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Networks
Yapeng Meng, Wenyuan Li, Sen Lei, Zhengxia Zou, and Zhenwei Shi∗, Member IEEE

Abstract—Large-factor image super-resolution is a challenging
task due to the high uncertainty and incompleteness of the
missing details to be recovered. In remote sensing images, the sub-
pixel spectral mixing and semantic ambiguity of ground objects
make this task even more challenging. In this paper, we propose a
novel method for large-factor super-resolution of remote sensing
images named “Spectra-guided Generative Adversarial Networks
(SpecGAN)”. In response to the above problems, we explore
whether introducing additional hyperspectral images to GAN as
conditional input can be the key to solving the problems. Different
from previous approaches that mainly focus on improving the
feature representation of a single source input, we propose a dual
branch network architecture to effectively fuse low-resolution
RGB images and corresponding hyperspectral images, which
fully exploit the rich hyperspectral information as conditional se-
mantic guidance. Due to the spectral specificity of ground objects,
the semantic accuracy of the generated images is guaranteed. To
further improve the visual fidelity of the generated output, we
also introduce the Latent Code Bank with rich visual priors
under a generative adversarial training framework so that high-
resolution, detailed, and realistic images can be progressively
generated. Extensive experiments show the superiority of our
method over the state-of-art image super-resolution methods in
terms of both quantitative evaluation metrics and visual quality.
Ablation experiments also suggest the necessity of adding spectral
information and the effectiveness of our designed fusion module.
To our best knowledge, we are the first to achieve up to 32x super-
resolution of remote sensing images with high visual fidelity under
the premise of accurate ground object semantics. Our code can be
publicly available at https://github.com/YapengMeng/SpecGAN.

Index Terms—Super-resolution, remote sensing image, hyper-
spectral image, deep convolutional neural networks, generative
adversarial networks

I. INTRODUCTION

Remote sensing technology expands the way humans under-
stand the earth and improves the timeliness and accuracy of
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Fig. 1. We propose a novel method for large-factor super-resolution of remote
sensing images, which achieves up to 32x super-resolution with high visual
fidelity under the premise of accurate ground object semantics. The 1st -
3rd rows show the input low-resolution images, ground truth, and our super-
resolution output, respectively.

earth observation. Remote sensing images play an important
role in many application fields, such as land classification [1,
2], agricultural monitoring [3, 4], urban planning [5, 6], disas-
ter disposal [7, 8], and etc. However, due to the limitations of
imaging conditions and costs, the resolution of remote sensing
images varies greatly, ranging from centimeters to hundreds
of meters per pixel. Low-resolution remote sensing images
have the advantage of large-scale ground observation, however,
the missing details of ground objects bring difficulties to
downstream remote sensing image applications.

In order to improve the resolution of remote sensing images
without increasing the imaging hardware cost, image super-
resolution (SR) technology has brought great attention to
the remote sensing field. Early super-resolution methods are
mainly based on neighborhood embedding [9], sparse repre-
sentation learning [10, 11], local linear regression [12–14] and
wavelet transform [15]. With the development of deep learning
in recent years, the nonlinear mapping between low-resolution
images and high-resolution images can be directly learned with
deep neural networks in an end-to-end fashion [16, 17], which
greatly improves the reconstruction accuracy. Particularly, the
emergence of the Generative Adversarial Network (GAN) [18]
further improves the visual perceptual quality of reconstruction
results [19, 20]. In the field of remote sensing image super-
resolution, many deep learning and GAN-based approaches
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have been proposed recently. For example, Lei et al. proposed
HSENet [21] based on the self-similarity of remote sensing
images. Qin et al. [22] designed a gradient-aware loss to
preserve important gradient information in remote sensing
images.

Despite the recent progress, most of the current research on
the super-resolution of remote sensing images only focuses on
low zoom-in magnitudes such as ×2, ×4, and there are few
studies on the problem of larger factor super-resolution. More
importantly, in remote sensing images, it is often necessary
to solve the problem of converting unrecognized objects (e.g.,
cars) into clear ones from a considerable low-resolution input
image.

In Fig. 1, we give an example where the first row is the low-
resolution remote sensing images that might be encountered in
practice, while the second row is the ground truth we expect
to get. As we can see, the main difficulties of this problem can
be summarized as follows: 1) Subpixel blending and semantic
ambiguity. Some small-scale ground objects are completely
integrated into a single-pixel grid, and the semantics of ground
objects in pixels cannot even be clarified by relying only on the
information of RGB bands because the RGB band radiation
of different ground objects may be the same. It is even more
difficult to reconstruct the ground objects mixed with each
other only with the help of RGB information. 2) The details
of the ground objects are seriously missing, mainly reflected in
the texture and outline structure. Because the downsampling
factor is very high, the contours of ground objects in low-
resolution images are no longer continuous, and texture details
are completely lost. It is necessary to restore image details with
the help of prior information.

