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Abstract—The proliferation of remote sensing satellites has
resulted in a massive amount of remote sensing images. How-
ever, due to human and material resource constraints, the vast
majority of remote sensing images remain unlabeled. As a
result, it cannot be applied to currently available deep learning
methods. To fully utilize the remaining unlabeled images, we pro-
pose a Geographical Knowledge-driven Representation learning
method for remote sensing images (GeoKR), improving network
performance and reduce the demand for annotated data. The
global land cover products and geographical location associated
with each remote sensing image are regarded as geographical
knowledge to provide supervision for representation learning and
network pre-training. An efficient pre-training framework is pro-
posed to eliminate the supervision noises caused by imaging times
and resolutions difference between remote sensing images and
geographical knowledge. A large scale pre-training dataset Levir-
KR is constructed to support network pre-training. It contains
1,431,950 remote sensing images from Gaofen series satellites
with various resolutions. Experimental results demonstrate that
our proposed method outperforms ImageNet pre-training and
self-supervised representation learning methods and significantly
reduces the burden of data annotation on downstream tasks such
as scene classification, semantic segmentation, object detection,
and cloud / snow detection. It demonstrates that our proposed
method can be used as a novel paradigm for pre-training neural
networks. Codes will be available on https://github.com/flyakon/
Geographical-Knowledge-driven-Representaion-Learning.

Index Terms—representation learning, remote sensing images,
scene classification, semantic segmentation, object detection,
cloud / snow detection

I. INTRODUCTION

Due to the high capacity for learning features, deep learning
methods have made significant progress in a variety of remote
sensing image tasks, including object detection [1–4], cloud
detection [5–7], and semantic segmentation [8–13]. However,
remote sensing images are increasingly exhibiting character-
istics of multiple sources and resolutions. To achieve the best
performance, images from each satellite must be annotated
separately, which requires a significant amount of human and
material resources.
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Additionally, as the satellite circles the earth and monitors it,
the same region will be photographed on a regular basis, gener-
ating new data on a continuous basis. But only a small portion
of it will be annotated. Remaining unlabeled data contributes
little to the improvements. The purpose of this paper is to study
how to learn representations and pre-train networks using
millions of unlabeled remote sensing images and pre-existing
geographical knowledge. Geographical knowledge refers to the
geographical location of remote sensing images and the global
land cover product (GlobeLand30 [14]). The pre-training mod-
els we obtain are then fine-tuned for a variety of downstream
tasks (such as scene classification, semantic segmentation,
object detection, and cloud detection) to improve performance
and reduce the burden of data annotation. Fig. 1 illustrates the
overview of our proposed method 1.
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Fig. 1. This is the subject we intend to study in this paper. A large number
of unlabeled remote sensing images and geographical knowledge are utilized
for representation learning and networks pre-training. With some annotated
data, the pre-training model can be applied to downstream tasks. It has the
potential to improve performance and alleviate the data annotation burden.

Nowadays, the most common approach for visual images
is to use ImageNet [15] and JFT-300M [16] datasets for
pre-training and fine-tuning on downstream tasks. But both
the ImageNet and JFT-300M datasets are manually anno-
tated, and data annotation typically consumes a substantial
amount of human and material resources. In order to make
use of unlabeled data, self-supervised representation learning
methods have been proposed and developed quickly. By the
pretext tasks [17–22], it can help networks to learn image
representations without the need for annotations.

1The figure of geographical knowledge cites from https://www.webmap.cn/
commres.do?method=globeDetails&type=brief

https://github.com/flyakon/Geographical-Knowledge-driven-Representaion-Learning
https://github.com/flyakon/Geographical-Knowledge-driven-Representaion-Learning
https://www.webmap.cn/commres.do?method=globeDetails&type=brief
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Self-supervised representation learning has also been used
to improve the networks pre-training for remote sensing im-
ages [23, 24]. Recent researches [25, 26] indicate that geo-
location of remote sensing images may benefit self-supervised
learning. These methods significantly enhance the effect by
utilizing the unique auxiliary information contained in remote
sensing images, which is extremely instructive.

However, the methods described above only make use of
relatively simple geographical information, such as geograph-
ical location and imaging time. There is still a significant
amount of geographical information available in the field of re-
mote sensing. We propose a Geographical Knowledge-driven
Representation learning and network pre-training method for
remote sensing images (GeoKR). The GlobeLand30 and ge-
ographical location information associated with each remote
sensing image are regarded as geographical knowledge to pro-
vide supervision for representation learning. GlobeLand30 is
a global land cover product with a resolution of 30 meters that
records the earth’s ten major land covers. We can obtain land
covers for each remote sensing image and map them into the
knowledge representation using the geographical knowledge.
The knowledge representation can be used as supervision and
we can achieve efficient representation learning and network
pre-training by aligning image representations extracted from
networks to the knowledge representation.

