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Abstract

Hyperspectral sparse unmixing aims at modeling pixels of hyperspectral image as linear combination of a subset

of a prior spectral library. Over the past years, spectral library has been constantly expanded, including spectra of

the same material with intrinsic variability, which may result in the problem of high correlation. Recently, multi-

objective sparse unmixing methods presented promising performance in dealing with sparsity via a non-convex L0

norm, but are insensitive to identifying endmembers with high correlation. In this paper, we propose a multi-objective

sparse unmixing method, multi-objective group sparse hyperspectral unmixing (MO-GSU), which integrates a group

sparsity structure to address high correlation of the spectral library induced by spectral variability. In order to describe

the sparsity within and among groups, MO-GSU develops a mixed norm L0,q instead of the L0 norm. During the

optimization, we propose two new search strategies: intra-group local search and group oriented adaptive genetic

operator. The intra-group local search strategy is presented in addition to the multi-objective evolutionary algorithm for

better exploitation within groups. The group oriented adaptive genetic operator is designed to maintain the inter-group

distribution between generations and further ensure the intra-group exploitation. Moreover, we provide theoretical

proof for the advantage of the group operators in exploiting the endmembers within group. To verify the efficiency

of the proposed method on high correlation situations, MO-GSU is compared with recently proposed endmember

bundle based and multi-objective based sparse unmixing methods on synthetic and real data with high correlation

libraries.
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I. INTRODUCTION

Hyperspectral image (HSI) is a three-dimensional data cube containing abundant spectral information in the form

of reflectance of numerous continuous spectral bands. Spectral signatures vary from material to material due to

the high spectral resolution of hyperspectral sensors, allowing precise identification of materials from an image.

Informative as an HSI be on the spectral dimension, the spatial resolution of hyperspectral sensors suffers to be

relatively low [1]. As a result, there exists mixed pixel, as in one pixel containing multiple materials. In recent

years, many hyperspectral unmixing techniques have been developed to identify pure material signatures (called

endmembers) in each pixel of the HSI, and estimate their proportions (called abundances) at the same time [2]–[4].

Linear mixture model is a popular description of the unmixing process. Unlike nonlinear models which takes

account of multiple reflectance and scattering from various materials [5], [6], linear mixture model assumes the

signature of a pixel to be a linear combination of spectra signatures of pure materials. Different approaches

have been addressed under the assumption of linear mixture model in the past decades, including categories of

geometrical approaches, statistical approaches, non-negative matrix factorization and sparse regression approaches

[4], [7]. Geometrical approaches consider the linearly mixed signatures with the sum-to-one constraint on abundances

in a simplex, of which the vertices represent the endmembers and the volume is the optimization objective

[8]–[10]. Statistical approaches such as bayesian methods perform bayesian inference and parameter estimation

on endmembers and abundances [11], [12]. Non-negative matrix factorization resolves the observed image into

endmember and abundance matrices [13]–[15]. Sparse regression approaches exploit a redundant prior spectral

library as endmember candidates, assuming the observed image a linear combination of pure spectra signatures

from a subset of the spectral library [16]. Sparse unmixing is a semi-supervised approach including endmember

selection and abundance inversion procedures, thus has no need for pure pixel assumptions. The method proposed

in this paper is a sparse unmixing approach.

Nevertheless, sparse unmixing expects the challenge of how to optimize the sparsity of endmembers directly

expressed via L0 norm. The L0 norm regularization formulates a nonconvex and NP-hard optimization objective.

Convex approximation and greedy search are the two common solution to address L0 norm. Literature [17]

converted the nonconvex problem into a convex form by proposing SUnSAL to relax L0 norm into L1 norm.

Literature [18] adopted L0, 12
quasinorm, a better approximation of L0 norm as penalty and an iterative algorithm

for abundance estimation. Literature [19] designed a numerical reweighted least squares algorithm for the constrained

sparse lp-l2 (0 < p < 1) optimization problem. Literature [8] employs sparsity criteria based library pruning and

explores standard sparsity measures such as Gini index and pd-norm sparsity. The boosting deep learning methods

have provided promising results on many image processing tasks, and literature [20] proposes SUnCNN, a deep

convolutional encoder–decoder, to solve sparse unmixing problem.

Multi-objective optimization is an effective solution for overcoming the difficulty induced by the nonconvex

optimization [21]. Sparse unmixing task is naturally a bi-objective problem as simultaneously minimizing the

reconstruction error of image data and endmember sparsity applied with L0 norm. The L0 norm sparsity determines

multi-objective sparse unmixing to be an NP-hard problem. Multi-objective evolutionary algorithms (MOEAs) are
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proved to be available and effective for NP-hard problems. Many multi-objective sparse unmixing algorithms have

arisen in recent years [22]–[26]. MOSU [27] translated sparse unmixing into a tri-objective problem and employs

a cooperative coevolutionary strategy. SMOSU [28] regarded sparse unmixing as a bi-objective problem, applying

binary decision vector and a random flipping strategy. PMOSU [29] simultaneously performed library pruning and

sparse regression through a gradual compression of search space. Jiang [30] proposed an improved two phase

approach with extra application of spatial-contextual information.

However, the classic multi-objective sparse unmixing methods may suffer the problem of inadequate searching

performance due to the high correlation of the spectral library caused by spectral variability. Spectral variability

enlarges the scale of prior spectral library and raises correlation. The inadequate search is an inevitable outcome since

the classic MOEAs are not capable of simulating the Pareto Front within bearable evaluations when confronting

large-scale multi-objective problems [31]. The spectral variability effect [32], namely several spectral signatures

representing one single material, occurs attributed to the variation of intrinsic property and extrinsic conditions such

as illumination and atmosphere. Methods addressing spectral variability can be divided into two main categories.

On the one hand, researchers adjust the conventional LMM model to cover the variation of extrinsic conditions [33],

[34]. On the other hand, intrinsic variation is expressed via multiple detected instances of one particular material,

called endmember bundles [35]–[37]. Literature [38] extracted endmember bundles to construct spectral library with

high correlation, and adopted a mixed norm for class and intra-class sparsity. Dictionary pruning methods eliminate

correlation by reducing mutual coherence [39]. Literature [40] presented a recursive PCA approach as well as a

mutual coherence reduction method for library pruning.