In response to the above problems, we propose a novel
method named “Spectra-guided Generative Adversarial Net-
works (SpecGAN)” for large-factor remote sensing image
super-resolution, and explore whether introducing additional
hyperspectral images (also has low spatial resolution) as con-
ditional input can be the key to solving the problems. Different
from previous approaches that mainly focus on improving the
feature representation of a single source input, we construct a
dual-branch spectral information fusion and extraction module
to achieve the fusion of RGB images and hyperspectral im-
ages, thereby ensuring that the targets in the super-resolution
results have accurate semantic information. We show that with
the proposed method, low-resolution, unrecognized ground
objects can be accurately converted into clear ones with vivid
visual appearance and accurate semantics. Inspired by the
GLEAN [20] method, we introduce the Latent Code Bank
into the network to add rich details to SR results, which
helps to improve image quality and avoid checkerboard effects.
Experimental results on the dataset provided in the IEEE data
fusion contest 2019 [23] show that our method can effectively
achieve large-factor super-resolution. According to perceptual
evaluation metrics LPIPS [24], our method outperforms state-
of-art remote sensing image super-resolution method HSENet
by 58.3% and improves the performance by 33.6% compared
with the GLEAN dedicated to large-factor super-resolution.
Our network can effectively reconstruct targets on the premise
of semantic accuracy and has high visual quality texture and

edge details.
The main contributions of this paper include:

• We propose a large-factor super-resolution network suit-
able for remote sensing images, which achieves 32x
super-resolution with high visual fidelity under the
premise of accurate ground object semantics.

• We explore a novel idea for remote sensing image super-
resolution by using hyperspectral images as conditional
input. With the help of the spectral specificity of different
ground objects, using the high spectral resolution to make
up for the lack of spatial resolution. The introduction of
hyperspectral information ensures the semantic accuracy
of the super-resolution results.

• We propose a dual-branch network that effectively fuses
hyperspectral information and RGB information, which
can improve the possible alignment bias between RGB
images and hyperspectral images, and provide effective
high-level semantic information and necessary low-level
features for the Latent Code Bank and decoder of the
network.

II. RELATED WORKS

A. Image super-resolution based on deep learning

Deep learning has made great advantages in nearly all
branches of computer vision. For image super-resolution,
Dong et al. [16, 17] proposed SRCNN, which is the first CNN
network designed for super-resolution tasks, established end-
to-end mapping between LR images and SR results.

The subsequent improvements mainly focus on improving
network structure to increase network nonlinearity, reuse low-
level feature maps, and increase receptive fields. VDSR [25]
and EDSR [26] adapt deeper networks to reuse low-level
features by introducing residual connections. Kim et al. [27]
use a recursive module to construct the DRCN, increase the
network receptive field, and reuse the network parameters,
which achieves a better reconstruction effect with fewer pa-
rameters and reduces the difficulty of model training. Inspired
by DenseNet [28], Zhang et al. [19] propose the residual dense
block and build a super-resolution network based on it. This
network structure has also been used by the most advanced
super-resolution models [20, 29] in recent years.

After the emergence of the Generative Adversarial Net-
work (GAN) [18], researchers use the adversarial loss to
make generated results have a distribution similar to ground
truth, so as to generate more realistic image texture, improve
the excessive smoothing problem [30–33] caused by only
optimizing pixel-level loss such as MSE, and improve the
visual quality of output. Ledig et al. [31] first apply GAN
in the super-resolution field and proposed SRGAN. Menon et
al. [34] propose PULSE, which iteratively optimizes the latent
space of StyleGAN [35] based on GAN inversion to achieve
face super-resolution.

The diffusion probabilistic model [36, 37] has also been
successfully adapted to the image super-resolution task. Li et
al. [38] propose Srdiff, aimed at tackling the over-smoothing,
mode collapse, and large footprint problems in previous
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Fig. 2. An overview of the proposed SpecGAN. The proposed network takes in both the low-resolution RGB image and hyperspectral image and produces
up to 32x super-resolution output. The network consists of a dual-branch Spectral Information Fusion and Extraction (SIFE) module, a Latent Code Bank for
collecting priors, and an up-sampling decoder.

PSNR-oriented, GAN-driven models. Saharia et al. [39] pro-
pose SR3 and get photo-realistic outputs outperforming GAN-
based methods. Rombach et al. [40] propose the Latent
Diffusion Model and evaluate it on super-resolution tasks.
They apply the diffusion model in the latent space rather than
pixel space, which reduces the computational complexity and
improves the image quality.

In recent years, more research has challenged the natural
image large-factor super-resolution task. RFB-ESRGAN [41]
is based on ESRGAN [42] and uses multi-scale receptive
field blocks for ×16 super-resolution. Dong et al. propose the
DSSR network, which uses the dense sampling mechanism and
introduces a wide feature block (WAB) to enhance the repre-
sentation ability of the neural network. The RDN-LIIF network
proposed by Chen et al. uses the implicit neural representation
to generate arbitrary resolution images, achieving ×30 or even
higher image super-resolution. GLEAN [20] proposed by Chan
et al. has a good effect on natural scenes super-resolution (×16
to ×64). GLEAN use pre-trained StyleGAN as Latent Code
Bank which contains a large amount of texture prior to bring
vivid and realistic reconstruction effect of missing texture
details.