In addition, there are discrepancies between remote sensing
images and geographical knowledge due to the difference in
imaging times and resolutions, which may introduce random
noises into the acquired supervision during the training phase.
Enlightened by the mean teacher method [27] in noise labels
and contrastive learning [20, 28], we design an efficient
representation learning framework. It consists of two networks
with the exact same structure, dubbed the student and teacher
networks. The teacher networks updates the weights from the
student networks at a specified interval using the moving aver-
age method, which effectively reduces the drastic fluctuation
of network parameters caused by noise supervision.

We also create a pre-training dataset called Levir-KR. This
dataset contains 1,431,950 images collected from the Gaofen-
1, Gaofen-2, and Gaofen-6 satellites at various imaging res-
olutions and sources. The experimental section employs the
teacher model as a pre-training model that is then fine-tuned
for downstream tasks such as scene classification, semantic
segmentation, object detection, and cloud / snow detection.
Our method outperforms ImageNet pre-training, random ini-
tialization, and several recent self-supervised representation
learning methods: MoCo [20], SimCLR [21] and BYOL [22].
We also compared experimental results for each downstream
task at various training data scales. Our experimental results
demonstrate that our method performs significantly better with
less training data, implying that it can effectively reduce the
demand for data annotation for downstream tasks. Addition-
ally, we conduct ablation analysis to determine the efficacy
of the various components of our proposed method. All of
the experiments demonstrate that our proposed method is an
effective pre-training paradigm for remote sensing images.

The contributions are summarized as follows:
• We propose a Geographical Knowledge-driven Represen-

tation learning and networks pre-training method for
remote sensing images (GeoKR). It can be considered as
a novel and effective method for pre-training networks,
with the ability to improve the performance of down-
stream tasks.

• We propose a method for extracting supervision informa-
tion from geographical knowledge and construct an effi-
cient representation learning framework for removing the
influence of noise labels caused by discrepancies between
remote sensing images and geographical knowledge.

• A pre-training dataset, Levir-KR, is built. It contains
1,431,950 remote sensing images from Gaofen satellites
with varying resolutions that can be used to effectively
support network pre-training.

• The experimental results demonstrate that the proposed
method outperforms random initialization, ImageNet pre-
training, and other self-supervised representation learning
methods in terms of improving downstream task perfor-
mance and reducing the demand for annotated data.

The rest of this paper is organized as follows. In Section II,
we introduce the related work. In Section III and Section IV,
we give a detailed introduction of our proposed method and
dataset. In Section V, the experimental results are presented.
In Section VI, we give a discussion about the limitation
and future work about the proposed method. Conclusions are
drawn in section VII.

II. RELATED WORK

A. Representation Learning

Representation Learning refers to learning representations
of the data that make it easier to extract useful informa-
tion when building classifiers or other predictors (also called
downstream tasks) [29]. Visual representation learning is the
process of extracting visual representations from images or
videos using deep learning methods (e.g., convolutional neural
networks) to improve performance on image processing tasks.
A good representation can be used as the input or as a pre-
training model for supervised learning predictors. For instance,
networks pre-trained on the ImageNet dataset [15] can develop
a strong visual representation and are frequently used as a pre-
training model for other image processing tasks, contributing
significantly to the development of deep learning.

Recently, the self-supervised representation learning method
has made significant strides. Self-supervised representation
learning methods [30–32] do not require manual annotations.
They derive supervision information from the data itself via a
series of pretext tasks. The design of pretext tasks is critical to
the success of self-supervised learning. Initially, pretext tasks
were constructed around the relationships between patches or
objects in an image[18, 19, 33–40].

For example, occlude an area in the image randomly and
repair it with networks, from which a good image repre-
sentation is learned [18, 19, 37, 41]. [33, 40] use image
coloring as a pretext task directly. A pre-training model could
be obtained while completing the task of image coloring.
Jigsaw puzzles are another popular pretext task. It divides
the image into patches and trains networks to understand
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it by predicting the relative position of each patch or by
rearrangement of patches, from which image representations
are learned [34, 35, 38]. While the methods outlined above
are effective at extracting visual representations from images,
they are prone to overfitting.

To increase the efficiency of representation learning, re-
searchers are emphasizing high-level features of images when
designing pretext tasks. Clustering and contrastive learning
methods are now widely used. [42–47] generate pseudo labels
using clustering methods and combine them with the loss
function of networks during the training process, allowing
networks to learn high-level representations. Contrastive learn-
ing [20, 21, 28] is the dominant method for self-supervised
representation learning at the moment. It bases the pretext
task on the following concepts: features between different
images (typically referred to as negative samples) should be
discriminative, but features between transformed data from
the same image (typically referred to as positive samples)
should be as similar as possible. Additionally, [48] employs a
combination of clustering and contrastive learning to achieve
the highest accuracy on downstream tasks.