In this paper, we propose a new multi-objective group sparse unmixing algorithm MO-GSU to address high

correlation within endmember bundles in the spectral library. There are threefold strategies presented to tackle with

high correlation caused by spectral variability and the resultant group structure formed of endmember bundles. 1)

In order to interpret the sparsity within and among groups, we introduce a mixed norm L0,q in MO-GSU containing

group structure information, where q is a real value between 0 and 1, still formulating an NP-hard problem. The

sparsity of material and each endmember underlies in the inherent requirement of hyperspectral unmixing. The

proposed MO-GSU tailored for spectral libraries with correlation is then used to optimize the bi-objective problem.

2) An intra-group local search strategy is presented in addition to the multi-objective evolutionary algorithm to exploit

endmember selection within certain groups [41]–[43], significantly improving the effectiveness and efficiency of

endmember selection. 3) Furthermore, to balance exploitation and exploration, this paper employs a group oriented

adaptive genetic operator, including a crossover operator involving group structure to maintain the distribution within

group between generations during the evolutionary process, and an intra-group mutation operator to further ensure

the intra-group exploitation.

The contributions of MO-GSU include the following aspects:

1) We propose an advanced multi-objective hyperspectral unmixing method for a mixed L0,q norm model based

on group sparsity, which aims at addressing the high correlation of spectral library.

2) In the proposed MOEA, we design two group based optimization strategies, intra-group local search and

group oriented adaptive genetic operator, to enhance intra-group exploitation and inter-group exploration.
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3) We further provide theoretical proof for the proposed genetic operator of a more sufficient endmember

exploitation within group.

II. PROPOSED METHOD

In this section, we first introduce some background context on unmixing model, group sparsity with mixed norm and

multi-objective evolutionary algorithms. Then, we elaborate on the proposed multi-objective group sparse unmixing

method. To start with, we demonstrate the mathematical expression of the group sparse unmixing problem and the

framework of the proposed MO-GSU method. In section II-A, we first introduce some background context. Section

II-B presents the model of MO-GSU. Section II-C describes the optimization process, and we detail the techniques

aimed at intra-group correlation orderly in section II-D and II-E.

A. Background

1) LMM: Linear mixing model (LMM) assumes each pixel in an HSI as a linear combination of pure spectral

signatures:

yi = Axi + ni, (1)

where yi ∈ RL×1 is the reflectance vector of the i-th pixel from an observed image over L spectral bands,

A ∈ RL×m is the spectral signature matrix associated with m endmembers, xi ∈ Rm×1 is the corresponding

abundance vector of the m endmembers, and ni ∈ RL×1 is a vector collecting noise and modeling error. Equation

(1) can be rewritten considering n pixels in the observed image in Equation (2):

Y = AX + N, (2)

where Y = [y1,y2, . . . ,yn] ∈ RL×n denotes the reflectance matrix of the whole image, X ∈ Rm×n denotes the

abundances of m endmembers on n pixels, and N ∈ RL×n represents the noise matrix. The abundance of each

pixel satisfies the abundance nonnegative constraint (ANC): xij ≥ 0, j = 1, 2, . . . , n and the abundance sum-to-one

constraint (ASC):
∑m

i=1 xij = 1, j = 1, 2, ..., n . In this paper, nonnegative constrained least square method is

adopted to inverse the abundance matrix after endmember selection.

2) Endmember Bundles and Mixed Norm: Sparse unmixing methods utilize a prior spectral library as endmember

candidates and implement constrained least square regression on the optimal subset for abundance inversion. The

prior library which can be represented as A in Equation (2) is designed to adapt to various image scenes. To this

end, the library is supposed to be redundant, as in sparsity of nonzero rows of A in Equation (2). The conventional

sparse unmixing task is expressed as Equation (3).

min
X
‖ X ‖row−0,

s.t. ‖ Y −AX ‖F≤ δ,X ≥ 0.

(3)

where δ is the tolerance of reconstruction value, ‖ · ‖row−0 and ‖ · ‖F denote the numbers of nonzero rows and

the Frobenius norm of a matrix.
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However, Equation (3) does not exploit the grouping information of the prior library. Due to the spectral variation

of extrinsic and intrinsic properties, it is common in a spectral library that several spectra represents single material.

Therefore, different realizations of the same material compose endmember bundles, and the intrinsic similarity

within bundles formulates certain group structure. Given such additional group structure G, the L0-norm sparsity

is translated into group sparsity in LG,p,q norm, 0 < p, q < 1. The sparse unmixing task containing grouping

information is expressed via Equation (4).

min
X
‖ X ‖G,p,q,

s.t. ‖ Y −
|G|∑
g=1

AgXg ‖F≤ δ,X ≥ 0.

(4)

where G denotes the grouping strategy, | G | is the number of groups, Ag , Xg are the corresponding grouping

endmembers and abundance of indices from group g respectively, and ‖ · ‖G,p,q denotes the mixed norm of a

matrix, 0 < p, q < 1. The LG,p,q norm of a vector x and group structure G is defined in Equation (5) for any real

p, q, where | Gi | denotes the size of the i-th group.

‖ x ‖G,p,q= (

|G|∑
i=1

(

|Gi|∑
j=1

| xGi,j |p)
q
p )

1
q = (

|G|∑
i=1

‖ xGi
‖qp)

1
q (5)

When (p, q) = (0, 1), the group sparsity is reduced to L0-norm in Equation (3). The group sparsity with (p, q)

values of (1, 1), (2, 1), (1, 2), (1, q), 0 < q < 1, correspond to regular lasso, group lasso, elitist lasso, and fractional

lasso respectively. In this article, we set (p, q) = (0, q), 0 < q < 1, thus adopting group sparsity of LG,0,q norm,

since it’s a better reflection of both inter-group and intra-group sparsity than the regular L0-norm.

3) Multi-objective Optimization: A minimization multi-objective problem (MOP) of k objectives can be presented

as follow:

min
s
F (s) = [f1(s), f2(s), . . . , fk(s)]T

s.t. hi(s) ≤ 0, i = 1, 2, . . . , c1,

hj(s) = 0, j = 1, 2, . . . , c2.

(6)

where s is a feasible solution in the decision space Ω, which is established by inequality and equality constraints

hi(s) and hj(s).

MOPs aim at simultaneously optimizing more than one objective function which conflict with each other for

most cases. Therefore, the trade-off relation among objectives is in consideration and a criterion assessing multiple

objectives is in need. To this end, the concept of Pareto dominance is introduced as follow. For two feasible solutions

s1, s2 of Problem (6), s1 is said to dominate s2 if and only if

∀i ∈ 1, 2, . . . k, fi(s1) ≤ fi(s2),

and ∃j ∈ 1, 2, . . . k, fj(s1) < fj(s2).