In large-factor super-resolution tasks, an important factor
affecting the quality of the generated image is the checker-
board effect. Odena et al. [43] first study the chessboard
effect caused by deconvolution in the image generation process
based on the neural network, and point out that the nearest
neighbor or bilinear up-sampling method can be used to
replace deconvolution to avoid checkerboard effects. In large-
factor super-resolution tasks, due to a large number of up-
sampling processes, it is very easy to cause the chessboard
effect. Sugawara et al. [44] also study ways to avoid the
checkerboard effect in super-resolution tasks.

B. Super-resolution for remote sensing image

Early studies in remote sensing image super-resolution are
mostly based on sparse representation [10, 11] and discrete
wavelet transform [15].

The emergence of deep learning has greatly improved the
quality of remote sensing image SR. Lei et al. [45] first use
the deep learning method in the remote sensing image super-
resolution task and proposed LGCNet. New neural network
architecture has also been applied to remote sensing image SR

tasks. Haut et al. [46] and Pan [47] apply dense connection,
residual connection, jump connection to remote sensing image
SR. Yang et al. [48] use transformer [49] network and atten-
tion mechanism to migrate texture from the high-resolution
reference image to the original image. Lei et al. [50] propose
a transformer-based enhancement network to exploit image
features at different levels.

More recently, many researchers develop SR methods
with the help of characteristics in remote sensing images.
HSENet [21] explores the multi-scale self-similarity com-
monly contained in remote sensing images and make full use
of the spatial attention mechanism. Some researchers [51, 52]
transform remote sensing images into wavelet domain and
learn SR methods in the transform domain. Qin et al. [22]
design a gradient-aware-loss to retain important gradient infor-
mation in remote sensing images. People also find the special
effects of using GAN network on remote sensing image SR.
Lei [53] find discrimination ambiguity problem in process of
GAN-based remote sensing image SR and propose coupled-
discriminated GAN.

Despite the above progress, in the remote sensing field, few
studies focus on large-factor super-resolution tasks (e.g. ×16
or more). Such tasks require not only restoring object details
but also reconstructing small-scale objects that are heavily
mixed in a single-pixel grid. The idea of using hyperspectral
information to improve the super-resolution of RGB images
is also rarely studied.

III. METHODOLOGY

The overall network structure of the proposed SpecGAN is
shown in Fig. 2. The network is designed based on the idea
of GAN-based image super-resolution, and the low-resolution
hyperspectral images are added as auxiliary information in
the generation stage. To make full use of the semantic infor-
mation in the hyperspectral image and provide more refined
features for the decoder, we design a fusion network for
RGB images and hyperspectral images. Considering that there
may be alignment deviation between images from different
sources, we design a strategy to avoid deviation confusion,
that is, further registration between two branches based on the
attention mechanism, which effectively improves the perfor-
mance of large-factor SR. To provide more sufficient priors
for the network to reconstruct detailed texture and avoid the
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Fig. 3. Detailed structure of the proposed Deep Feature Extraction Block
(DFEB). DFEB is composed of several Residual Dense Blocks (RDB) in
series.

checkerboard effect in the up-sampling process, we add a pre-
trained GAN to the network as the Latent Code Bank. In order
to improve the perceptual quality of generated image, we use
the discriminator structure in StyleGAN as adversarial loss
and introduce the perceptual loss.

A. Spectral information fusion and extraction module (SIFE)

In order to effectively integrate the semantic information
from hyperspectral images into the super-resolution process,
we design a dual-branch spectral information fusion and
extraction module. We design independent input branches for
the hyperspectral image and RGB image respectively. The
module consists of three parts: Deep Feature Extraction Block
(DFEB) in each branch, Registration and Fusion Block (RFB)
between two branches, and down-sampling to obtain high-level
semantic information.

Deep Feature Extraction
We design Deep Feature Extraction Block (DFEB) in each

branch. DFEB is composed of several Residual Dense Blocks
(RDB) in series. The overall structure is shown in Fig. 3. The
module uses the dense connection, local residual connection,
and global residual connection to ensure that each branch can
take into account low-level details and high-level semantic
information of the image.

The operation of each convolution layer in RDB is described
as follows:

Fa,b = σ(Wa,b[Fa−1;Fa,1;Fa,2; ...;Fa,b−1]), (1)

where Fa,b is the b − th feature map in the a − th RDB,
Wa,b is the kernel weight of this convolution layer, σ is the
LeakyReLU [54] activation function, [; ] means that feature
maps are stacked in feature dimension. In this design, the
input information of each convolution layer includes the output
information of the previous RDB and the operation results of
each previous convolution layer in the current RDB.

