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Abstract— Novel view synthesis of remote sensing (RS) scenes
is of great significance for scene visualization, human–computer
interaction, and various downstream applications. Despite the
recent advances in computer graphics and photogrammetry
technology, generating novel views is still challenging particularly
for RS images due to its high complexity, view sparsity, and
limited view-perspective variations. In this article, we propose a
novel RS view synthesis method by leveraging the recent advances
in implicit neural representations. Considering the overhead and
far depth imaging of RS images, we represent the 3-D space by
combining implicit multiplane images (ImMPI) representation
and deep neural networks. The 3-D scene is reconstructed under
a self-supervised optimization paradigm through a differentiable
multiplane renderer with multiview input constraints. Images
from any novel views thus can be freely rendered on the
basis of the reconstructed model. As a by-product, the depth
maps corresponding to the given viewpoint can be generated
along with the rendering output. We refer to our method as
ImMPIs. To further improve the view synthesis under sparse-
view inputs, we explore the learning-based initialization of RS
3-D scenes and proposed a neural-network-based prior extractor
to accelerate the optimization process. In addition, we propose a
new dataset for RS novel view synthesis with multiview real-world
Google Earth images. Extensive experiments demonstrate the
superiority of the ImMPI over previous state-of-the-art methods
in terms of reconstruction accuracy, visual fidelity, and time
efficiency. Ablation experiments also suggest the effectiveness of
our methodology design.

Index Terms— Implicit neural network, multiplane images
(MPIs), novel view synthesis, remote sensing (RS).

I. INTRODUCTION

NOVEL view synthesis aims at rendering novel images
of a 3-D scene from arbitrary query viewpoints given

a set of precollected multiview images as input. In remote
sensing (RS), novel view synthesis has substantial application
potential for various tasks such as 3-D scene reconstruction,
urban management, and disaster assessment.

Generating novel views from multiview RS images is chal-
lenging due to the high complexity, view sparsity, and limited
view-perspective variations of RS scenes. Recent approaches
to novel view synthesis and 3-D scene construction are usually
designed based on mesh rendering [1], [2], [3] and volumetric
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Fig. 1. We propose a new method for RS novel view synthesis. Unlike recent
approaches designed based on volume rendering, our method takes advantage
of ImMPI representation to generate novel views from sparse posed images.
In this figure, we visualize 11 training views (marked as green) and two novel
views (marked as red) poses and show corresponding images rendered from
optimized ImMPI.

representation [4], [5], [6], [7], [8] techniques, mainly focusing
on small-scale scenes, particularly at the object level. Recently,
implicit neural representation [9], [10], [11], [12], [13], [14]
as an emerging technique in computer vision and graph-
ics has brought great attention to novel view synthesis and
3-D representations. Implicit neural representation provides a
novel way to parameterize continuous differentiable signals
with neural networks, including volumes and radiance signals
in 3-D scenes. Based on implicit neural representation, many
approaches have been proposed for novel view synthesis very
recently. NeRF [15] is known as a representative of such group
of approaches. NeRF is proposed to encode the 3-D shapes
into the network weights, combined with differentiable render-
ing to achieve end-to-end optimization, where the inefficiency
of scene representation and the complexity of rendering are
significantly reduced. CityNeRF [16] extends the NeRF from
object level to city scale with multiscale RS images as input.
A progressive training paradigm is proposed in CityNeRF
to store scene details by gradually adding network modules.
However, the implicit neural representation in these methods
is still limited by the traditional volume rendering process and
thus may suffer from a slow rendering speed.

In RS image view synthesis, restricted by the camera move-
ment of the mounted platform [e.g., satellites and unmanned
aerial vehicle (UAV)], the camera usually has a limited range
of perspective variation as it flies over the scene. In addition,
when the collected views are very sparse, it will become
more difficult to reconstruct the 3-D scene accurately. Recent
methods, such as SinSyn [17] and MINE [18], explore to
generate novel view from single image input. However, due to
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the absence of real scale, it is difficult for the above discussed
methods to render high-quality images in RS applications.

To tackle the above challenges, we propose a new method
called implicit multiplane images (ImMPIs) for RS novel
view synthesis as shown in Fig. 1. We incorporate MPIs,
an explicit representation naturally suitable for RS with
the recent advances in implicit neural representation. In the
proposed method, the 3-D scene is constructed under a
self-supervised optimization paradigm through a differentiable
multiplane renderer with multiview input constraints. Images
from any novel view can be thus freely rendered based on the
reconstructed 3-D scene model. As a by-product, the depth
maps corresponding to the given viewpoint can be generated
along with the rendering output. In addition, an initializa-
tion method is proposed with the motivation that 3-D scene
priors learned from large RS datasets can be applied across
scenes, which further improves the optimization stability and
efficiency under sparse-view inputs. Since there are no publicly
available datasets for RS novel view synthesis, we build
a new dataset for this task using real-world Google Earth
images. Extensive experiments demonstrate the superiority of
the ImMPI over previous state-of-the-art methods in terms of
reconstruction accuracy, visual fidelity, and time efficiency.

