction 77

surfaces. In the feature decoding process, we noticed that the large-scale depth value 78

and complex local geometric structure of the mountains may significantly increase the 79

difficulty of network training for conventional TSDF-based methods. To this end, we 80

propose a feature enhancement (FE) module with probability distribution encoding [22], 81

which can provide better discriminative geometry prior to the feature decoding process. 82

Similar to the NeRF setting, we use a set of high-frequency sine and cosine functions to 83

map continuous probability into a higher dimensional space to enable our decoder to more 84

easily approximate a higher frequency signed distance function. Our motivations and 85

observations can be summarized as follows: 1) The implicit representation for each 2D 86

feature point can increase the discriminative ability of 2D features. The proposed VRM 87

module can also reduce the influence of inaccurate 2D features caused by the camera 88

distortion; 2) The geometry consistency can be better maintained by fusing temporal 3D 89

features. Besides, we incorporate the cross-attention mechanism to eliminate the spatial 90

instability in the feature fusion. 91

To verify the effectiveness of the proposed method, we build a challenging dataset 92

that contains mountain images with different shapes, surface textures and rendered with 93

different lighting conditions. The test data and the training data are very different in 94

texture. For a fair comparison, we retrain the proposed model and open-source methods 95

on this dataset. The results show that our method can better reconstruct the mountain 96

geometry than other methods, even with limited training data. Furthermore, we also verify 97

the proposed method on real-world multi-view terrain images from Google Map. The 98

qualitative results show that the proposed method transfers well to real-world terrains 99

even those have different styles of texture from the training data. 100

The main contributions of our paper are summarized as follows: 101

• We investigate the problem of outdoor 3D mountain reconstruction and propose a 102

new TSDF-based reconstruction method. A challenging synthetic dataset is built for 103

this problem. 104

• We propose a feature enhancement (FE) module, view fusion via reweighted mecha- 105

nism (VRM), and a spatial-temporal aggregation (STA) module to effectively utilize 106

features from different 2D views and improve feature discriminative capability on 107

voxels. With the above design, we outperform other state-of-the-art TSDF-based 108

methods on our task. 109

2. Background and Related Work 110

Here we first give a brief introduction of the TSDF and then review some related topics, 111

including depth estimation, TSDF-based reconstruction, and implicit neural representation. 112

2.1. Truncated Signed Distance Function (TSDF) 113

Truncated Signed Distance Function (TSDF) [23] is a common method for representing
surfaces in 3D reconstruction. In TSDF representation, the space occupied by the object
or scene is evenly divided into several voxels. The value corresponding to each voxel
represents the distance between the voxel and its nearest surface. The value is positive
if the voxel is outside the surface, and negative if the voxel is inside the surface. Usually,
the results of the TSDF can be converted into mesh structures using the Marching Cubes
algorithm [10]. TSDF is an improvement based on the Signed Distance Function (SDF),
which truncates long distances and only considers the value of voxel near the surface of the
object. Therefore, in the case of parallel computing of graphics cards with large memory,
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real-time reconstruction can be achieved by using TSDF. The truncation distance of each
voxel corresponding to the current frame is written as follows:

tsdf = F(depth − Pz), (1)

where the depth can be obtained by a depth camera, the Pz represents the z coordinate
value in the camera coordinate system. F(x) is defined as follows:

F(x) =

{
min(1, x

|u| ) x > 0

max(−1, x
|u| ) x < 0 ,

(2)

where u represents the truncated distance. The weight of each voxel at the current frame
can be calculated as w ∝ cos θ, where θ is the angle between the projected ray and the
surface normal vector and the value of w is proportional to the value of cos θ. During the
camera shooting process, the TSDF corresponding to the voxels is continuously updated
with the following formula:

TSDFi+1 =
Wi × TSDFi + wi+1 × tsdfi+1

Wi + w+1
,

Wi+1 = Wi + wi+1.
(3)

where i represents the ith view. 114

2.2. Depth estimation 115

MVSNet [20] is one of the first to use neural networks to predict dense depth maps. 116