The output result of each RDB is linearly superimposed by
each convolution result in the current block. Previous RDB
outputs are added through local residual connection:

Fa = Fa−1 +Wa([Fa,1;Fa,2; ...;Fa,n]), (2)

where Fa is the a−th RDB output, Wa is a convolution layer
with 1 × 1 kernel, which is equivalent to linear combine all
feature maps in current block.

The output result of the whole DFEB combines all the RDB
output and further adds a global residual connection between
the input and output:

DFEBout = DFEBin +Wout([F1;F2; ...;Fn]), (3)

where Wout is combined by a convolution layer with 1 × 1
kernel and a convolution layer with 3 × 3 kernel to linearly
stack and transform every RDB output feature map.

Registration and Fusion
The introduction of the dual branch network clearly sep-

arates the low-resolution RGB image from the hyperspectral
image and helps to adjust incomplete correspondence between
two images on pixels during data acquisition. In order to better
realize multi-source data fusion and enhance the semantic
guidance of hyperspectral images, we design Registration and
Fusion Block (RFB) between two branches. The structure is
shown in Fig. 4. The whole process is divided into Branch
stacking, linear transformation, and registration based on sim-
ilarity.

1. Branch stacking can be expressed as:

Ffused = HF ([FA;FB ;MA/B ]), (4)

where MA represents a mask layer, which is used to identify
whether the fusion information is used to transform channel A
or channel B. HF is composed of several convolution layers,
which transform the features after stacking.

2. Linear transform of each branch is expressed as: (Using
branch A as an example)

F 1′

A = (FA ⊙X + Y ), (5)

where ⊙ represents pixel by pixel multiplication, X and Y
are obtained by Ffused through several convolution layers, as
shown in the upper right of Fig. 4.

3. Registration based on the similarity between two branches
We first calculate the similarity matrix Fs between any two

positions:

Fs(i, j) = eH
T
θ (Ffused(i))Hϕ(Ffused(j)), (6)

where Fs(i, j) is similarity between the i − th position and
j − th position.

The similarity matrix is used to register and align the
information in each branch:

F 2′

A (i) =

∑
j Fs(i, j)Hg(FAj)∑

j Fs(i, j)
, (7)

where Hθ, Hϕ, Hg is composed of convolution layers with
1× 1 kernel, as shown in the bottom right of Fig. 4.
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Fig. 4. Detailed structure of the proposed Registration and Fusion Block (RFB). This module is composed of three parts: Branch stacking, linear transform,
and registration based on similarity.

4. Total transformation in RFB is defined as:

F
′

A = FA + F 1′

A + F 2′

A . (8)

Down-sampling
As shown in Fig. 2, the last step in the spectral information

fusion and extraction stage is to down-sample the feature
map layer by layer, so that the network can extract high-
level semantic information from the input image. The down-
sampling is used as constraint information for subsequent
small-scale object disambiguation and reconstruction.

ei = Ei(ei−1), i ∈ {1, ..., N}, (9)

where ei is the i−th feature map, Ei is the i−th convolution
layer. Each group of convolution layers is composed of a
stride-2 convolution layer and a stride-1 convolution layer. ei
will then be used to constrain progressive texture generation
in the Latent Code Bank.

At the end of the down-sampling stage, a set of fully con-
nected layers are used to generate Latent Vector ci, providing
high-level semantic information for the Latent Code Bank by
adjusting the mean and variance of feature maps in the Latent
Code Bank.

B. Loss functions

Our network aims to generate SR results with accurate
object position and high visual quality. In order to achieve
this goal, we apply the following loss function:

Pixel Loss: The basic requirement of image super-
resolution is content accuracy. Introducing this loss function
makes SR results as close to the ground truth as possible
at the pixel level. In addition, early studies [16, 42] show
that introducing the mean square error between generated
image and high-resolution ground truth in GAN-based super-
resolution task can help to avoid image distortion such as
artifacts in the generated image.

Lpxl(G) = Ex,y∼pdata
{∥G(x)− y∥22}. (10)

Adversarial Loss: We use the adversarial loss to encourage
the network to generate realistic results with texture details.
Although only optimizing the network with pixel level loss
can get higher peak signal-to-noise ratios(PSNR), relevant
studies [30–33] show that this will get an excessively smooth
output, and adding adversarial loss [18] is more conducive to
generating image texture and edge. The loss function is defined
as follows:

Ladv(G,D) = Ey∼py{logD(y)}
+ Ex∼px{log(1−D(G(x)))}.

(11)

Perceptual Loss: To make the super-resolution results have
a better visual effect, we introduce Perceptual Loss [55], which
also helps to speed up the network training:

Lpcp(G) = Ex,y∼pdata
{∥ΦL

G(x) − ΦL
y ∥22}, (12)

where ΦL represents the feature map obtained from the L−th
layer of a pre-trained deep convolution network. Here we use
the feature map of the 21st layer in the pre-trained VGG16
network [56].