The contribution of our work can be summarized as follows.
1) We propose implicit MPI representation (ImMPI),

a novel method to represent RS 3-D scenes. Combining
the advantages of implicit neural representation and
explicit MPI, the proposed method is naturally suitable
for RS novel view synthesis and enables fast rendering.

2) We introduce a learning-based network for ImMPI ini-
tialization. By extracting 3-D scene distribution priors,
the optimization process can be significantly accelerated
and stabilized.

3) We introduce a new dataset for RS novel view synthe-
sis. The dataset consists of 16 real-world 3-D scenes
collected from Google Earth as well as their multi-
view images, including mountains, urban area, build-
ings, parks, and villages. We also made our code
publicly available. The dataset and code can be found
at https://github.com/wyc-Chang/ImMPI.

II. RELATED WORK

A. 3-D Representation for Novel View Synthesis

Novel view synthesis aims at rendering unobserved view-
points from a scene given a number of images and camera
poses as inputs. It can be modeled as a two-stage process
where the first stage recovers geometry from multiview images
and the second one renders images corresponding to given
viewpoints. The representation quality of 3-D scene is cru-
cial to the quality of the rendered novel views. In this
section, we introduce common scene representation methods,
especially for novel view synthesis task, including explicit
representations and implicit representations.

Explicit 3-D scene representation includes optical flow,
mesh, volume, and so on. Some early approaches [19],
[20], [21] reconstruct the optical flow field from multiview
images and achieve view synthesis by interpolation. However,

these methods require very dense input views of the scene,
which limits their application scope. Some recent methods
explore mesh-based representations for novel view synthesis.
Liu et al. [22] proposed mesh-based novel view synthesis with
differentiable rendering applied to reproduce images corre-
sponding to known viewpoints. The 3-D meshes are optimized
by gradient descent. However, this method requires template
meshes for initialization before optimization, which is difficult
to obtain due to the complexity of RS scenes. Besides, the
images rendered by these methods may suffer from severe
artifacts behind occluded areas. Volumetric representation is
another approach to representing 3-D scenes for novel view
synthesis. Early work [23], [24] directly represents RGB
color information with voxels. Recently, DeepVoxels [25]
proposed a learning-based network to predict the 3-D feature
embedding of each grid in volumetric representation from a
set of posed images. Since 3-D volume is memory ineffi-
cient, the resolution for spatial context needs to be traded
off carefully. Although combining with deep convolutional
neural networks (CNNs) can compensate for the degradation of
rendering high-resolution images from low volume resolutions,
the improvement is still limited for RS scenes.

Recent work has demonstrated the capability of implicit
neural representation for representing 3-D shapes. With
implicit neural representations, 3-D geometric information
can be encoded into the neural network weights by learn-
ing the mapping between 3-D coordinates and occupancy
or signed distance functions [9], [11], [13], [14]. By using
a multilayer perceptron (MLP) model mapping 5-D vectors
(3-D coordinates and 2-D view directions) to transparency and
color values, NeRF [15] shows superiority over CNN-based
volume rendering methods on view synthesis. Later works,
such as NeRF-W [26] and NeRF++ [27], extend NeRF from
object level to unbounded scenes. For very large-scale scenes,
Block-NeRF [28] decomposes the scene into blocks and
separately optimizes individual NeRF models. By decoupling
the rendering and scene size, Block-NeRF can be scalable to
large scenes while allowing individual updates of each block.
CityNeRF [16] achieves city-scale scene reconstruction and
proposes a progressive learning method to solve multiscale
problems. Despite the above progress, NeRF-based meth-
ods require optimization scene-by-scene and need sufficient
views for supervision. For RS scenes with sparse views, the
above conditions cannot be guaranteed, so these methods are
difficult to apply. To improve the reconstruction on sparse-
view conditions, PixelNeRF [29] is proposed very recently,
which introduces a CNN-based encoder to learn scene prior
from one or a few images. PixelNeRF uses a similar idea
to the prior extractor in the proposed method. However, the
difference between the proposed method and PixelNeRF is
that the former is designed based on implicit multiplane
representations, while the latter is based on volume rendering
and thus suffers from rendering inefficiency.