MVSNet innovatively encodes camera parameters to construct cost volume and predicts 117

depth through 3D CNNs. Later on, DPSNet[24] introduces the plane sweep algorithm 118

where the depth prediction is transformed into a multi-class task and is learned in an end- 119

to-end manner with neural networks. GPMVS [25] proposed a pose-kernel to measure the 120

similarity between frames as prior information. PatchmatchNet [21] introduces cascaded 121

patch match, which is fast, does not rely on 3D cost volume regularization, and has low 122

memory requirements. NerfingMVS [26] proposes to use neural radiance fields (NeRF) for 123

depth estimation and integrate learning-based depth priors into the optimization process. 124

When the depth estimation is completed, the Poisson reconstruction[27] and Delaunay 125

triangulation[28] is usually used to reconstruct 3D mesh results. 126

2.3. TSDF-based reconstruction 127

In recent years, many researchers choose to directly predict the voxel-to-surface dis- 128

tance for 3D reconstruction, which is also known as TSDF-based representation. Back in 129

the 1980s, the Marching Cubes algorithm [10] was proposed to find the location of surfaces 130

when obtaining TSDF results. Atals [11] extracts 2D features of images and projects them 131

into 3D space through corresponding camera parameters, where the 3D features are then 132

passed through a 3D CNN to predict the TSDF value of each voxel. NeuralRecon [13] 133

reconstructs the scene in real-time by incrementally predicting the TSDF values with a GRU 134

fusion module. Transformerfusion [14] utilizes the Transformer networks to model the 135

relations between different views and fuse their 2D features adaptively. NerualFusion [29] 136

performs the view feature fusion operation in a learned latent space that allows encoding 137

additional information and improves the reconstruction by combining the view-aligned 138

features. Most of the above-mentioned methods take a coarse-to-fine reconstruction strat- 139

egy and have achieved good results. However, they are mostly designed for restricted 140

indoor scenes and are difficult to apply to the outdoor mountain reconstruction problem 141

studied in this paper. 142
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Figure 2. We adopt a coarse-to-fine pipeline to generate the reconstruction result. First, an encoder-
decoder network extracts 2D features where the view fusion via reweighted mechanisms is proposed
to generate more discriminative features. Then the view fusion module maps each level 2D feature
to 3D volume through camera parameters. Furthermore, the spatial-temporal aggregation module
eliminates the reconstruction ambiguity in timing. Finally, we update the memory bank with fused
features and predict the TSDF value of each voxel.

2.4. Implicit neural representation 143

Implicit neural representation is a recently emerged research topic in 3D reconstruction 144

and novel view synthesis. Implicit neural representation establishes a mapping between 145

continuous pixel values and discrete pixel coordinates in 2D space or view coordinates in 146

3D space. NeRF [30] is a representative of this group of the method. NeRF-in-the-wild [31] 147

utilized NeRF to model wild scenes with uncontrolled images. Very recently, implicit 148

neural representation is also introduced in tasks such as super-resolution [32,33], image 149

generation [34–36] and implicit 3D model generation [37–39]. A common idea of the above 150

methods is to encode discrete coordinates with high-frequency positional encoding to 151

improve the generative modeling capability on details. We also borrowed this idea in our 152

proposed feature enhancement module. 153

3. Materials and Methods 154

3.1. Overview 155

Fig. 2 shows an overview of the proposed TSDF-based method. The proposed method 156

consists of 1) an encoder-decoder network integrated by a feature enhancement (FE) module 157

to extract multi-scale discriminative 2D features from the input images, 2) a view fusion 158

module based on a reweighted mechanism (VRM) to map multi-view 2D features of 159

each scale to a 3D volume space, 3) a spatial-temporal aggregation (STA) module to 160

enhance current voxel features by incorporating neighborhood features from the last input 161

frames. We adopt a coarse-to-fine reconstruction pipeline and incrementally obtain detailed 162

reconstruction results by utilizing image features from different resolutions. In each stage 163

of the network, we verify whether the distance between each voxel and its nearest surface 164