Objective Function: Combining all the above losses, the
overall objective function we aim to optimize is:

min
G

max
D

L(G,D) = λpxlLpxl(G) + λpcpLpcp(G)

+ λadvLadv(G,D),
(13)

where λpxl, λadv and λpcp are predefined positive factors
for balancing the weights between different loss terms.

C. Avoiding Chessboard Effect

In large-factor super-resolution tasks, due to a large number
of up-sampling operations, it is easy to produce chessboard
artifacts [43]. In order to eliminate the checkerboard effect in
generated images, we add the Latent Code Bank and use the
progressive bilinear interpolation up-sampling method.

the Latent Code Bank We add the Latent Code Bank
proposed in GLEAN [20] to learn rich and diverse image priors
such as object texture and edge in the dataset. The detailed
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TABLE I
THE DETAILED CONFIGURATION OF OUR NETWORK

Layer Kernel stride Input Output Activation function

D
FE

B

Conv layer x in each RDB (x ∈ [1, 8]) 3× 3 1 (128 + 64(x− 1))×H ×W 64×H ×W LeakyReLU
Output layer in each RDB 1× 1 1 (128 + 64 ∗ 8)×H ×W 128×H ×W None

Output layer in each DFEB 1× 1 1 (128 ∗ 8)×H ×W 128×H ×W None
3× 3 1 128×H ×W 128×H ×W None

R
FB

HF in branch stacking
3× 3 1 (128 ∗ 2 + 2)×H ×W 128×H ×W LeakyReLU
3× 3 1 128×H ×W 128×H ×W LeakyReLU
3× 3 1 128×H ×W 128×H ×W None

Conv-1 in linear transform 3× 3 1 128×H ×W 128×H ×W None
Conv-2 in linear transform 3× 3 1 128×H ×W 128×H ×W None
Conv-3 in registration 3× 3 1 128×H ×W 128×H ×W None
Hθ in registration 1× 1 1 128×H ×W 64×H ×W None
Hϕ in registration 1× 1 1 128×H ×W 64×H ×W None
Hg in registration 1× 1 1 128×H ×W 64×H ×W None

D
ec

od
er

D1

3× 3 1 CH,W ×H ×W CH,W ×H ×W LeakyReLU
Bilinear Interpolate CH,W ×H ×W CH,W × 2H × 2W None
3× 3 1 CH,W × 2H × 2W CH,W × 2H × 2W LeakyReLU
3× 3 1 CH,W × 2H × 2W CH,W × 2H × 2W LeakyReLU

Dx(x ∈ [2, n− 1])

3× 3 1 (2 ∗ CH,W )× 2x−1H × 2x−1W CH,W × 2x−1H × 2x−1W LeakyReLU
Bilinear Interpolate CH,W × 2x−1H × 2x−1W CH,W × 2xH × 2xW None
3× 3 1 CH,W × 2xH × 2xW CH,W × 2xH × 2xW LeakyReLU
3× 3 1 CH,W × 2xH × 2xW CH,W × 2xH × 2xW LeakyReLU

Dn
3× 3 1 (2 ∗ CH,W )× 2n−1H × 2n−1W 64× 2n−1H × 2n−1W LeakyReLU
3× 3 1 64× 2n−1H × 2n−1W 3× 2n−1H × 2n−1W LeakyReLU

Fig. 5. A single layer-block in the Decoder

structure is also similar to the Latent Code Bank in GLEAN,
which borrows the structure of the StyleGAN [35] generator.

si =

{
Si(ci, eN−i−1) i = 0,

Si(ci, eN−i−1, si−1) i > 0,
(14)

where Si represents i−th convolution layer in the Latent Code
Bank. Each layer first connects ei generated by SIFE in the
feature dimension, so as to better constrain the semantics of
the generated image. The Latent Vector ci is used to control
the mean and variance of the feature map in the Latent Code
Bank.

Progressive bilinear interpolation up-sampling We de-
sign progressive bilinear interpolation up-sampling, which
combines feature maps from the Latent Code Bank and the
previous layer in the decoder as input to expand the feature
map resolution, as shown in Fig. 5. The transformation of each
layer is defined as:

dn =

{
Dn,2(U2(Dn,1(dn−1))) n = 1,

Dn,2(U2(Dn,1([dn−1; sN+n−3]))) n > 1,
(15)

where Dn,i is i − th convolution layer with 3 × 3 kernel in
n−th decoder, U2 is a ×2 up-sampling layer. We use bilinear
interpolation to realize feature map up-sampling, avoiding

possible chessboard effects in process of deconvolution and
pixel-shuffle.

D. Implementation Details

We show the detailed structure of out network in Tab. I. The
number of feature channels CH,W in the Decoder is related to
the height and width of feature map. CH,W is 512,256,128,64
when the size of feature map is equal of lower than 64, 128,
256, 512 respectively.