The Pareto optimal set is constituted of feasible solutions not dominated by any other solutions, and the

corresponding objective vectors of Pareto set form Pareto Front (PF). Multi-objective evolutionary algorithms

(MOEAs) are designed to find a collection of optimal trade-off solutions so as to approximate Pareto Front. In
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MOEA, commonly a set of solutions evolve altogether in each generation via crossover, mutation and non-dominated

based selection.

B. Multi-objective Group Sparse Unmixing Model

The endmember bundle based sparse unmixing problem is translated into a bi-objective optimization problem

and addressed by the designed algorithm. Considering the prior grouping information, we design the bi-objective

minimization of reconstruction error and group sparsity as follows:

min
s∈{0,1}r

F (s) = [f1(s), f2(s)]T

f1(s) =


‖ Y −AsXs ‖F, 0 ≤‖ s ‖0≤ 2k

∞, else

f2(s) =|‖ s ‖G,0,q −k |

(7)

In this article, we take spatial information into consideration via a uniform endmember selection among all

pixels in the image. s ∈ {0, 1}m is a binary vector denoting endmember selection from spectral library with m

spectra, in which si = 1 means the i-th material in the library exists in the image Y, and 0 otherwise. f1(s) is

the reconstruction error of the observed image and is set finite only when the endmember selection satisfies the

physical meaning of sparsity. In accordance with Ref. [28], we adopt the same algorithm HySime [44] to estimate

the number of endmembers k aforehand, which accounts for an indicator in reconstruction error evaluation and

an expectation of sparsity. The usage of estimated endmember numbers is a common tactic [28] to constrain the

sparsity around a computed positive integer instead of 0 for accuracy. As is the corresponding subset of library A

whose indices are denoted by the nonzero elements in s, and Xs is the inverse abundance matrix of the new library

As calculated from nonnegative least squares algorithm:

As = A · s,

Xs = argmin
X≥0

‖ Y −AsX ‖F.

f2(s) is a mixed norm integrating grouping structure of the spectral library, where 0 < q < 1:

f2(s) = (

|G|∑
i=1

‖ sGi ‖
q
0)

1
q

LG,0,q quasi-norm better expresses both inter-group and intra-group sparsity than the regular L0-norm, enforcing

sparsity on the endmember selection within bundle as well as bundles per se. Such expression manifests it is the

number of materials instead of the spectra that is sparse in a pixel, meanwhile presenting the ascending sparsity

within each bundle where only one endmember is supposed to exist.

f1(s) stands for the reconstruction error, and the quasi-norm denoted by f2(s) forms the group sparsity constraint.

The two optimization objectives together compose the demands of sparse unmixing tasks. By optimizing Equation

(7), trade-off solutions could be obtained to balance between accuracy and sparsity.
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C. Optimization

In order to handle the nonconvex discrete optimization caused by the LG,0,q norm, we propose a multi-objective

evolutionary sparse unmixing method tailored for spectral library with group structure. We apply HySime on image

data for endmember number estimation in advance, and k-means on spectral angle distance among the spectral library

to form the group structure. Note that a predefined grouping structure is preferred, in which case the clustering

step is not in need. As is demonstrated in pseudocode in Algorithm 1, the optimization procedure of the proposed

MO-GSU adopts a framework similar to NSGA-II, in which the environmental selection via non-dominated sorting

and crowding distance remains, yet an additional intra-group local search and a group oriented adaptive genetic

operator are embedded for intra-group exploitation. The procedure of MO-GSU can be described as follows:

1) Initialization: First, we initialize a set of binary vectors with a sparse distribution as the initial population

P = {s1, s2, . . . , sN} with N individuals. 2) Evolution: In the first stage of evolutionary algorithm, the common

NSGAII with the traditional one-point crossover and one-point flipping mutation operators is implemented. In

the second stage, the overall population update procedure is exhibited in Figure 1 for each generation. Three

sub-populations are generated to form the updated population: In the left branch of Figure 1, for sufficient local

exploitation, an intra-group local search module designed for selection within bundle is conducted on a selected

reference solution s̃ to generate population PLS as the first sub-population. In the middle branch of 1, the current

population P is duplicated as the second sub-population. In the right branch of 1, a parent population Pa consisting

2N individuals are selected via tournament selection from current population P. Then N pairs of parent solutions

are drawn without replacement to generate an offspring population O with the proposed group oriented adaptive

genetic operator. The offspring population O with N individuals is the third sub-population. The combination of

the three sub-populations P, O and PLS are evaluated and sorted via non-dominated rank and crowding distance

to form the updated population. The number of evaluations denotes the cumulative times of calculating the two

objective functions. We use the number of evaluations as the stopping criterion to limit the computational cost

under proper range. 3) Optimal solution selection: After meeting the stopping criterion, we return the current

population as the proximate Pareto optimal set. We then select the most compatible solution for the unmixing task

in consideration of the estimated endmember number and the knee point. Considering that neglected endmembers

cause more inaccuracy than redundant ones, we first keep the solutions containing no less endmember than the

estimated number, among which we choose the knee point as the final solution. 4) Abundance inversion: The final

solution denotes the optimal endmember selection from the spectral library, the abundance matrix is then calculated

accordingly using nonnegative least squares algorithm. In the next two sections, we detail the local search module

and the group based genetic operator respectively.

D. Intra-group Local Search

MO-GSU synthesizes the genetic algorithm for its potential on global exploration and a novel intra-group local

search strategy based on group structure for sufficient local exploitation. The local search strategy is performed in

the second stage of the optimization, when in general the global exploration is accomplished.
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Fig. 1. The update procedure of each generation in the second stage. Each row of the current population P denotes a solution, different colors

denote different groups of endmember, and the darkened colors denote the endmembers selected in the solution.

Algorithm 2 details the local search procedure which requires a local search population size NLS so as to restrict

complexity determined by the group size. A random solution s̃ is drawn from the non-dominated set of current

population as the reference solution. A random group Gi is further drawn from the nonzero groups of s̃. Then a

solution set PLS with up to NLS solutions are generated, among which the elements in Gi varies while elsewhere

are identical to the reference solution. Specifically, if the size of the chosen group Gi, |Gi|, is smaller than NLS,

the reference solution is duplicated for |Gi| times. For the j-th duplicate, element of index Gij is set as 1 and other

indices in Gi as 0, where Gij denotes the j-th index of group Gi. If |Gi| is greater than NLS, the operation holds

except that the duplication is carried out for only NLS times, and NLS out of |Gi| indices are randomly selected to

construct NLS solutions. Figure 2 provides a graphic demo of the local search module to select reference solution

and random group, generating a local search population PLS.