is smaller than the truncated distance. If yes, the voxel features will be further processed 165
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by the next stage. Note that we employ memory banks to restore the latest voxel features 166

for each stage. 167

3.2. Feature enhancement module 168

Mountain texture is an important factor in terrain reconstruction. However, because 169

the camera is far away from the mountain, in some views, there are a lot of similar textures 170

in the captured images (see Fig. 6 and Fig. 7), which increases the difficulty for the network 171

to extract 2D features well. In order to solve the above problem, we design a feature 172

enhancement module to obtain discriminative features. The value of the TSDF of the voxels 173

corresponding to the same local surface should be similar, so we first predict an implicit 174

aggregation attribute for each 2D feature, where the features of the same aggregation 175

category belong to the same local surface. 176

Given a set of 2D features F ∈ Rh×w×c (c is the channel dimension, which is {24,
40, 80} respectively in the process from coarse to fine) at each reconstruction stage, we
employ an local aggregation network (i.e., two convolutional layers) to obtain context-
rich per-pixel features Fc = {fc

i ∈ Rn|, i ∈ {1, 2, 3..., hw} (see Fig. 3). n is {16, 32, 64}
respectively in different level features. We adopt a relatively low dimension n as the
number of aggregation categories. For each feature vector fc

i , we normalize its value with a
Softmax function to obtain pi since we expect similar texture features to generate similar
probability distributions. To increase the distinguishability of aggregated attributes, and
inspired by implicit representation and position embedding in the transformer, we multiply
the probability distribution pi by a random Gaussian and map the result by a sin and cos
function. This has been proved in [40] that it can increase the discrimination of the features.
The position embedding can be written as follows:

F
′
= FC(cat(sin (2πPB), cos (2πPB))) (4)

where B ∈ Rn×m (m is the increased feature dimension which is {24,24,24} respectively in 177

the process from coarse to fine) is the random Gaussian matrix, and FC(·) is a fully connect 178

layer for dimensional transformation. F
′

the same as the original feature space. Finally, we 179

combine F
′

with the original features with element-wise addition.

Figure 3. Illustration of feature enhancement. A random Gaussian matrix is employed to enhance the
feature discrimination capacity.

180

3.3. View fusion via reweighted mechanisms 181

After extracting the 2D features for each view, we transfer the 2D features to 3D
features for the subsequent process. We enclose all the images of one frame-set and divide
them into several voxels evenly with cubic-shaped fragment bounding volume (FBV). In the
process of processing one frame-set, we establish a mapping between each voxel and the 2D
features by camera parameters (see Fig. 4). Due to the overlapping contents between images
of different views, one voxel often corresponds to multiple views. Previous methods [11,13]
usually adopt simple feature averaging to integrate the multi-views 2D features. However,
such an approach ignores the interaction and feature divergence between different views.
The 3D information of the terrain is usually hidden in the content differences of different
views. By simply averaging the features, it is difficult for the network to distinguish the
feature differences between different views at the same location. In addition to this, the
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features at the boundary region of the view may contain incorrect information due to
camera distortion. To this end, we introduce a view reweighted mechanism (VRM) for
better integrating multi-view features. By considering the effects of camera distortion, we
set a larger weight to center pixels, where the weights are inversely proportional to the
distance between the feature location to the center of the feature map. The importance of
the ith view feature is defined as follows:

βi = 1/
√
(hi − hc)

2 + (wi − wc)
2 + ϵ, (5)

where ϵ is a positive number to prevent numeric overflow. The importance of each view is
then mapped to (0, 1) through a Softmax layer. Since βi only considers the spatial location
of the feature in a single view. The relationship between features at the same location across
different views needs to be integrated. By following the configuration of the attention
layer in the Squeeze-and-Excitation networks [41], the final fused feature f

′
f are defined as

follows:

f
′
f =

n

∑
i=1

γif
′
i, (6)

where γi denotes the channel weight of the ith view and is given by:

γ1, γ2 · · · γn = MLP(
n

∑
i=1

βif
′
i), (7)

where n is the number of views and f
′
i is the input 2D feature. 182

The motivation of the above spatial-weighted design is to mitigate the effects of 183

inaccuracy features at image boundary due to the camera distortion and distinguish the 184

contribution of 2D features from different views to the voxel. As a result, the center 185

features with realistic mountain textures are mainly utilized and this design can improve 186

the performance of fusing 2D features from different views. Note that spatial-weight and 187

channel-weight are equally important.