In our experiment, we mainly focus on ×16, ×32 super-
resolution. In the training stage, we randomly cut out 256×256
high-resolution image patches from the training set as ground
truth. The LR RGB and HSI are 16 × 16 pixels (for ×16
SR) or 8 × 8 pixels (for ×32 SR) down-sampled image
patches. We use a random combination of horizontal and
vertical flipping as our data augmentation strategy. We set
hyper-parameters λpxl = 1.0, λadv = 0.1 and λpcp = 0.001.
We use Adam [57] optimizer to train network parameters, and
set β1 = 0.9, β2 = 0.99. The initial learning rate is set to
10−4, mimi-batch [58] size is set to 4. During the training of
1,000,000 iters, the learning rate decreases to 10−8 according
to the cosine law. The method we proposed is implemented
using the Pytorch [59] framework, with the help of code in
the mmediting [60] image editing toolbox. The network is
trained, verified, and tested on an NVIDIA GeForce GTX
1080Ti graphics card.

IV. EXPERIMENTAL RESULTS AND ANALYSES

In this section, we will give a detailed description of our
experimental dataset, evaluation metrics, ablation analysis, and
experimental results.
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Fig. 6. Visual comparison of different methods. From 1st to 8th column: low resolution input (32x), bilinear interpolation, bicubic interpolation, HSENet [21],
GLEAN [20], RDN-liif [29], our result, and ground truth. It can be seen that for lawns, roofs, playgrounds, parking lots, roads, rails, and other types of
ground objects, our output results are superior to similar networks in terms of semantic accuracy, edge, texture, and other details. For small-scale targets that
are mixed in a single-pixel grid, our super-resolution idea can effectively realize sub-pixel level unmixing, and clearly define the meaning and geographical
location of objects. On this basis, our network can effectively generate image texture with the help of rich and diverse priors. For example, the unique texture
of the parking lot line, playground runway line, roof, and lawn texture.

A. Experimental Dataset

We use the dataset [23, 61] from the “IEEE data fusion
contest 2019” to prove the effectiveness of our proposed
method. The dataset contains multi-view and multi-band re-
mote sensing images sampled from the city, including resi-
dential areas, green spaces, roads, schools, factories, railways,
and other common urban landscapes. It contains 0.05m/pixel
RGB images and 1m/pixel hyperspectral images (HSI) with 48
spectra. In the experiment, we use the bilinear interpolation
method to down-sample high-resolution RGB images to get
low-resolution RGB images and use the bilinear interpolation

method to resize the HSI images to the same size as the low-
resolution RGB images. The target size is 256 × 256 pixels
after super-resolution, and the input low resolution image is
8 × 8 pixels or 16 × 16 pixels. We divide the whole dataset
into three parts: training set, valid set, and test set. The best-
performing model in the valid set is applied to the test set for
image quality evaluation.

B. Comparison with the state of the art methods

On the same data set, we compare our method with the
state-of-art large-factor super-resolution methods, including
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TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS

Method PSNR↑ SSIM↑ NIQE↓ LPIPS↓

×1
6

Bilinear 23.31 0.6233 21.81 0.6457
Bicubic 22.88 0.6140 16.25 0.6671
HSENet [21] 24.51 0.6580 13.40 0.4533
RDN-liif [29] 24.76 0.6661 16.15 0.4130
GLEAN [20] 22.80 0.5312 6.64 0.3259
Ours 23.08 0.5577 5.54 0.2345

×3
2

Bilinear 21.01 0.6294 24.34 0.6296
Bicubic 20.56 0.6211 20.13 0.6500
HSENet [21] 22.04 0.6444 15.58 0.5804
RDN-liif [29] 22.29 0.6529 17.41 0.4994
GLEAN [20] 20.33 0.4809 4.90 0.3825
Ours 20.80 0.5376 5.56 0.2863

GLEAN [20], which propose the Latent Code Bank to make
full use of prior information in the dataset, and RDN-liif [29],
which use implicit neural representation to infinitely extrapo-
late the resolution of images. We also compare with the latest
remote sensing image super-resolution method HSENet [21],
which uses characteristics of remote sensing images and
design network based on mixed scale attention. The bilinear
and bicubic interpolation are used as the baseline of our
comparison methods.

For a fair comparison, for all the comparison methods,
our experiments stack the low-resolution RGB image and
the corresponding HSI image in the channel dimension as
input. The number of input channels for the first convolution
layer of the comparison super-resolution networks is adjusted
accordingly.

Our visual comparison results are shown in Fig. 6. The
quantitative comparison results are shown in Tab. II. We use
three groups of evaluation metrics, 1) the traditional image
evaluation metrics including PSNR and SSIM [62], 2) the
unsupervised image evaluation metric NIQE [63], and 3) the
latest image perceptual metric LPIPS [24], which is the closest
to human’s visual effect. From Tab. II, we can see that our
method achieved better scores and better visual effects than
the state-of-art methods above.