The local search module is proposed to compensate for the failure of evolutionary unmixing to locate the

endmember within a bundle. Genetic algorithms determine the primary searching direction quickly due to its

competence in global exploration, nevertheless the local exploitation suffers relatively. As a result, difficulty arises

in the more delicate adjustment for the solutions during the optimization process. In the scenario of sparse unmixing

on high correlation spectral library, multi-objective evolutionary approaches are able to narrow the selection of

endmember down to bundle-wise. However the convergence speed tends to slow down when selecting one particular

endmember from a group in the experiments. The local search module benefits endmember selection within bundle

by conducting a more sufficient exploitation. In section 3.3, Figure 4 demonstrates how intra-group local search

improves the endmember selection efficiency in experiment.
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Algorithm 1 MO-GSU.
Input: A(spectral library), Y(image data), N (population size), ng(group number).

Output: s(endmember selection), Xs(abundance).

1: Initialization:

2: k ← Hysime(Y,A);

3: G← kmeans(A, n, ‘SpectralAngleDistance′);

4: P←Initialize N binary individuals with sparsity;

5: Evolution:

6: while #evaluated < #evaluation do

7: Pa ← Perform tournament selection on P for 2N times to select parent population of 2N individuals;

8: if #evaluated < 0.5× #evaluation then

9: Stage I:

10: O← Generate N offspring via one-point cross over and flipping mutation from Pa;

11: P← (P ∪O);

12: else

13: Stage II:

14: O← GroupOperator(Pa); //Generate N offspring via group based operator from Pa, see Algorithm 3

15: PLS ← LocalSearch(P); //Generate |Gi| individuals according to one random solution from Pa and one

random group Gi, see Algorithm 2

16: P′ ← (P ∪PLS ∪O);

17: end if

18: P ← Evaluate the 2N solution according to Equation (3), rank the individuals in P′ by Pareto rank via

non-dominated sorting and crowding distance, and update P with the first N individuals in P′;

19: end while

20: Abundance inversion:

21: s← Select the knee point from P;

22: Xs ← Calculate the corresponding abundance according to Equation (7);

23: return: s,Xs;

E. Group Oriented Adaptive Genetic Operators

For the first stage of the evolutionary process, MO-GSU adopts the ordinary binary genetic operators namely

one-point crossover and flipping mutation, and for the second we propose a new group-based variation with adaptive

mutation probability. Algorithm 3 details the proposed variation. The crossover between two parent individuals is

performed in groups uniformly. Elements in the same group are treated as a collective unit, and the units from two

parents combines with each other at a given probability to reconstruct a new offspring. Instead of arbitrarily selecting

a location and concatenate two segments from two parents, the group based crossover preserves the endmember
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Fig. 2. The i-th individual is selected from the current population P and serves as the reference solution s̃. Randomly choose the j-th group

which contains five variable. Duplicate the reference solution for five times and replace the j-th group with a five-by-five identity matrix.

selection within a bundle and reassemble bundles as a whole.

The mutation of an offspring is performed with an adaptive flipping probability to sustain the sparsity within

group. For the nonzero groups Gi in the offspring solution o, the adaptive probabilities in group Gi are given by

Equation (8): 
p1 =

d× p+ d1 − 1

2× d1

p0 =
d× p− d1 + 1

2× (d− d1)

(8)

where p1 denotes the probability of an element flips from 1 to 0, and p0 versa, d is the number of elements in

group Gi, d1 is the number of the current nonzero elements of solution o in group Gi, and p is the overall flipping

probability.

Compared to the ordinary flipping mutation with the same overall flipping probability, the proposed mutation

strategy sustains intra-group sparsity. The above formality satisfies the two conditions in Equation (9). The first

condition is that the overall flipping probability equals to p, and the second is that the expected number of nonzero

elements after mutation equals to d1.
d1 × p1 + (d− d1)× p0 = d× p

d1 × (1− p1) + (d− d1)× p0 = d1

(9)
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Algorithm 2 Local Search
Input: P(current population), NLS(local search population size).

Output: Output: PLS (local search population).

1: s̃← Select a random solution from the non-dominated set of P;

2: Gi ←Select a random non-zero elements from s̃, set Gi as the corresponding group indices;

3: if |Gi| ≤ NLS then

4: PLS ←Duplicate ŝ for |Gi| times and form a population of size |Gi|;

5: for j = 1 : |Gi| do

6: PLS(j)←adjust indices of group Gi for j-th solution in PLS: set the j-th index of Gi in j-th solution as

1, other indices of Gi in j-th solution as 0;

7: end for

8: else

9: PLS ←Duplicate ŝ for NLS times and form a population of size NLS;

10: for j = 1 : NLS do

11: j′ ← randomly select a non-repeated index between 1 and NLS;

12: PLS(j′)←adjust indices of group Gi for j-th solution in PLS: set the j′-th index of Gi in j-th solution

as 1, other indices of Gi in j-th solution as 0;

13: end for

14: end if

15: return PLS.

Such conditions illustrate that the overall flipping probability of the proposed mutation strategy is the same as

general mutation operators. Nevertheless the number of the nonzero elements within group remains to be d1 after

the mutation. The adaptive flipping probability enhances the intra-group sparsity, consistent with the assumption of

sparsity within bundle.

Considering the intra-group correlation and sparsity, genetic operators are supposed to transfer the position of

the current nonzero element to another in the same group. Here, we give two theorems of the superiority of the

proposed group operator to implement a more thorough exploitation over the classic one-point or uniform crossover

and flipping mutation.

Theorem 1: For a nonzero group segment g = Gi and the Humming distance H(g,h) between two segments

g,h, we have

P (H(g,gam) = 2) > P (H(g,gf) = 2),

where gam denotes the group segment after adaptive mutation, and gf denotes that after flipping mutation.