B. RS Image Height/Depth Estimation

In computer vision and photogrammetry RS, depth/height
estimation refers to estimating the distance from an object
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Fig. 2. Overview of our method. The processing pipeline of the proposed method consists of two stages: 1) cross-scene initialization—given a selected
perspective denoted as reference view, we propose a prior extractor encoder that produces the latent feature Fprior as the initialization of implicit MPI and
the encoder is trained on different RS scenes in a self-supervised way and 2) per-scene optimization—given a set of input views, we iteratively optimize the
ImMPI representation and then render novel views from optimized ImMPI by differentiable rendering.

to the camera with single-view or multiview input images.
Depth/height estimation and view synthesis are closely related
since good estimation results can help to produce good
view synthesis. Multiview stereo-based methods have achieved
accurate results for RS image depth estimation tasks [30],
[31], [32], [33], [34], [35]. Recently, encoder–decoder-based
neural networks are introduced to single-view height estima-
tion task [36], [37], [38], [39], [40]. Multitask learning is also
adopted [41], [42] to increase the accuracy of height estimation
by jointly learning from semantic labels. However, these
methods require ground-truth depth maps or high-resolution
digital surface model (DSM) as supervision, which are not
always available in practice. Different from the above methods,
in this article, we take advantage of differentiable rendering
and self-supervised learning, where we reproject the rendering
views to the original view inputs and enforce them to be
similar. In this way, with the help of multiview constraints, the
depth and 3-D structure of the scene can still be understood
properly despite the absence of depth ground truth.

III. METHODS

Given a set of multiview images of an RS scene as input, our
method aims at rendering images corresponding to any new
viewpoints. An overview of the proposed method is shown in
Fig. 2. There are two main stages in our method.

1) Stage I (Cross-Scene Neural Network Initialization: We
train a scene prior extraction network in order to predict
object distribution for ImMPI initialization. The heights
of common ground objects in RS scenes have potential
regularities, which can be applied to narrow down the
solution space of scene reconstruction. Taking single
image as input, the scene prior extraction network initial-
izes the implicit MPI representation of the input image.
For more details, please refer to Section III-B.

2) Stage II (Per-Scene Implicit Representation Optimiza-
tion: After the initialization stage, coarse structure of the
scene has been learned in the pretrained ImMPI model.

We then iteratively optimize the parameters of implicit
neural network with other viewpoint images. After opti-
mization, accurate novel views can be rendered with
the ImMPI model. Details of the per-scene optimization
stage can be found in Section III-C.

A. 3-D Scene Representation

We combine an implicit neural network with explicit MPIs
to represent RS scenes. In our proposed scene representation,
the geometry and appearance information is encoded in con-
volutional network parameters and the novel view is rendered
from MPIs output by the network. Since the optical axis of
an onboard camera is almost perpendicular to the ground
in RS platforms, the proposed ImMPI is naturally suitable
for RS photography. In addition, its efficiency in rendering
images via homography warping and differentiable rendering
facilitates real-time applications.

1) Explicit MPI Representation: In our method, we use an
implicit neural network, i.e., a deep CNN to generate explicit
MPI scene representation, where the multiplanary geometry of
the scene is encoded in the weights of the CNN. We follow the
algorithm [43] and divide the 3-D space into a collection of
RGBA layers {(Cz1 , σz1), (Cz2 , σz2), . . . , (CzD , σzD )} in camera
frustum, where Czi (x, y) is a 3-D vector denoting RGB
value at position [x, y, zi ]T in camera frustum, σzi (x, y) is
a scalar denoting the transmittance of position [x, y, zi ]T ,
and D is the depth sample number. Let [x, y]T be a 2-D
pixel coordinate on the plane, and with depth hypothesis zi

and pinhole camera intrinsic K , we can reconstruct the 3-D
location [X, Y, Z ]T of the point in the Cartesian coordinate as
follows:

⎡
⎣X

Y
Z

⎤
⎦ = zi K −1

⎡
⎣x

y
1

⎤
⎦ = zi

⎡
⎣ fx 0 cx

0 fy cy

0 0 1

⎤
⎦

−1⎡
⎣x

y
1

⎤
⎦. (1)
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2) Novel View Rendering From MPI: Given a viewpoint
denoted as target view, MPI renders the corresponding 2-D
image as follows. First, map all the planes in MPI to novel
view camera frustum by differentiable homography warping.
The scene MPI representation is constructed in reference-view
camera frustum after initialization, whose intrinsic is noted
as Kref . Let the novel target-view camera intrinsic be Ktgt

and the transform matrix between reference view and target
view be Ttgt2ref = [Rtgt2ref , ttgt2ref ]. Then, the correspondence
between [xref , yref ] and [xtgt, ytgt] with respect to the pixel
coordinate can be calculated as⎡

⎣xref

yref

1

⎤
⎦ = Htgt2ref

⎡
⎣xtgt

ytgt

1

⎤
⎦ (2)

where Htgt2ref denotes the homography warping matrix calcu-
lated by transform matrix [Rtgt2ref , ttgt2ref ] and depth hypothe-
sis zi as follows:

Htgt2ref = Kref

(
Rtgt2ref − ttgt2ref nT

zi

)
Ktgt (3)

where nT = [0, 0, 1]T is the normal vector for each plane with
respect to reference camera. According to the corresponding
relation in (2), MPI representation in target-view camera
frustum can be thus sampled from the reference view.

After warping the MPI representation to target camera
frustum, we apply differentiable rendering to get novel view
2-D images. For each pixel position (x, y) in a novel image
plane, RGB pixel values are calculated by the following
equation:

I =
N∑

i=1

Ti

(
1 − exp(−σzi δzi )

)
Czi . (4)

Specifically, Ti = exp(− ∑i−1
j=1 −σz j δz j ) represents the

accumulation of transparency from the first plane to the
i th plane. δzi denotes the Euclidean distance between [x, y, zi ]
and [x, y, zi+1] in Cartesian coordinates, which can be calcu-
lated by (1).