From Fig. 6, we can see that our network effectively
reconstructs small-scale features such as cars, paths, and
railway tracks. This is due to our network effectively ex-
ploiting the rich and diverse spectral information provided by
hyperspectral images. We achieve sub-pixel level unmixing,
clarify the semantics and location of these small-scale objects
in the image. At the same time, our network also has a
good effect on reconstructing internal detailed texture features
(e.g., parking lines in parking lots and texture of lawns and
roofs), which should be attributed to the prior captured by
the network during the training process. Because even in the
hyperspectral image, these fine textures (e.g., twigs and roof
textures) cannot be accurately located, only by relying on
priors can we produce texture realistic images.

It is worth mentioning that from Tab. II, we can see that
in the large-factor super-resolution task, the PSNR values
of state-of-art methods and our method are low. Especially
in the ×32 super-resolution experiment, the PSNR values

TABLE III
ABLATION STUDY OF FOUR DIFFERENT COMPONENTS OF OUR METHOD:

1)HSI INPUT, 2) DUAL BRANCH SIFE, 3) THE LATENT CODE BANKS, AND
4) RGB INPUT.

PSNR↑ SSIM↑ NIQE↓ LPIPS↓

our full implementation 20.80 0.5376 5.56 0.2863
w/o HSI input 20.90 0.5210 5.93 0.2932
w/o dual branch SIFE 21.55 0.5285 5.55 0.2898
w/o the Latent Code Bank 21.15 0.5153 6.00 0.2987
w/o the RGB input 17.50 0.4482 5.55 0.3635

obtained by GLEAN [20] and our method are even lower than
using bilinear interpolation. However, previous studies [30–33]
show that the PSNR score is not consistent with the human
visual perception effect, and this metric is not objective in
image super-resolution. From the output results of the RDN-
liif network with the highest PSNR value, it can be found
that a higher PSNR value may correspond to an excessively
smooth visual effect but does not reflect the unique texture
features of various ground objects. Therefore, we also test
the latest image perceptual metric LPIPS. In the ×32 SR
experiment, our proposed method is significantly ahead of
the latest super-resolution network GLEAN 33.6%, and ahead
of the latest remote sensing image super-resolution network
HSENet 58.3%, which proves that our super-resolution results
have a better visual perception score. From the visual effect of
the output image, our method is also significantly better than
other SR networks.

C. Ablation Studies

In this part, we carry out some ablation studies, mainly
to verify 1) the necessity of introducing hyperspectral in-
formation, 2) the effectiveness of our dual branch spectral
information fusion and extraction module, 3) the role of the
Latent Code Bank, and 4) the necessity of introducing RGB
information. Our evaluation value is shown in Tab. III, and
visual results are shown in Fig. 7.

To verify the necessity of hyperspectral image (HSI), we
only input RGB images into both branches of SIFE, which
ensures that the total number of computing units and com-
puting structure of the network remains unchanged. To verify
the effectiveness of the dual branch SIFE structure design, we
replace the dual branch structure with a single branch network
with the same number of DFEB blocks and stack hyperspectral
image and RGB image directly in spectral dimension as input.
To verify the effectiveness of the Latent Code Bank, we
remove the Latent Code Bank from the network but keep the
appropriate stacking connection. The necessity of introducing
hyperspectral information as a semantic constraint and the
network structure we designed can be proved in both the
evaluation value and visual effect, which effectively improves
the quality of the output image.

According to the comparison between the SR effect of
each ablation experiment and the original network, it can be
concluded that the accurate interpretation of the meaning of the
ground object mainly depends on hyperspectral information,
while the dual branch structure and the Latent Code Bank
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Fig. 7. Visualization results of ablation experiment. Results in the first row show the necessity of HSI in small-scale ground object disambiguation. Hyperspectral
input helps the network capture car information under the shadow of trees and houses. The images in lines 2-4 show that hyperspectral input makes the
boundary of ground objects more accurate. After removing HSI input, the structure of the lawn edge is inaccurate, and the segmentation of the train carriage
is not constructed. The last row shows that the constraints of hyperspectral data ensure the semantic accuracy of the generated image. After removing HSI,
an ordinary can is wrongly reconstructed into a car shape, causing serious semantic errors.

improve the quality and detail of the generated image and
eliminate checkerboard effect. We can summarize the role of
adding hyperspectral information guidance as follows:

• HSI information helps the network more effectively re-
solve the overlapping small-scale objects. In datasets, cars
are often blocked by vegetation and house shadows. If
only RGB information is used, it is difficult for even
humans to distinguish cars mixed in the pixel lattice,
but the addition of HSI information enables the network
to capture the unique spectral information of cars and
help the decoder complete the construction of small-scale
ground objects.

• The addition of HSI information makes the boundary
of the ground object interface more accurate and clear.
Without the HSI information, the construction of the
lawn shape is very inaccurate. Many curve shapes of
lawn boundaries are constructed as straight lines, and
some bare ground regions are also wrongly replaced by
grassland.