Proof 1: Due to the intra-group sparsity formed by the objective function, we assume there is no more than one
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endmember in each bundle, i.e. ‖g‖0 = 1. Under the above circumstance,

P (H(g,gam) = 2) = p0p1(1− p0)d−2(d− 1)

P (H(g,gum) = 2) = p2(1− p)d−2(d− 1)

where d is the length of g. According to the assumption, the d1 in Equation (8) is substituted into 1. Therefore,

P (H(g,gam) = 2)

P (H(g,gum) = 2)
= Ω(d)

�

Theorem 2: For the nonzero group segment g = Gi in individual p1, the segment h of the same group in

individual p2 and the Humming distance H(g,h) between two segments, we have

q = P (H(g,g′) = 2 ∨H(h,h′) = 2 | H(g,h) < 2),

qg > qo, qg > qu

where g′,h′ denote the segment after mutation and crossover, q denotes the probability of valid intra-group transfer

after variation, and the superscripts represent different genetic operators. Specifically, g denotes the proposed group

operator, o denotes flipping mutation and one-point crossover, o denotes flipping mutation and uniform crossover.

Proof 2: We follow the same assumption in Theorem 1, i.e. ‖g‖0 = 1. For convenience, let

qj , P (H(g,g′) = 2 ∨H(h,h′) = 2 | H(g,h) = j),

so q = q0 + q1.

qg0 = 2p0p1(1− p0)d−2(d− 1)− [p0p1(1− p0)d−2(d− 1)]2

qo0 = qu0 = 2p2(1− p)d−2(d− 1)− [p2(1− p)d−2(d− 1)]2

qg1 > p0p1(1− p0)d−2 + p(1− p)d−1

qo1 < p2(1− p)d−2(d− 1) + p(1− p)d−1

where d is the length of g. So,
qg0
qo0

=
qg0
qu0

= Ω(d), qg1 > qo1 = qu1 .

Hence,

qg > qo = qu.

�

Remark: The ability of an operator to transfer one selected endmember to another of the same bundle is expressed

via Hamming distance [45]. The Hamming distance of the group segments before and after variation equal to 2

accounts for a valid intra-group transfer, as in choosing a different endmember in the same group while remaining the

intra-group sparsity. We evaluate operators by means of the valid transfer probability q, where a higher q accounts

for an operator more effective. According to Theorem 1, the proposed group mutation operator with adaptive

mutation probability is more likely to implement intra-group transfer than flipping mutation, which indicates that

considering mutation alone, group based operator employs a more thorough exploitation. Theorem 2 evaluates the
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combination of mutation and crossover operators. We come to the conclusion that group based operator performs

more effectively than flipping mutation combined with one-point or uniform crossover.

Algorithm 3 Group Operator.
Input: Pa (parent population).

Output: O (offspring population).

O← ∅;

while Pa is not empty do

Mating selection:

[pa1,pa2]← Randomly select two solutions from Pa;

Pa ← Pa \ [pa1,pa2];

Crossover:

o← duplicate pa1;

o ← adjust each group of o: replace elements in group Gi of o with those of pa2 with a given probability

uniformly;

Mutation :

o ← for the nonzero groups, do bit-wise flipping mutation with adaptive probability on each element of the

nonzero group, and do flipping mutation with fixed probability on the other groups;

O← O ∪ o;

end while

return O

III. EXPERIMENTS

In this section, the performance of MO-GSU is evaluated through experiments conducted on 3 synthetic data and

1 real data. It is compared with state-of-art sparse unmixing methods, bundle based and multi-objective methods.

The performance of unmixing accuracy is evaluated and quantified via the metric of signal-to-reconstruction error

(SRE) defined as follow:

SRE = 10× log

(
E(‖ Xreal ‖2F)

E(‖ Xreal −X ‖2F)

)
,

where Xreal is the real abundance matrix and X is the estimated one. The larger value of SRE denotes the unmixing

performance more effective.

Considering that MO-GSU is an endmember selection based method, we adopt the same evaluation parameter in

[46] for selection accuracy assessment, namely true positive rate (TPR) and false positive rate (FPR). In the scenario

of endmember selection, an endmember is positive if selected in the ground truth or the algorithm, and negative

otherwise. In general, TPR and FPR are constrained between lower and upper bounds 0 and 1. The TPR equal to

1 and FPR equal to 0 implies a perfectly accurate selection in the algorithm, as in choosing the exact ground truth

endmembers. Specifically, true positive (TP) denotes the number of positive and selected endmembers, false positive
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(FP) denotes the number of negative and selected endmembers, true negative (TN) denotes the number of negative

and unselected endmembers, false negative (FN) denotes the number of positive and unselected endmembers. TPR

and FPR is thereby calculated as follow:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

MO-GSU is compared with classic sparse unmixing methods, multi-objective based and grouping based methods:

SUnSAL [17] relaxes the L0 sparsity into L1 norm and optimize abundances alternatively. Additionally a library

pruning algorithm MUSIC [47] is executed ahead to alleviate the difficulty of high dimensionality down to size of

40. RSFoBa [48] is a greedy method for forward and backward selecting endmember simultaneously. SUnCNN [20]

gains abundances via deep convolutional network. MOSU [27], SMOSU [28] and PMOSU [29] are three multi-

objective unmixing approaches that transform the unmixing model into a multi-objective problem. MOSU adopts

a classic non-dominance based algorithm NSGAII and SMOSU adopts a modified decomposition based algorithm

MOEA/D for endmember selection respectively. PMOSU prunes the library via a gradual compression of search

space and performs sparse regression in the same time. Methods presented in Ref. [38] incorporates structure of

endmember bundles and present sparsity in mixed norm or double sparsity including three kinds of penalty: group,

elitist, and fractional penalty, respectively corresponding to three quasinorms, LG,1,2,LG,2,1, and LG,1,q .

To verify the efficiency of MO-GSU for dealing with correlation in spectral library, different libraries of high

correlation are used in the experiment. In Synthetic data 1 and Synthetic data 2, libraries of different degrees of

correlation and grouping structures are first designed based on USGS library to simulate endmember bundles. In

Synthetic data 3, a modified library containing 1543 spectra with complete reflectance of 224 bands is extracted

from the USGS library, which also includes massive correlation. All the methods except SUnCNN are conducted

using MATLAB R2018b on a desktop with Inter Core i5-8265U CPU @ 1.60 GHz 1.80 GHz of 8G memory

running 64bit Windows operation system. SUnCNN is implemented in PyTorch framework running on NVIDIA

GeForce RTX3060 Laptop GPU.