Given the MPI representation of the scene and novel view-
points, the process of rendering at new viewpoints can be
finally expressed as

Itgt = R(
f�, Ttgt2ref , Kref , Ktgt

)
(5)

where R is the MPI renderer defined by (4). f� is the MPIs,
where in our method, it is parameterized by a pretrained
CNN model. Since the MPI rendering is essentially a plane-
to-plane warping and ray accumulation process, novel views
can be rendered very fast. The warping and rendering process
is illustrated in Fig. 3.

As for the depth hypothesis, zi can be estimated from the
sparse points by following the structure-from-motion method
like COLMAP [44] when calculating camera poses. In prac-
tice, the depth range [znear, zfar] of RS scenes can be much
larger. Therefore, the depth sampling strategy of MPI is
crucial. With a predefined depth sample number D, we evenly
sample hypotheses on reciprocal depth space by following the
strategy [45]:

1

zi
= 1

zfar
+ i − 1

D

(
1

znear
− 1

zfar

)
. (6)

Fig. 3. Illustration of the view rendering process from MPI. Reference
view and target view are marked with blue and green cameras. The MPI
representation is constructed with respect to reference-view frustum initially.
To render novel views, the MPI is first transformed to the target-view
coordinate by using homography warping. We then apply ray-marching
sampling to render the image.

The above operation helps to make the rendering process
applicable to complex and large depth range RS scenes.
Finally, the depth map Idepth under the query view can also
be calculated in a similar way as the rendered image

Idepth =
N∑

i=1

Ti (1 − exp(−σzi δzi ))zi . (7)

B. Cross-Scene Neural Network Initialization

In this section, we introduce the cross-scene neural network
initialization method. We introduce a scene prior extraction
network and present a self-supervised learning method to learn
3-D distribution priors from a single image. The key is the
use of differentiable rendering and enforcing the projected
views to be similar to the source views. The MPI can be
thus roughly estimated with the above view constraints. The
overview process is shown in Fig. 2.

1) Network Design and Training Process: Given an image
denoted as the reference view, the prior extractor encodes the
2-D image feature as Fprior . Then, the feature is input to
the MPI generator to obtain the initial MPI representation of
the scene. Details of the network design are shown in Fig. 4.
Specifically, we adopt ResNet18 [46] as the backbone of our
prior extractor. The prior extractor takes in a single image
and produces multiscale features. Then, the MPI generator
takes in multiscale features and produces multiscale MPI
representations. We set the number of features scales to 5 and
the number of MPI scales to 4 in our method.

a) Relative depth embedding: RS scenes may have very
different depth ranges. However, we expect to train a generic
model that captures depth priors as comprehensively as pos-
sible for MPI initialization. Considering that it is difficult
to recover the accurate absolute depth from a single image
directly, we adopt relative depth as the depth value zi of
different planes in MPI. Specifically, suppose that the depth
sample number is D, and we apply a 1-D positional embedding
to di = {0, 1, 2, . . . , D − 1} by the following equation [47]:

γ (di) = [sin(20πdi), cos(20πdi), . . . ,

sin(2L−1πdi), cos(2L−1πdi)]. (8)
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Fig. 4. Architecture of the MPI generator. Depth embedding vectors are
concatenated with five-scale Fprior . Each scale feature passes through the
convBlock to generate the corresponding explicit MPI.

where the hyperparameter L is set to 10 with the dimension of
depth position embedding vector equal to 20. Then, the depth
embedding vectors are merged with multiscale features Fprior .
When rendering the target-view image, we map di of MPI
plane to the absolute depth values zi with respect to the depth
range of reference image.

b) Training process: The scene prior extraction network
is trained by using a large number of images from different
scenes. The network can be trained simply on any RS mul-
tiview stereo datasets. Taking multiscale MPI representation
generated from the corresponding reference image as input,
we can render target-view images according to the procedure
illustrated in Section III-A.

2) Loss Functions for Cross-Scene Training: We train our
scene prior extraction network on the WHU MVS/Stereo
dataset [48]. This dataset provides four posed neighbor
images for each reference image. We train the model with
reference–target paired images. Note that only 2-D RGB
images in the WHU MVS/Stereo dataset are used for training,
and no 3-D supervision such as depth map is introduced.
To optimize the prior extractor and MPI generator, we min-
imize the L1 loss LL1 and structure similarity index mea-
sure (SSIM) loss [49] Lssim between the rendered image and
corresponding ground truth

Lprior(θ, φ) =
L∑

s=1

λ1LL1
(

I tgt
s , I gt

s

) + λ2Lssim
(

I tgt
s , I gt

s

)
(9)

where θ and φ are the network parameters of the prior
extractor and MPI generator, respectively, s refers to the scale
of MPI, L is the total number of scales, and λL1 and λssim are
predefined weights to balance the two loss terms. We set
λ1 = 2.0 and λ2 = 1.0. Since the networks and the MPI
rendering process are all differentiable, the networks can be
trained in an end-to-end fashion with the above losses.