• HSI information strengthens the semantic constraints on
the generated images and avoids semantic misjudgment.
When the resolution of the input image is very low, even
human eyes cannot distinguish whether the white pixel
grid is a white car or a white can. When we only use
RGB as input, the network will produce misjudgment and
construct it as a car, but after adding HSI information as
a constraint, the network makes full use of the spectral
specificity of different objects to avoid the seemingly
reasonable but semantically wrong output.

Under spectral guidance, Ablation Experiments 2 and 3
suggest the effectiveness of the proposed network structure
in information fusion and image generation. According to the
comparison between the SR output of Ablation Experiment
2 and the output of our full implementation, when the dual
branch structure is removed, some ground object boundaries
are parsed incorrectly (such as the boundary of the train
carriage), which is equivalent to the failure to make effective
use of spectral information. According to the comparison
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TABLE IV
IMPACT OF UNREGISTERED INPUT IMAGES.

PSNR↑ SSIM↑ NIQE↓ LPIPS↓

The original data set 20.80 0.5376 5.56 0.2863
Offset 1 pixel 20.35 0.5289 5.50 0.2978
Offset 2 pixels 20.11 0.5233 5.48 0.3086
Offset 3 pixels 20.04 0.5210 5.45 0.3139
Offset 4 pixels 20.04 0.5205 5.44 0.3176

TABLE V
A COMPARISON ON THE MODEL PARAMETERS, FLOPS, AND INFERENCE

TIME.

Method Params FLOPs Inference Time

HSENet [21] 5.9M 3.59G 0.050s
RDN-liif [29] 22.3M 92.68G 0.081s
GLEAN [20] 210.2M 113.51G 0.236s
Ours 234.1M 104.58G 0.224s

between the SR effect of Ablation Experiment 3 and the
original network effect, it can be found that the network
generates images without the Latent Code Bank will produce
a serious checkerboard effect and reduce the visual quality of
the image.

In Ablation Experiment 4, by analyzing the evaluation met-
rics and visualization results, it can be seen that only adding
hyperspectral images to try to restore high-resolution RGB
images has a poor effect. We summarize the possible reasons
as follows: 1) The RGB image and the hyperspectral image
in the data set are slightly misaligned. When the two images
are input together, our registration module can make necessary
adjustments to the feature map based on attention. However,
when generating RGB images only based on hyperspectral
images, these alignment deviations will lead to blurred ground
objects and incorrect edges. 2) The imaging mechanism of
hyperspectral images and RGB images is different. The re-
construction of the RGB band based on a hyperspectral image
involves the conversion of imaging style, which is not effective
at present. By comparing the results of inputting only RGB im-
ages and inputting only hyperspectral images, we believe that
in the proposed spectral guidance super-resolution task, RGB
information mainly constrains the color of the generated image
and the overall location of ground objects, while hyperspectral
information mainly provides semantic auxiliary information.
Both of them are necessary in our designed method.

D. Impact of unregistered input images

In this experiment, we artificially created misalignments
when we preprocessed the dataset. We cause a deviation of 1 to
4 pixels between the hyperspectral image and the RGB image
fed into the network, which means that the misalignment is
between 12.5% and 50% of the original image. We created the
deviation in both width and height dimensions. We calculate
evaluation metrics PSNR, SSIM, NIQE, and LPIPS like other
experiments. The evaluation value is shown in Tab. IV.

E. Computational Complexity, Parameters, and Speed

We use three different metrics to compare the computational
complexity, parameters, and speed of our method with other
state-of-the-art super-resolution methods. In Tab. V, we record
the number of model parameters (Params), the number of
floating-point operations (FLOPs), and the inference time of
different models. We test on ×32 super-resolution task and
execute our programs on an Nvidia GeForce GTX 1080 Ti
graphics card. Compared with other methods, our method has
more parameters and a longer inference time. This is because
our method focuses on difficult large-factor super-resolution
task, which requires more parameters and memories.

V. DISCUSSION

Although the experimental results demonstrate the effective-
ness of our methods, it still has some limitations.

1) Our proposed method has a high computational
cost——more model parameters, more floating-point
operations, and longer inference time. So it’s not worth-
while for our methods to deal with regular small-factor
super-resolution tasks.

2) The ability to reconstruct sub-pixel ground objects relies
on similar targets abound in the dataset, such as cars and
playground track lines. However, for the targets that do
not appear in the data set, the reconstruction effect of
our method is poor.

VI. CONCLUSION

We propose a novel method for large-factor super-resolution
of remote sensing images, which achieves up to 32x super-
resolution with high visual fidelity under the premise of
accurate ground object semantics. Considering the problems
of sub-pixel mixing and semantic ambiguity, we propose to
introduce additional hyperspectral images as input and design
the spectral information fusion and extraction module (SIFE),
which can effectively fuse low-resolution RGB images and
hyperspectral images. We also introduce the Latent Code Bank
and adversarial training to add rich details to SR results, which
helps to improve image quality. Our method can produce high
visual quality images with accurate semantics, clear outline,
and real detailed texture. Compared with other most advanced
methods, our method has achieved better results in terms of
both quantitative metrics and visual quality.
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