B. Representation Learning for Remote Sensing Images

Self-supervised representation learning researches are ad-
vancing rapidly for natural images at the moment, but are
relatively scarce for remote sensing images. Vincenzi et al.
[23] propose using high-dimensional data to reconstruct image
color for pre-training, which they believe will aid networks in
learning image representations. The SauMoCo [24] method
successfully applies MoCo [20] to remote sensing images.

However, the above methods still adhere to natural image
concepts, attempting to extract supervised information from
remote sensing images through the use of pretext tasks similar
to natural images, but do not take advantage of remote sens-
ing images’ characteristics. Recent researches have included
geographical information in contrastive learning in order to
achieve more efficient representation learning [25, 26].

Additionally, there are numerous other types of remote
sensing images, including hyperspectral images [49, 50] and
synthetic aperture radar (SAR) images [51, 52]. In practice, it
is typically more difficult to obtain large-scale labeled data, ne-
cessitating the development of efficient representation learning
methods. [53–55] developed a method for hyperspectral image
processing tasks that utilized a self-supervised representation
learning approach, significantly improving the performance of
hyperspectral image processing.

These methods have produced promising results and pro-
vided an excellent opportunity to investigate remote sensing
representation learning. Inspired by these researches, we de-
velop a novel representation learning paradigm for remote
sensing images that is distinct from the one used for natural
images.

C. Global Land Cover Products

Land cover information is critical for understanding climate
change, ecological environment change, and etc. Recent ad-
vances in remote sensing technology and computer science

have resulted in significant advances in mapping and research
on global land cover (GLC) products with a spatial resolution
of 30 meters [56]. These products include GlobeLand30 [14],
FROM GLC30 [57] and GLC FCS30 [58].

The global land cover product identifies the different types
of land cover that exist on the earth’s land surface. Glo-
beLand30, for example, contains ten distinct land cover types:
cultivated land, forest, grassland, shrubland, wetland, water
body, tundra, artificial surface, bare land, and permanent snow,
all of which have a spatial resolution of 30 meters and cover
the world’s major land areas. Each class is represented by
a value among [10, 20, 30, 40, 50, 60, 70, 80, 90, 100].
Globeland30 consists of 849 TIF images spanning the globe’s
N85° - S85° latitude range. It uses the WGS-84 coordinate
system. GlobeLand30’s first version was released in 2000, and
the most recent version is GlobeLand30 2020 2.

Cao et al. [59] analyze the global distribution of surface wa-
ter resources and the spatial distribution and temporal fluctua-
tions of surface water resources using data from GlobeLand30
2010 and GlobeLand30 2000. Chen et al. [60] analyze the
global urban and rural distributions using GlobeLand30, and
used major indicators such as land area, composition ratio,
and incremental ratio to quantify changes in urban and rural
construction land in a variety of countries from 2000 to
2010. According to research, the United States and China
accounted for roughly half of the global increase in new urban
construction land over the last decade.

Additionally, the global land cover products primarily reflect
large-scale land cover types such as forest, grassland, and
artificial surfaces. These land covers are relatively stable over
relatively long periods of time. As a result, these products can
be considered as auxiliary geographical knowledge for remote
sensing representation learning.

III. THE PROPOSED METHOD

We propose a geographical knowledge-driven representation
learning method for remote sensing images (GeoKR), which
provides a novel paradigm for networks pre-training, as shown
in Fig. 23. The geographical knowledge we use is the global
land cover product (GlobeLand30 [14]) and geographical loca-
tion of remote sensing images. We use geographical informa-
tion to derive land cover types and proportions and then build
a knowledge representation for each images. Aligning im-
age representations extracted from networks with knowledge
representations in representation space is the training object.
The pre-training model can be fine-tuned with corresponding
labeled data, improving downstream task performance.

A. Geographical Knowledge Supervision

GlobeLand30 and the geographical location with remote
sensing images can be used to provide supervision for remote
sensing representation learning. GlobeLand30 is a global land
cover product that divides the earth into different areas and
includes ten different land cover types. Each area is saved

2More details can be found at this website: https://www.webmap.cn
3The figure of geographical knowledge cites from https://www.webmap.cn/

commres.do?method=globeDetails&type=brief

https://www.webmap.cn
https://www.webmap.cn/commres.do?method=globeDetails&type=brief
https://www.webmap.cn/commres.do?method=globeDetails&type=brief
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Fig. 2. Details on our proposed method (GeoKR). a) the process of using geographical knowledge to provide supervision for representation learning and
network pre-training. b) process of fine-tuning on the pre-training model for downstream tasks.

as a separate tif file. GlobeLand30 does not contain any
remote sensing image and can only be used to aid in the
remote sensing representation learning when combined with
other remote sensing images and their geographical location.
Algorithm 1 illustrates the procedure for obtaining supervision
information using geographical knowledge.