A. Synthetic Data 1

First, we generate 3 synthetic data sets from 3 designed high correlation spectral library with different degrees

of correlation, which are constructed in the same way as [38], [49]. 20 spectra are randomly drawn from the

United States Geological Survey (USGS) spectral library and used to form a library of size 400 including groups

of high correlation spectral signals by simulating physical variations. USGS library contains thousands of spectral

signals covering 224 bands. Specifically, 20 endmembers are randomly selected from the USGS library, respectively

generating 20 spectra via different degrees of scaling variations and nonlinear quadratic perturbations as a simulation

of variability induced by illumination and intrinsic factors. Hence, 3 prior libraries with increasing degrees of

correlation and a naturally predetermined grouping structure is available, denoted as library 1, 2 and 3. Figure 3

illustrates the spectral library 3 built from the procedure mentioned above.
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We generate a spatial-correlated abundance map via spatial low pass filter and restrict the abundance of each

material no larger than 0.7 to increase unmixing difficulty. The image data to be unmixed is obtained by multiplying

abundance map with randomly selected endmembers complying with the linear unmixing model, and a Gaussian

white noise of 20 and 30db and is added to imitate sensor and measurement deviation.

The proposed MO-GSU is compared with the above mentioned methods, of which the ones marked asterisk

denote an additional pruning process MUSIC ahead. The 3 methods from Ref. [10], namely approaches integrating

group, elitist and fractional penalties. The three penalties respectively corresponds to sparsity regularization of the

grouping based sparsity of LG,1,2,LG,2,1, and LG,1,q norms. The objective function in MO-GSU adopts a similar

sparsity to the fractional penalty. The parameters are set fixed instead of conducting a grid search. By contrast,

the multi-objective evolutionary methods require no determination of parameter settings, which is convenient for

practical use. MO-GSU is implemented on the basis of PlatEMO [50] with a novel algorithm and a homologous

operator tailored for sparse unmixing with group structure proposed.

Fig. 3. The generated library of Synthetic Data 1. Each one of the 20 sub-figures is composed of 20 signatures variated from one selected

endmember from the USGS library.

Table I shows the SRE results of conjoint endmembers on Synthetic Data 1 with 30 db noise and different

degrees of correlation. Table I demonstrates that the proposed MO-GSU outperforms the classic and grouping

based methods on the high-correlated spectral library in most cases, especially with higher degrees of correlation.

Among the grouping based methods, the one incorporating fractional norm achieves better performances than elitist

and group penalties. Accordingly, the effectiveness of the LG,1,q norm is testified since the optimization approaches

are alike. Compared to the LG,1,q norm fractional penalty, the superiority gained by the inspired LG,0,q norm

based MO-GSU derives from the distinction of evolution optimization approach with group operators. In spite

of the better performance MUSIC-SUnSAL obtain on 9 and 10 endmembers, MO-GSU operates on the original

high correlation library with 10 times more spectra than the pruned and correlation eliminated library. When the
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TABLE I

SRE RESULTS OF SYNTHETIC DATA 1, WHERE THE ASTERISK SUNSAL? AND RSFOBA? DENOTE CORRESPONDING METHODS COMBINED

WITH THE PRUNING ALGORITHM MUSIC

Library k SUnSAL SUnSAL? RSFoBa? SUnCNN Group Elitist Fractional MOSU SMOSU PMOSU MO-GSU

1

3 11.92 13.40 4.56 4.86 0.44 0.28 8.21 21.67 21.67 21.67 21.67

4 7.31 10.38 15.63 3.58 0.38 0.76 6.90 4.15 13.16 21.95 21.95

5 12.60 14.19 5.91 5.23 0.52 0.22 11.56 14.37 16.24 16.24 16.24

6 10.92 14.70 17.80 2.39 0.42 0.76 8.95 17.80 17.80 17.80 17.80

7 11.66 15.46 15.52 1.74 0.42 1.02 10.06 15.42 15.52 15.52 15.52

8 9.52 13.50 4.32 0.77 0.42 0.33 7.95 4.98 5.18 13.87 12.73

9 10.75 14.48 8.66 1.05 0.44 0.16 7.73 8.02 5.63 13.52 13.52

10 11.67 15.72 7.06 1.72 0.42 0.81 8.47 12.58 5.62 13.58 12.97

2

3 8.50 11.58 15.64 11.49 0.44 0.00 9.79 2.14 14.11 32.19 32.19

4 10.85 14.15 18.14 7.29 0.45 0.26 9.98 18.14 18.14 18.14 18.14

5 10.57 13.13 17.29 7.45 0.47 0.00 10.55 12.61 17.29 17.29 17.29

6 6.20 10.16 5.63 4.30 0.40 1.02 5.79 11.12 9.39 11.24 11.24

7 9.15 13.15 6.78 4.58 0.47 0.15 8.14 5.47 12.59 15.06 14.74

8 7.26 6.87 6.82 2.70 0.40 0.76 6.90 4.57 6.12 7.55 11.41

9 10.05 13.92 8.13 2.60 0.45 0.64 8.81 5.82 4.88 11.84 11.84

10 9.72 13.41 7.86 2.32 0.45 0.28 9.12 8.17 3.51 10.56 10.56

3

3 6.27 7.15 5.56 12.15 0.63 0.11 8.19 12.62 12.62 12.62 12.62

4 3.00 5.74 8.56 4.80 0.43 0.04 2.97 2.84 23.34 23.34 23.34

5 5.08 9.33 1.72 6.83 0.42 0.20 4.61 1.78 28.21 28.21 28.21

6 2.15 3.75 0.01 0.36 0.01 4.84 2.39 1.49 - 7.30 4.80

7 3.28 8.47 5.88 4.49 0.37 0.05 2.99 3.54 17.75 8.02 17.75

8 2.59 5.27 5.13 3.13 0.42 0.22 2.29 - - 6.04 19.00

9 3.02 10.32 8.53 2.69 0.37 0.33 3.02 1.13 14.90 10.17 14.90

10 5.18 12.37 8.29 2.33 0.43 0.28 4.21 3.06 7.32 8.24 8.60

TABLE II

EXECUTION TIME(S) OF SYNTHETIC DATA 1

Group Elitist Fractional MOSU SMOSU PMOSU MO-GSU

Time(s) 153(±5.5) 173(±5.8) 225(±6.8) 241(±9.5) 230(±6.7) 185.5(±4.0) 237.7(±16.5)
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prior library is fixed to the original one, the SRE results of SUnSAL are diminished. Besides, the advantages

brought by the pruning process tend to reduce when the correlation increases due to the possibility to prune the

true endmembers. Table II displays the average execution time of MO-GSU as well as multi-objective and grouping

based unmixing methods. The multi-objective methods are implemented with the fixed evaluation number of 20000

and the grouping methods with default settings. Compared to other multi-objective methods, the proposed MO-

GSU can achieve better SRE results under limited time. Besides, the comparable time consuming indicates that the

proposed local search and group oriented adaptive genetic operator module does not improve unmixing effect by

consuming more computational time.