Figure 4. Illustration of the proposed view fusion method. Corresponding multi-view 2D features of
each voxel are fused by 1) spatial reweighting and 2) channel reweighting.

188

3.4. Spatial-Temporal aggregation module 189

We divide the input images into different frame-sets according to the sequence of 190

shooting views. In order to better process 3D information, we set overlapping views 191

in different frame-sets (for details, please refer to the experimental section). Different 192

frame-sets may correspond to voxels with the same coordinates in 3D TSDF volume. 193

After the VRM module, the 3D feature corresponding to the same voxel are different in 194

the fusion results of different frame-sets, which we define as temporal voxel features. The 195
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temporal voxel feature can also be understood as the same voxel has different 3D features 196

under different views as the camera moves. Merging different temporal voxel features 197

benefits 3D representation learning. Very recently, NeuralRecon [13] proposes to fuse the 198

features of the current frame with previous ones at the same locations. Note that the fusion 199

is only performed at a single-voxel level, we refer to this approach as point-by-point fusion. 200

Due to the complex structure of the mountain surface, point-by-point fusion may suffer 201

from error accumulation problem, particularly when the current and previous results both 202

have noises. 203

The accumulation of errors caused by this point-to-point approach can make the pre- 204

dicted results inaccurate. Since the local surface of the mountain has a certain continuity in 205

structure, the corresponding TSDF value will not change significantly. Therefore, we design 206

a spatial-temporal aggregation module to integrate previous neighbor representations into 207

the current voxel via a cross-attention mechanism (see Fig. 5 for details). 208

Given a set of previous features

Fp = {( f p
1 , cp

1 ), ( f p
2 , cp

2 ), . . . ( f p
m, cp

m)} (8)

and current features
Fs = {( f s

1 , cs
1), ( f s

2 , cs
2), . . . (sn, cs

n)} (9)

where f p
i and f s

j are voxel features, cp
i and cs

j are corresponding coordinates (the dimension
of voxel features is {24, 48, 96} respectively in different levels and the corresponding is
3-dimension vector), we first select the top k features f p

j , j = {1, ..., k} closest to f s
i in the

volume space (topk). Then, we apply the multi-head cross-attention (MHCA) [42,43] to
relate current voxel features and top k previous features as follows:

f new
i = MHCA(q, K, V), (10)

where q = MLP( f s
i ), K/V = {MLP( f p

i )|j = {1, .., k + 1}}. 209

Since the TSDF values corresponding to the features in a neighborhood are relatively 210

continuous, the new features that incorporate spatial neighborhood information can effec- 211

tively eliminate the instability of the feature fusion. Finally, we fuse f new
i with the closest 212

previous feature (the voxel marked yellow in fig. 5) in a point-by-point way to further 213

enhance the details. We update FP of the memory bank with the fused feature in a dynamic 214

fashion. 215

Figure 5. The multi-head cross-attention mechanism is employed to fuse the current feature with
previous neighborhood ones. The resulting f new

i is then fused with the closest feature (yellow voxel)
in a point-by-point fusion way.
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Table 1. The input dimension and output dimension of main modules