C. Per-Scene Implicit Representation Optimization

Since the initialization stage only utilizes information from
one perspective, the initialized MPI representation is not
accurate enough and may produce artifacts in occluded areas.
In the optimization stage, we further optimize the implicit MPI
representation of a specific scene iteratively with images from
other viewpoints.

Algorithm 1 Novel View Synthesis With the Proposed
ImMPI Model

Input: B = {(Isrc
n , Tsrc

n , Ksrc
n )|n = 1 : N} (images and

camera parameters of training views)
Input: (Ttgt , Ktgt ) (novel viewpoints)
Input: Iteration (iterate number during optimization)
Output: ImMPI (scene representation)
Output: Itgt (novel view RGB image)

1 // step1: extract priors and initialize ImMPI
2 // select a training view denoted as reference view
3 (Ire f , Tre f , Kre f ) = Sample(B)
4 // extract prior with pretrained Prior extractor fθ
5 Fprior = fθ
 (Ire f )
6 // step2: optimize ImMPI with training views
7 for i in 1 : Iteration do
8 for (Isrc

n , Tsrc
n , Ksrc

n ) in B do
9 // render images

10 MPI = fφ(Fprior )
11 Isyn = R(MPI, Tsrc

n , Ksrc
n , Kre f )

12 // gradient descent to optimize ImMPI
13 end
14 end
15 // ImMPI
: scene info encoded in Fprior and φ


16 MPI
 = fφ
( fθ
 (Fprior ))
17 // step3: render novel view
18 Itgt = R(MPI
, Ttgt , Ktgt , Kre f )

1) Optimization: The per-scene optimization process is
shown in Fig. 2. During the optimization process, the para-
meters of the prior extractor are fixed and the weights of the
MPI generator are updated through information from other
training perspectives. With scene prior Fprior inferred from the
reference image, we can generate an initial implicit MPI repre-
sentation and reconstruct the 3-D scene under a self-supervised
optimization paradigm. Specifically, taking the camera para-
meters of training views as input, the corresponding synthetic
images can be rendered according to (5). By calculating the
difference between the synthetic images and the ground-truth
images, the weights of the MPI generator are optimized in
the gradient descent way. Then, the geometry and appearance
of the scene are encoded in the network after traversing the
train views several times. We do not directly optimize the MPI
pixels for two reasons. On the one hand, it is hard to converge
because of too many parameters of explicit MPI. On the other
hand, when directly optimizing the RGBA values of MPI, each
position is treated individually ignoring the local similarity.
In comparison, optimizing the parameters of the CNN-based
MPI generator preserves spatial continuity, which in turn can
bring smoothness to the rendered image. Experimental results
are shown in Table III.

2) Loss Functions for Optimization: Unlike NeRF [15] that
randomly samples points in training images, the proposed
ImMPI renders the entire image of training views. The losses
can therefore be applied at the image level. Given multiscale
MPIs and transformation matrix of training view, multiscale
images {Is |s = 1, . . . , L} can be rendered according to (5).
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Following the objective function designed in [43], the loss
function is calculated between rendered and ground-truth
images. The loss function is defined as

Lopt(φ) =
L∑

s=1

N∑
i=1

β1LL1
(

I tgt
s,i , I gt

s,i

)

+ β2Lssim
(

I tgt
s,i , I gt

s,i

) + β3Llpips
(

I tgt
s,i , I gt

s,i

)
(10)

where N is the number of target views and L is the number of
scales. LL1, Lssim, and Llpips represent pixelwise L1 loss, SSIM
loss, and the learned perceptual image patch similarity (LPIPS)
loss [50], respectively. The LPIPS loss is computed as the
distance between two images on their multiscale features pro-
duced by the VGG-19 networks [51], which aims at improving
the visual fidelity of the rendering outputs. Predefined bal-
ancing weights β1, β2, and β3 are set to 2.0, 1.0, and 1.0,
respectively.

Finally, at novel view rendering phase, given a novel
viewpoint, the rendering details of our method are shown
in Algorithm 1.

IV. EXPERIMENTS

In this section, we first introduce the dataset used for
training cross-scene initialization and our new dataset for per-
scene optimization. Then, experiments are conducted on our
new dataset and compare with other view synthesis methods.
Finally, controlled experiments and ablation analysis are given
to verify the effectiveness of our method.

A. Experimental Setup

1) WHU MVS/Stereo Dataset: It is a public large-scale
Earth surface reconstruction dataset [48]. It consists of
1776 images captured in 11 strips by UAV. The covered area
contained dense and tall buildings, sparse factories, mountains
covered with forests, and some bare ground and rivers. This
dataset is mainly used for multiview depth estimation tasks.
We train the cross-scene initialization based on this dataset.