B. Synthetic Data 2

In order to testify the effectiveness of the proposed method on high correlation spectral library, we build three

2000 size libraries with different correlation level in the same way as Synthetic Data 1. In Synthetic Data 1, ngroup

randomly selected endmembers generate sgroup spectra respectively, presenting ngroup high correlation spectral

groups with the size of sgroup. Synthetic Data 2 constructs three libraries of the same size but employing different

settings of ngroup, sgroup, which are (100,20), (40,50), and (20,100), enforcing an progressively enhancive correlation

within each group. Synthetic Data 2 generates abundance map based on Dirichlet distribution which is compatible

with ANC, ASC constraints and bears no spatial correlation.

Table III shows the TPR, FPR and the SRE results of endmember selection of different combination of three

levels, namely noise, endmember number and library correlation. The selection accuracy of MO-GSU on large

scale spectral library is validated attributing to most TPR and FPR values equal 1 and 0, which is an indication of

perfectly accurate selection. In general, the selection difficulty increases in response to the growth of endmember

numbers and noises. Three spectral libraries with progressively strong correlation examine the capacity of MO-GSU

for intra-group selection. As in Table III, MO-GSU reaches perfect selection in most cases.

From Table III, the effectiveness of MO-GSU suffers with a larger number of groups, seemingly a negative

outcome. Note that such outcome is more likely the aftermath of the inevitable drawback of multi-objective

unmixing assessing criteria rather than MO-GSU’s inability of extremely complicated combination. For instance, in

the experiment on 20db noise, 10 endmembers and group parameter (ngroup, sgroup) = (40, 50), the TPR and FPR

of the final solution provided by MO-GSU is 0.90 and 5.03×10−4. In this case, the failure of the proposed algorithm

to correct selection is a systematic drawback, since the objective vector of MO-GSU’s solution is (48.0344, 10)

and of the correct selection is (48.0346, 10). Therefore in Pareto-dominant wise, MO-GSU’s solution is a better

solution than the correct selection. Hence it can be safely inferred that the correct selection has been visited yet

discarded in the evolutionary process.

C. Synthetic Data 3

USGS library stores spectral signal data with group structure naturally formulated by bundles of multiple

endmembers per material. Hence, it is naturally a high correlation library with endmembers varying in shape

and different degrees of correlation. Synthetic Data 3 conducts abundance and image data generation on a subset
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TABLE III

TPR,FPR AND SRE RESULTS ON SYNTHETIC DATA 2 OF DIFFERENT NOISES, ENDMEMBER NUMBERS, AND CORRELATION.

SNR k
(100,20) (40,50) (20,100)

TPR FPR SRE TPR FPR SRE TPR FPR SRE

20db

3 1 0 19.40 1 0 18.15 1 0 9.44

4 0.75 5.01×10−4 3.99 1 0 16.29 1 0 16.08

5 1 0 14.69 1 0 16.81 1 0 13.74

6 1 0 11.88 1 0 12.89 1 0 4.06

7 1 0 9.80 1 0 9.26 1 0 3.51

8 0.63 1.51×10−3 1.63 0.63 1.00×10−3 1.03 0.75 1.00e-3 1.89

9 0.89 5.02×10−4 4.11 0.89 5.02×10−4 5.48 0.89 5.02×10−4 2.85

10 0.8 1.00×10−3 4.21 0.90 5.03×10−4 4.41 0.60 1.01×10−4 1.02

30db

3 1 0 29.84 1 0 28.05 1 0 32.78

4 1 0 14.38 1 0 23.22 1 0 23.92

5 1 0 20.96 1 0 28.16 1 0 22.80

6 0.83 5.02×10−4 4.45 1 0 17.09 1 0 19.08

7 1 0 14.47 1 0 21.64 1 0 18.87

8 0.88 5.02×10−4 8.30 1 0 13.35 1 0 19.25

9 1 0 11.77 1 0 12.59 1 0 12.28

10 0.90 5.03×10−4 5.31 1 0 14.72 1 0 15.41

40db

3 1 0 36.70 1 0 36.17 1 0 47.85

4 1 0 39.94 1 0 31.71 1 0 36.86

5 1 0 29.35 1 0 29.26 1 0 33.18

6 1 0 26.09 1 0 26.11 1 0 33.21

7 1 0 20.78 1 0 26.34 1 0 29.69

8 1 0 13.09 1 0 18.58 0.88 5.02×10−4 7.14

9 1 0 24.01 1 0 24.16 0.89 0 9.58

10 1 0 24.25 1 0 17.02 0.90 0 10.83

of the USGS spectral library version seven (Splib07). Some spectra from the original USGS library have different

bands of data missing from the 224 bands, which are excluded from the prior library. The modified spectral library

contains 1543 endmembers with complete reflectance of 224 bands. Synthetic Data 3 adopts the same abundance

and image generation methods as Synthetic Data 1, while the spectral libraries vary.

Figure 4 is a demonstration of how endmember selection evolves in MOSU and MO-GSU. Figure 4 depicts

that classic genetic algorithm is capable of locating the right group efficiently, yet ineffective to adjust intra-group

selection for a long time. On the contrary, after a certain amount of regular evolution by NSGAII, MO-GSU is more
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Fig. 4. The evolutionary process of MOSU and MO-GSU. From top to bottom are the real endmember indices and the selection endmember

of different evolutionary generations.

Fig. 5. Estimated and Real Abundance Maps of Synthetic Data 3. Each row represents a material, and each column represents a method.

flexible and approximates both the correct group and the endmember within, showing a promising potential. Figure

5 is a graphic illustration of abundance maps generated from the above methods on the image of 6 endmembers and

30db noise. Some sub-graphs are pure dark, meaning the corresponding endmember not chosen by the algorithm.

Compared with the abundance from other methods, MO-GSU generates a figure of sharper edge, more similar to

that of the ground truth. Figure 5 visually examines the effectiveness of MO-GSU by a more accurate outcome.