Modules Input Demisons OutPut Demensions

Backbone N_views*512*512*3
Level1:24
Level2:40
Level3:80

FE The input dimensions of the
three levels are correspondingly {80, 80, 80}

The output dimensions of the three levels
are correspondingly {80, 80, 80}

Aggregation network

The input dimensions
of Conv1 in three levels are {80,80,80}

The output dimensions of Conv1
in three levels are {40, 40, 40}

The input dimensions
of Conv2 in three levels are { 40, 40, 40}

The output dimensions of Conv2
in three levels are {16, 32, 64}

VRM The input dimensions
of MLP in three levels are {24, 40, 80}

The output dimensions of MLP
in three levels are {9, 9, 9}

STA

The dimension
of Queries in three levels are {24, 48, 96}

The dimension of Queries
in three levels are {128, 128, 128}

The dimension
of Keys in three levels are {24, 48, 96}

The dimension of Keys
in three levels are {128,128,128}

The dimension
of Values in three levels are {24, 48, 96}

The dimension of Values
in three levels are {128, 128, 128}

Last MLP The input dimension of the last MLP in three levels are {24, 48, 96} 1

3.5. Implementation details 216

Networks details. We use the pre-trained MnasNet [44] as the backbone for extracting 217

2D features. We use torchsparse[45] to implement 3D sparse convolution. We set the 218

number of aggregation categories in the FE module for each stage as {16, 32, 64} respectively. 219

In SPA, we select 3 previous voxel features which are closets to f s
j and send them to MHCA. 220

The parameter details of the main modules are shown in the Table 1. 221

Loss function. We train the model with binary cross-entropy (BCE) loss and l1 loss, 222

where the former is used to tell where the voxel is within the truncation distance and the 223

latter to regress the distance between the voxel and the surface. We follow [13] to apply 224

log-transformation before the l1 loss. 225

Each input frame-set is assigned nine views, and any two neighboring frame-sets have 226

six overlapping frames. We employ the Adam optimizer with a 1e-3 learning rate. Since 227

we did not predict the depth map explicitly, we render the reconstructed mesh to the image 228

plane and estimate the depth values [11]. 229

To evaluate the performance of depth-based methods [24,25] in 3D metrics, we apply 230

the standard TSDF fusion method proposed in [23] to reconstruct mesh results with depth 231

results and compare them with ours. 232

4. Results 233

4.1. Dataset 234

We build a diverse and challenging synthetic 3D dataset for 3D reconstruction using 235

image containing mountain terrains. The dataset contains 3D models of 8 snowy mountains, 236

8 vegetation-covered mountains, and 8 rocky mountains. Some examples are shown in 237

Fig. 6 and Fig. 7. 238

We randomly select 4 models from each class terrain for training, 1 model for validation 239

and 3 models for testing. As result, we rendered 33 video clips, 12 for training, 3 for 240

validation, and 18 for testing. The training videos and the validation videos are obtained by 241

shooting around the mountain at a random height with a simulated camera. The test videos 242

were shot at two random heights for each mountain model. There is no overlap between 243

our training and testing sets. The light intensity during all video shooting is randomly set. 244

For each video, a keyframe is selected at an interval of 10 degrees. A total of 36 images 245

are selected for one video clip, and corresponding depth images and camera parameters are 246

also recorded. The size of each image is rendered at 512 × 512 pixels. For each video, we 247

use the depth map and camera parameters to render the ground-truth TSDF. The size of the 248

voxel is set to 1m. The maximum depth is set to 120m. The reason is that we normalize the 249
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length of all experimental models to around 120 meters in the Blender coordinate system to 250

conveniently validate our method (relative to the size of the model, this distance is very far 251

for normal scenes). The TSDF truncation distance λ is set to 3m. 252

Figure 6. Input images of six camera views corresponding to each type of mountain terrain in the
training set.

Figure 7. Input images of six camera views corresponding to each type of mountain terrain in the
testing set.
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Table 2. The evaluation metrics of 2D depth estimation and 3D reconstruction used in our experiment.

2D 3D

Abs Rel 1
n ∑ |d−d∗ |

d∗ L1 meant∗<1|t − t∗|

Abs Diff 1
n ∑|d − d∗| Acc meanp∈P(minp∗∈P∗∥p − p∗∥)

Sq Rel 1
n ∑ |d−d∗ |2

d∗ Comp meanp∗∈P∗(minp∈P∥p − p∗∥)

RMSE
√

1
n ∑ |d − d∗|2 Prec meanp∈P(minp∗∈P∗∥p − p∗∥) < .05

σ < 1.25i 1
n ∑ max( d

d∗ , d∗
d ) < 1.25i Recall meanp∗∈P∗(minp∈P∥p − p∗∥) < .05

Comp valid predictions F-score (2 × Recall × Pres) / (Prec + Recall)