2) LEVIR-NVS Dataset: It is our newly proposed dataset for
RS image novel view synthesis.1 We use blender to acquire
multiview 2-D images of 3-D scene models captured from
Google Earth. The dataset consists of 16 scenes, including
mountains, cities, villages, and buildings. Each scene has
21 multiview images of size 512 × 512, and 11 views are
used for training and the rest are used for testing. Pose
transformations, such as wrapping and swinging in actual
aerial photography, are included during the simulation process.
The depth range of scenes in LEVIR-NVS varies from 60 to
150 m and each scene covers an area of about 10 km2.

3) Implementation Details: Our model is implemented on
Pytorch and is trained using a single GeForce RTX 3090 GPU.
For the cross-scene initialization training, we apply the Adam
optimizer [52] to optimize the model. The learning rate is
set to 0.0001 initially and decays 0.5 times per 40 epochs
during 200 training epochs. During the per-scene optimization,
we also apply the Adam optimizer and the learning rate is set

1LEVIR is the laboratory’s name where the authors of this article are in.
NVS is short for “novel view synthesis.”

to 0.001. For each scene in LEVIR-NVS, the optimization can
converge in less than 500 iterations.

4) Evaluation Metrics: Similar to the metrics adopted in
previous novel view synthesis literature [15], [18], [27], [29],
we apply PSNR, SSIM, and LPIPS [50] to evaluate the render-
ing accuracy. PSNR and SSIM evaluate pixel-level differences
between rendered images and ground-truth images, and LPIPS
utilizes a VGG network to evaluate image similarity at the
feature level.

B. Comparison to Other Methods

We compare our method with two state-of-the-art novel
view synthesis methods: NeRF [15] and NeRF++ [27].

1) NeRF [15] is a neural implicit representation-based
method for novel view synthesis. NeRF represents the
scene volume with an MLP model mapping 5-D vectors
(3-D coordinates and 2-D view directions) to trans-
parency and color values. NeRF optimizes the MLP
representation by a set of posed images during training.
The optimized MLP can then be used to render novel
views with conventional volume rendering approaches.
NeRF assumes the entire scene to be contained in a
bounded volume and the training views are captured
from 360◦ viewpoints distributed on a hemisphere. This
assumption makes NeRF hard to be used in large-scale
scenes.

2) NeRF++ [27] proposes to apply NeRF to 360◦ cap-
tures of objects within large-scale, unbounded scenes.
The authors proposed a novel spatial parameterization
scheme called inverted sphere parameterization as a
remedy for vanilla NeRF. Specifically, NeRF++ models
the scene space with two separate NeRFs, an inner unit
sphere and an outer volume, representing foreground and
background, respectively. After optimizing the models
individually, the render results are composited together
to generate final novel view images.

Figs. 6 and 7 show the qualitative comparison between
our method and the two comparison methods. We can see
that our method brings a significant increase in rendering
fidelity. Although NeRF and NeRF++ can achieve decent
results in the training views, the rendering results on test
views are not satisfactory. Both NeRF and NeRF++ suffer
from noticeable blurring, loss of details, and severe artifacts
on test viewpoints. We attribute this phenomenon to two
reasons. On the one hand, sparse perspectives in RS scenes
cannot provide enough supervision for NeRF-based methods
and makes it difficult to recover accuracy geometry. For
positions in the air, the transparency values are only super-
vised from overhead with limited view-perspective variations.
Therefore, the network is easy to converge to a solution that
meets all observations but does not conform to the actual
scene geometry. On the other hand, NeRF-based methods use
MLP to encode the geometry and appearance of RS scenes.
Although introducing position encoding for 3-D coordinates,
these algorithms directly optimized MLP parameters ignor-
ing connections between adjacent positions, which contains
the geometry prior implicitly. In comparison, the implicit

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 21,2023 at 07:57:37 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: RS NOVEL VIEW SYNTHESIS WITH IMPLICIT MULTIPLANE REPRESENTATIONS 5627613

TABLE I

QUANTITATIVE COMPARISON OF TRAIN VIEW/TEST VIEW WITH DIFFERENT NOVEL VIEW SYNTHESIS METHODS ON THE LEVIR-NVS DATASET

Fig. 5. Optimization comparison between the proposed ImMPI and
NeRF++ [27]. ImMPI is two times faster than NeRF++ [27] and performs
better in test-view rendering quality, while NeRF++ [27] is prone to overfit
with more iterations due to sparse-view inputs.

MPI retains the geometry information by combining the
convolutional network and MPIs to represent 3-D scenes.
Benefiting from the efficient ImMPI initialization, our method

TABLE II

QUANTITATIVE COMPARISON OF OPTIMIZATION AND RENDERING

SPEED BETWEEN DIFFERENT METHODS

does not overfit the training viewpoint and renders realistic
images corresponding to given test viewpoints. The edges and
textures of objects in the scene are clear and highly similar to
the ground truth.