Table IV shows the SRE results of conjoint endmembers on Synthetic Data 3 with various noises. The results

under both the more realistic circumstance of 40db and the more difficult circumstances with 20db and 30db are
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TABLE IV

SRE RESULTS OF SYNTHETIC DATA 3, WHERE THE ASTERISK ? IN SUNSAL? , SMP? , CLSUNSAL? ,SMOSU? DENOTES ALGORITHMS

COMBINED WITH THE PRUNING ALGORITHM MUSIC

Noise Number SUnSAL SUnSAL? RSFoBa? SUnCNN Fractional MOSU SMOSU PMOSU MO-GSU

20db

3 1.98 11.44 2.65 7.38 1.93 18.58 12.35 22.91 22.91

4 1.62 4.73 4.24 1.93 0.65 5.86 3.88 5.20 7.91

5 2.96 10.17 - 3.67 3.26 0.60 - 16.83 16.83

6 0.63 2.29 3.21 0.42 - -0.43 - 3.09 6.74

7 0.14 2.04 5.35 0.40 - - - - 3.20

8 0.56 0.74 5.67 0.73 - 1.69 - 2.17 2.50

9 0.47 3.31 5.77 0.71 -0.15 - - 2.29 5.90

10 1.27 1.99 6.92 1.07 0.18 2.13 - 1.90 3.63

30db

3 2.26 4.69 4.77 1.30 0.59 1.62 11.82 11.82 11.82

4 0.70 2.97 4.48 1.14 1.31 - 5.58 5.89 6.98

5 3.28 8.52 4.98 3.39 1.91 23.25 28.28 28.28 3.96

6 1.61 10.95 2.46 1.01 0.03 14.13 15.45 15.45 15.45

7 3.37 10.48 6.15 1.71 2.70 17.09 21.45 21.45 8.18

8 1.58 5.47 7.27 0.89 -0.72 1.40 6.95 7.43 8.52

9 2.24 6.85 6.70 0.94 0.82 4.43 5.70 6.08 6.14

10 1.03 4.13 - 0.87 0.82 5.13 3.69 7.27 7.92

40db

3 3.75 15.70 18.92 9.25 9.52 -0.85 38.82 38.82 38.82

4 3.47 8.26 2.49 10.02 3.80 0.00 33.77 33.77 33.77

5 1.19 12.85 5.20 0.69 0.09 21.77 21.77 21.77 21.77

6 5.47 18.45 5.45 2.65 3.24 5.34 28.38 28.38 2.20

7 4.80 15.35 6.22 1.29 2.60 8.19 6.71 23.02 23.02

8 0.90 6.16 0.42 0.55 1.09 1.98 5.12 - 8.90

9 4.88 15.46 4.56 1.51 4.21 -0.07 7.98 5.02 5.81

10 0.90 6.16 0.42 0.30 1.09 3.65 2.65 - 8.90

presented. Table IV demonstrates that the proposed method is still valid when the group structure of the library is

not predefined but gained by clustering method. We choose fractional penalty as the representative of bundle-based

methods, since the sparsity regularization form is the same as MO-GSU. MO-GSU is compared to multi-objective

methods with the same amount of evaluations and population size. MO-GSU is conducted on the original prior

library of 1543 spectra, while some of the comparison methods perform on the pruned library of size 40. MO-

GSU outperforms the rest methods in most cases. MOSU shows potential when there are more true endmembers,

which implies a better exploration than MO-GSU given limited evaluations. The incompetence of perfectly accurate
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selection when MO-GSU faces endmember number increasing speaks the unbalance between local and global search.

In particular, the convergence of local search within group outweighs global variation among groups immediately

after the local search module starts and consequently the recombination of groups is harder. Such problem may be

relieved by setting the starting point of local search adaptive according to estimated endmember numbers. More

specifically, the starting point of the second stage is proportional to the endmember number to guarantee a more

thorough exploration.

D. Real Data

Fig. 6. Mineral map of Cuprite dataset.

We choose Cuprite data acquired by AVIRIS with the size of 250 × 190 pixels for real data experiment. The

original image comprises 224 bands ranging from 370 nm to 2480 nm. From the 224 bands, a few noisy and

water absorption ones are discarded and the final image size is 250× 190× 188. The library is the first chapter of

splib06a with 498 endmembers, including the signatures of the above mentioned materials and the noisy bands in

the spectral library are removed accordingly.

Figure 6 provides a qualitive reference of the groundtruth materials. Note that each pixel in Figure 6 is assigned

to a single material. Figure 7 illustrates the abundance maps of Alunite, Jarosite, Kaolin+Smectite, Buddingtonite

and Chalcedony from the top down obtained by sparse unmixing methods. In practice, the quantitative criteria of the

groundtruth are hard to achieve. The sub-images of Figure 7 provide a qualitative and visualized assessment of the

effectiveness of proposed method. Compared to Figure 6, MO-GSU is able to select endmembers more accurately

and achieves a clearer outline reflecting structural information, so that the performance on real world application is
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Fig. 7. Estimated maps of real data. From top to bottom, each row represents a material, namely Alunite, Jarosite, Kaolin+Smectite, Buddingtonite

and Chalcedony, and each column represents a method.

testified. Some abundance maps of the grouping method with fractional norm appears average distribution among

pixels, which indicates some noise may be introduced into the abundance map.

IV. CONCLUSIONS

In this paper, we propose a multi-objective sparse unmixing method based on group structure. The high correlation

within endmember bundle formulates a group structure inside spectral library. Inspired by the fractional sparsity

penalty represented by mixed norm, the proposed MO-GSU replace the L0 sparsity from classic multi-objective

sparse unmixing methods with a L0,q norm involving group structure G. In order to minimize the reconstruction

error of the image and the L0,q norm sparsity, we adopt the framework of NSGAII. For the purpose of accurate

endmember identification within each group, an intra-group local search strategy is proposed to exploit intra group

selection. We design a group oriented adaptive genetic operator to further ensure the balance between inter-group

exploration and intra-group exploitation. We provide theoretical proof for the proposed group operator of a more

sufficient intra-group endmember exploitation. Experimental results on synthetic and real data show that the proposed

method is valid for strong correlation spectral libraries. The main shortcoming of evolutionary algorithms lies in

the great time consumption and incompetence for guaranteed convergence, especially facing the ever-expanding

spectral library. In the future, we would mainly focus on speeding up convergence by introducing gradient based

orientation, as well as adjusting multi-gradient descend to solve unmixing problem.
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