4.2. Comparison methods and metrics 253

The following methods are used for comparison: 1) traditional method: COLMAP [46], 254

which can process high-resolution images, but suffer from high time consumption; 2) depth- 255

based methods: DPSNet [24] which takes the plane swap approach to directly predict the 256

depth map. The cost volume is constructed by a differentiable warping process, allow- 257

ing end-to-end training; GPMVS [25] proposed a pose-kernel structure that encourages 258

similar poses to have resembling latent spaces. This strategy makes the depth predicted 259

by the model more complete. 3) TSDF-based methods: Atlas [11], an off-line method, 260

directly regresses the TSDF value of each voxel and reconstructs the surface geometry. 261

NeuralRecon [13], a real-time method to reconstruct the object surfaces. 262

We follow [11] and [47], and use the 3D geometry metrics and the 2D depth metrics to 263

compare all the above-mentioned methods. The details of each metrics are shown in Tab. 2. 264

Since DPSNet and GPMVS are specialized for depth estimation, we only compare these 265

two methods on 2D metrics. For a fair comparison, we implement all these methods on our 266

dataset using their open-source code. 267

Table 3. 3D reconstruction accuracy of different methods. The 1 voxel size and 1.5 voxel size represent
the value of the corresponding threshold when calculating Prec and Recall. The method of calculating
metric values are the same as Atlas [11] and NeuralRecon [13]

1voxel size 1.5 voxel size

Method Layer F-score↑ Prec↑ Recall↑ F-score↑ Prec↑ Recall↑ Acc↓ Comp↓ Time↓(ms)

DPSNet double 0.67 1.00 0.50 1.05 1.53 0.80 49.59 51.47 175
GPMVS double 0.29 0.20 0.48 0.467 0.32 0.88 62.03 49.74 186
Altas double 14.86 14.84 15.46 24.92 21.24 23.11 10.81 5.15 11.7
NeuralRecon double 43.16 65.54 34.26 55.09 84.25 43.77 1.10 7.90 32.0

Ours double 52.16 65.87 44.26 64.63 81.23 55.00 1.76 4.53 35.4

COLMAP single 82.55 99.45 71.21 87.55 99.72 78.68 0.40 1.47 420
NeuralRecon single 56.60 71.93 48.69 65.61 83.63 56.43 0.88 5.63 32.0

Ours single 64.03 76.94 56.22 70.00 82.90 61.82 1.40 3.82 35.4

4.3. Overall comparison on the synthetic dataset 268

Tab. 3 shows the quantitative evaluation results of different methods on the above 269

3D metrics. We can see our model achieves the best results compared with other neural 270

network methods. 271

For the depth-based methods, the various shapes and textures of mountains make the 272

depth-based methods difficult to learn useful geometric representations. There are also 273

differences in the size of the mountains, so the estimated range of terrain depth also varies 274
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greatly, which makes the depth-based model unable to adapt well to different terrains. 275

Even for the same terrain, similar textures may correspond to different depths, so texture 276

features alone cannot generate reasonable results. Besides, the compared methods predict 277

inconsistent depth which makes it impossible to reconstruct the mesh results well. Our 278

method outperforms previous methods for almost all 2D depth metrics, as shown in Tab. 4. 279

For TSDF-based neural networks, we focus more on the 3D metrics, where F-score 280

can better reflect the visual effects of the results. Since 3D information is often contained 281

in the disparity of different views, the joint processing of features from different views is 282

important. However, Atlas [11] extracts the features of each view separately, which results 283

in inconsistent semantic information in the 3D space, and results in a low F-score. Neural- 284

Recon [13] integrates the temporal features at a single-voxel level to improve robustness. 285

However, due to its relatively insufficient 2D features and the possibility of error accu- 286

mulation of voxel features, some voxels were deleted by mistake, resulting in a low recall 287

rate and poor integrity. Compared with NeuralRecon, our proposed model improves the 288