Quantitative evaluations of different methods are given in
Table I. In train view, NeRF and NeRF++ can produce
relatively high quantitative accuracy in terms of PSNR, SSIM,
and LPIPS. However, we see a significant drop in the accuracy
of test views. Overfitting to training viewpoints leads to
inaccurate scene reconstruction, which in turn affects the
synthesis results of new viewpoints. As a comparison, our
method performs much better than other algorithms in test
views, which suggests that ImMPI achieves more accurate
reconstruction of RS scenes and can produce high-quality
novel view images.

C. Efficiency in Optimization and Rendering

In this section, we analyze the efficiency of our method
during per-scene optimization and rendering. Table II shows
the time consumption of different methods. In this table,
“pretraining” refers to the pretraining of the methods.
“Optimization” denotes the per-scene optimization process.
“Rendering” means the time consumption of synthesizing
novel views. We can see that NeRF and NeRF++ are purely
optimization-based methods without pretraining, and the pro-
posed ImMPI needs to be pretrained with extra 21 h before-
hand. At the optimization phase, both NeRF and NeRF++
take more than 1 h to optimize on each scene, while the
proposed ImMPI only takes 30 min. Qualitative comparison
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Fig. 6. Qualitative comparison of view rendering with training camera poses on the LEVIR-NVS dataset.
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Fig. 7. Qualitative comparison of test-view rendering (novel view synthesis) on the LEVIR-NVS dataset. The views in this figure have not been seen in the
pretraining and optimization process.
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TABLE III

ABLATION STUDY ON CROSS-SCENE INITIALIZATION (INIT)
AND PER-SCENE OPTIMIZATION (OPTM)

during optimization between NeRF++ and ImMPI is shown
in Fig. 5. At the rendering phase, our method only takes only
1 s to render per frame from the optimized 3-D representation,
which is at least 20 times faster than other methods.

NeRF-based methods draw the image pixel-by-pixel in a
ray-tracing manner. Each pixel in novel view needs to sample
points along the ray to calculate the RGB value following (4).
On the one hand, every point on the ray needs the MLP
network forward once to obtain the final value Cz and σz

requiring extensive computation. Purely implicit 3-D scene
representation and unaccelerated ray-tracing rendering lead to
inefficiencies in the optimization process and image rendering.
On the other hand, the weights of the MLP network in
NeRF and NeRF++ are randomly initialized resulting in large
solution space during optimization, which not only leads to
time consumption but also is prone to degenerate the geometry
estimation of the input scene.

We attribute the faster convergence speed of ImMPI during
per-scene optimization to the following reasons: 1) ImMPI
generates explicit MPI representations whose high efficiency
speeds up optimization and rendering process; 2) with the
learning-based initialization, cross-scene priors are encoded in
the ImMPI model and, thus, fewer iterations are required in the
optimization stage; and 3) our method inherits the advantages
of implicit representation encoding the scene information in
network weights, with less optimal variables than explicit
representations.

D. Controlled Experiment

1) Ablation Study: We perform ablation studies on: 1) cross-
scene initialization and 2) per-scene optimization to validate
their effectiveness.

Corresponding to the second line of Table III, we supple-
ment the ablation experiments in which the explicit multiplane
representation is directly optimized. All three metrics have
a significant decrease due to ignoring the physical meaning
of parameters and lack of sufficient constraints to accurately
recover scene geometry. When directly optimizing explicit
MPI, the spatial constraints of adjacent positions are ignored
and the parameters at each position on each plane are opti-
mized in isolation. In addition, according to the physical
meaning of the MPI parameters, RGB should be in the range
[0, 1] and σ should be nonnegative. Ignoring these constraints
leads to inaccurate synthetic images and erroneous gradient
computations during optimization.

For cross-scene initialization, we remove this step from
the pipeline and optimize the implicit MPI representation

TABLE IV

COMPARISON OF MEMORY USAGE, PARAMETER AMOUNT, AND
COMPUTATION CONSUMPTION (FLOPS) WHEN RENDERING

AN IMAGE WITH DIFFERENT DEPTH HYPOTHESIS

NUMBER D IN OUR METHOD

directly. For the input Fprior of the MPI generator, we adopt
two schemes: random initialization and setting as a learn-
able variable, corresponding to the third and fourth lines
of Table III. According to quantitative comparison results,
the network needs more iterations to converge without the
learning-based initialization step. Optimizing Fprior and φ
simultaneously brings better performance but introduces more
parameters at the same time. In comparison, ImMPI converges
faster with learning-based initialization and reaches a higher
accuracy. This indicates that the cross-scene initialization not
only can speed up per-scene optimization but regularize the
optimization to avoid local minimum solutions.

As for the per-scene optimization, we directly render novel
views from the ImMPI after the initialization. From the first
line of Table III, we can see that all the three metrics decrease
a lot when removing the per-scene optimization step. Although
there are no significant perspective changes in RS scenes,
a single image is still insufficient to support the novel view
synthesis. Combined with multiview information, per-scene
optimization significantly improves the quality of rendered
images.