F-score and recall by 9.5 % and 11.3% respectively. From the visualization results in Fig 8, 289

we can see our method can have a more complete reconstruction of the mountain surface. 290

Note that we did not show the colored results because our paper focuses on TSDF-based 291

representations rather than textures. In addition, in order to compare with COLMAP, we 292

use the same way as in NerualRecon [13] to generate single-layer results. Although the 293

results of COLMAP in Fig. 8 are more complete, COLMAP produces the wrong topology 294

with some holes being filled incorrectly and over-smooth results. Tab. 3 shows that our 295

method surpasses NerualRecon in almost all 3D metrics. Although, COLMAP can achieve 296

a higher F-score but be ten times slower than ours. 297

Our results are TSDF-based forms that can be easily converted to Mesh, Point cloud 298

and other formats. These are the explicit 3D data formats that can be simply imported 299

into software such as Unity for further editing (modifying the terrain, combining multiple 300

terrains, etc.). In this way, it will greatly reduce modeling time and effort. 301

Table 4. Depth estimation accuracy of different methods. We use the same method in NeuralRe-
con [13] to calculate the metric values.

Method Abs Rel↓ Abs Diff↓ Sq Rel↓ RMSE↓ δ < 1.25i ↑ Comp↑

GPMVS 0.90 44.74 60.92 50.39 0.17 84.04
DPSNet 0.44 24.80 14.77 27.09 0.29 84.10

NerualRecon 0.12 3.23 1.71 5.02 0.83 70.22

Ours 0.04 2.16 0.64 3.81 0.97 63.90

4.4. Generalizing to real data 302

To further verify the adaptability of the proposed method to the real-world data, we 303

randomly extract multi-view terrain images from Google Map. The real terrains include 304

one vegetation-cover mountain, one rocky mountain, and one snowy mountain. The real 305

data have different styles of textures from training data. The validation videos are also 306

obtained by shooting around the real terrains at a random height. 307

There are two challenges on real terrains: 1) The texture of real terrains is very different 308

from that of training mountains;2) the real terrains have a more complex geometrical 309

structure. The above increases the difficulty of reconstructing and requires the model to be 310

able to adapt to different types of textures. 311

Since it is difficult to obtain the ground truth of real terrains, we only show the 312

qualitative results. (In Fig. 11, Fig. 9, and Fig. 10), we show three groups of reconstruction 313

results using our method. The small images on the left are the six views randomly shot by 314

the camera, and the large image on the right is the reconstruction result. The results show 315

that our method trained on synthetic data has good transferability to real terrains 316
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Figure 8. Qualitative results on our dataset. Compared to GPMVS [25] and NerualRecon [13], our
method can produce much more complete reconstruction results. Notice that COLMAP generates
single layer results and tend to give over-smooth result(some holes are wrongly filled).

Figure 9. The real data of vegetation-covered mountain terrain. The small images on the left are the
six views randomly shot by the camera, and the large image on the right is the reconstruction result.

5. Discussion 317

In this section, we analyze carefully the benefits and drawbacks of the proposed strat- 318

egy. To demonstrate the effectiveness of our method, we incrementally add the proposed 319
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Figure 10. The real data of rocky mountain terrain. The small images on the left are the six views
randomly shot by the camera, and the large image on the right is the reconstruction result.

Figure 11. The real data of snowy mountain terrain. The small images on the left are the six views
randomly shot by the camera, and the large image on the right is the reconstruction result.

modules (FE, VRM, STA) to the baseline in section 5.1. In section 5.2, we focus on the 320

limitations of our model. 321

5.1. Ablation study 322

To verify the effectiveness of our designed modules, we conduct ablation studies 323

on the proposed three key components, i.e. Feature enhancement (FE), view reweighted 324

mechanism (VRM), and Spatial-temporal aggregation (STA). Starting from a baseline using 325

a normal 2D encoder-decoder and normal view fusion-based 3D feature generator, we 326

incrementally add the three components. 327

From Tab. 5, we can observe STA, VRM, and FE can bring improvement on the F- 328

score of our model by 8.7%, 3.7%, and 2.2%, respectively. The above results show that 329
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the modules we designed for images reconstruction can improve the performance of 330

the network and get better reconstruction results. We can also observe that our STA 331

induces further improvement of F1-score against NeurlRecon by 3.7%. The quantitative 332

results indicate that the aggregation with neighborhood voxel features can benefit 3D 333

reconstruction. We also visualize the reconstruction results of our models in Fig. 12. We 334

can observe that the reconstruction quality improves when incrementally adding the three 335

modules. When the STA module is added, the top area of the terrain becomes flat and 336

the whole is smoother. This is because the local spatial features can reduce the ambiguity 337

between temporal features. 338

The qualitative comparison of our ablation experiment is shown in Fig. 12. In Fig. 12 339

(b), we can see that the VRM module can better convert 2D features into 3D features. As 340

a result, the results become more complete. The result of Fig. 12 (c) also removes some 341

discontinuous regions, which shows that the FE module can improve the network to extract 342

more distinguishable features from 2D images, which is more conducive to predicting an 343

accurate TSDF for each voxel. In conclusion, both quantitative and qualitative experiments 344

show that our proposed modules is beneficial for the task of terrain reconstruction. 345

The Table. 5 also shows the memory usage in testing process. The memory computa- 346

tion is reduced with our proposed modules due to the powerful ability of added modules 347

to neglect the computation of a lot of voxels that are not near the mountain surface. 348

Table 5. Ablation study on the proposed three modules, i.e. Feature enhancement (FE), view
reweighted mechanism (VRM), and Spatial-temporal aggregation (STA).

Method FE VRM STA F-score Prec Recall memory consumption

baseline × × × 50.09 77.55 39.44 2.2GB
NeurlRecon × × × 55.09 84.25 43.77 <4GB

ours
√

× × 60.68 67.22 57.74 3.7GB
ours ×

√
× 62.23 75.72 55.35 3.6GB

ours × ×
√

58.79 76.49 48.93 4.4GB
ours

√ √
× 62.72 77.44 55.37 2.1GB

ours ×
√ √

62.45 75.70 54.71 2.2GB
ours

√
×

√
63.12 70.31 58.86 2.1GB

ours
√ √ √

64.63 81.23 55.00 2.2GB

(b) (c) (d)(a) (e) (f)

Figure 12. The visualization result of ablation experiments. (a) Our baseline; (b) NerualRecon (c) STA;
(d) STA+VRM; (f) STA+VRM+FE; (g) Ground truth.

5.2. Limitations and Future 349

As we discussed above, our designed module can improve the integrity and accuracy 350

of images reconstruction that contains mountain terrains. However, the textures of the 351

images in our current dataset are blurry, so applying textures to the reconstructed model is 352

not the focus of our work. Our further work is to reconstruct multi-view high-definition 353

images that can paste clear textures on the reconstructed terrain. Besides, in the future, we 354

will collect more types of mountains to expand our dataset. Our model can be more fully 355

trained to adapt to different input images, which in turn can achieve better reconstruction 356

of the real terrain in the google map. Furthermore, We are also interested in researching that 357
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reconstructing images captured from widely varying distances that is a very interesting but 358

challenging problem. The key is to extract effective texture features from multi-resolution 359

images, which is very important and critical in many tasks. 360

6. Conclusions 361

In this paper, we propose a novel TSDF-based method for 3D reconstruction from 362

images containing mountain terrains. Different from existing methods that only fuse tem- 363

poral features of the same voxel, we introduce neighbor information to smooth the current 364

voxel representation via cross-attention. We further propose feature enhancement and 365

reweighted mechanisms to enhance the discriminative capacity of 2D features. Extensive 366

experiments on our proposed dataset verify the effectiveness of our method. Our method 367

outperforms several state-of-the-art methods in terms of both 3D and 2D metrics. The 368

visual evaluation also illustrates the completeness and refinement of our reconstruction. In 369

addition, the results on real terrains show that our method has a good ability to adapt to 370

real styles of textures. Our method can effectively learn the geometry of the mountain from 371

a small number of videos. 372
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