2) Effect of Depth Hypothesis Number: The accuracy of
reconstruction result can be affected by the number of depth
hypotheses D in ImMPI. Here, we quantitatively analyze the
impact by the experiment. Specifically, we construct explicit
MPI representations with 8, 16, 32, and 48 layers produced
by different depth hypothesis numbers in the MPI generator.
As D increases, the parameters of ImMPI remain the same,
but the memory and computation consumption during ren-
dering increase significantly, reducing the speed of per-scene
optimization. The results are shown in Table IV: PSNR and
SSIM increase when D grows from 8 to 32, while the floating-
point operations (FLOPs) almost quadruple increase. In the
case of D = 48, the quality of rendered image drops slightly.
We attribute the decrease to overfitting to training views due
to excessive depth sampling. The further increase of depth
hypothesis number brings limited accuracy improvement, but
the computational resource consumption cannot be ignored.
Therefore, we finally set D to 32 in our method.

3) Effect of Training View Number: In this section, we ana-
lyze the sensitivity of our method to the number of training
views adopted during the per-scene optimization. For each
scene in the LEVIR-NVS dataset, we experiment with 3, 5,
7, 9, and 11 training views for optimization. The selection
of training perspectives follows the principle that the distance
between each camera is as far as possible to cover as much
scene content as possible. We manually assign the training
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Fig. 8. Visualization of MPI layers with different depths after the cross-scene initialization and per-scene optimization (opt). For 6 of the 32 MPI layers per
scene, the σzi value is visualized in this figure.

TABLE V

VIEW SYNTHESIS ACCURACY WITH A DIFFERENT NUMBER OF TRAINING

VIEWS. N DENOTES THE NUMBER OF TRAINING VIEWS

USED DURING THE PER-SCENE OPTIMIZATION

views under different hyperparameter conditions, and the
specific selection settings have been released together with
the LEVIR-NVS dataset. From Table V, all three metrics in
the train view and test view increased with the increase of the
number of training views. This shows that more perspectives
prompt more accurate reconstruction. Note that ImMPI out-
puts satisfactory results even with only three training views,
indicating that our method can generalize well to very sparse
views in RS scenes.

E. MPI Visualization

To verify the effectiveness of the cross-scene initialization
and per-scene optimization, we visualize the σzi value of
several layers of MPI in Fig. 8 for qualitative analysis. The
distribution of σzi values along the depth direction implies the

geometric information of the scene. It can be seen that ground
objects, such as buildings and trees of different heights in the
same scene, appear in different MPI layers after cross-scene
initialization. As the depth increases (away from the camera),
the content in the scene from the roof to the ground gradually
emerges. This indicates that our model can successfully learn
depth information from a single image. Also, note that the
prior extractor is trained using the WHU MVS/Stereo dataset,
while the test image is from the LEVIR-NVS dataset. The
visualization results show that our method can accommodate
the domain gap between different datasets to some degree.
Although the initial ImMPI has some errors in detail, it is
sufficient as a good initialization to circumvent some subop-
timal solutions. Corresponding to the second and the fourth
lines of Fig. 8, the geometry of the scene is further accurately
reconstructed after per-scene optimization. With less noise and
sharper edges, photorealistic novel views can be synthesized
from optimized ImMPI.

F. Depth Estimation

In addition to novel view synthesis, our method can esti-
mate the depth map of the corresponding view according
to (7). Depth map qualitative results are shown in Fig. 9.
For each scene, we visualize one of the test-view depth
estimation results. As we can see from the figure, the MPI only
with initialization can roughly predict the distance between
the ground objects and the camera. Per-scene optimization
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Fig. 9. Visualization of the rendered depth map with our method.
“w/o optimize” refers to the depth maps directly rendered from MPI with
only initialization. “optimized” refers to the depth maps obtained after the
per-scene optimization. Cool color means that objects are closer to the camera,
while warm color means the opposite.

introduces information from other perspectives, further
improving depth estimation accuracy. Compared with the
actual depth value, the depth map obtained from MPI still
has errors at pixels where the depth value changes sharply.
Nevertheless, since we mainly focus on the novel view syn-
thesis task and the depth map is a by-product, our approach
is still a feasible way for depth estimation.

V. CONCLUSION

We propose a new method named ImMPI and a new
dataset named LEVIR-NVS for RS novel view synthesis.
Given a set of images from a scene, novel view RGB images
and corresponding depth maps can be rendered from opti-
mized ImMPI by differentiable rendering. ImMPI combines
the advantages of implicit neural network and explicit MPI
representation and is naturally suitable for RS images. The
implicit representation encodes the scene geometry to net-
work weights with fewer parameters and the explicit MPI
achieves faster rendering speed. We also propose a learning-
based cross-scene initialization method to extract scene priors,
which dramatically speeds up the per-scene optimization and
improves accuracy under sparse-view inputs. Compared with
NeRF-based methods, ImMPI shows significant improvement
with two times optimization speed and 20 times rendering
speed.
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