The first step is to find the area where the remote sensing
image I is located. It requires the remote sensing image’s
geographical location, as well as each area in GlobeLand30.
A six-element vector GT represents the geographical location
information. GT (0) and GT (3) represent the image’s upper
left corner coordinates, while GT (1) and GT (5) represent
the image’s horizontal and vertical resolution alterations. The
rotation resolution of the image is represented by GT (2) and
GT (4), which are both 0. It is feasible to determine which area
the remote sensing image is located in by finding GTm

g in the
GlobeLand30 product that completely encircles the image area
GTI .

Then, the following formula can be used to determine the
remote sensing image’s relative position within the selected
area GTm

g :

xleft = {GTI(0)−GTm
g (0)}/GTm

g (1), (1)

xtop = {GTI(3)−GTm
g (3)}/GTm

g (5), (2)

xright = xleft + {GTI(1) ∗ s}/GTm
g (1), (3)

xbottom = xtop + {GTI(5) ∗ s}/GTm
g (5), (4)

where xleft, xtop, xright, xbottom represent the upper left and
lower right coordinates of the image respectively. s is the
image size. The land cover map M matching to the image I
can be generated from GlobeLand30 using the aforementioned
location information.



5

Algorithm 1 Supervision obtain process with geographical
knowledge

1: Input: remote sensing image I of size s and its ge-
ographical location GTI , GlobeLand30 product G and
geographical location GT j

g of jth area gj , the number of
area N .

2: Output: knowledge representation vector A of image I .
. firstly, determine to which area the image I

belongs.
3: for all j ∈ {1, 2, . . . , N} do
4: Determine whether GTI is in GT j

g .
5: if GTI ∈ GT j

g then
6: GTm

g ← GT j
g

7: end if
8: end for

. secondly, calculate the relative coordinate of the
image in the area.

9: calculate xleft, xtop, xright, xbottom using Eq. 1 - Eq. 4.
. finally, the proportion of different land covers is

counted as the knowledge representation A
10: land cover map M ← gj [xtop : xbottom, xleft : xright]
11: calculate knowledge representation vector A
12: return A

M records land cover types in remote sensing images. The
following formula can be used to determine the quantity of
each category:

S(i) =
∑
x,y

1i(M(x, y) == i). (5)

1i represents pixel-wise indicator function and i represents one
category. If and only if the element in M(x, y) is equal to i,
the output of indicator function 1i is 1, otherwise it is 0. So
S(i) represents the quantity of category i in land cover map
M .

Due to the difference in resolution between GlobeLand30
and the pre-training images, the generated label map M does
not correspond pixel-for-pixel to the input image. To avoid
spatial errors, we do not use M as the supervision information,
but rather design a transfer function F to map M into the
knowledge representation A. The knowledge representation
is a vector that completely ignores spatial information in
order to avoid errors caused by varying resolutions. The
mechanism of mapping function F is of great significance for
the representation learning. Although there are numerous types
of mapping functions F , the knowledge representation A they
generate must satisfy the following requirements: the similarity
between knowledge representations is smaller for images with
similar land covers, but larger for images with different land
covers. We employ a straightforward transfer function: for
each remote sensing image, we count the proportion of various
land cover types as the knowledge representation A. Each
element in A can be calculated using the following formula:

A(i) =
S(i)∑
j S(j)

. (6)

It is obvious that the knowledge representation A generated
by this method satisfies the principles discussed above. See
section IV for the rationality analysis of geographical knowl-
edge supervision.

B. Efficient Pre-training framework

There are discrepancies between remote sensing images
and geographical knowledge due to the difference in imaging
times and resolutions, which may introduce a certain amount
of random noise in the acquired supervision during training
phase. We build an effective pre-training framework based
on mean-teacher networks in order to minimize the effects
of supervision noises. It is made up of two networks with the
same structure: the student networks and the teacher networks.

Encoder f(. . . ) and the projection head g(. . . ) are the
two parts of the networks. The encoder f extracts represen-
tations from remote sensing images. We adopt the widely
used Resnet50 [61] and VGG16 [62] as the encoder to
obtain hs = fs(I), ht = ft(I), where hs and ht are the
representations obtained by the student and teacher networks
respectively. To project representations to the space where
knowledge representation A is located, we utilize a single
fully connected layer as the projection head g to obtain
S = gs(hs), T = gt(ht).

The student networks are in charge of predicting and
computing the loss function with supervision information, as
well as updating the parameters using the gradient descent
method. The teacher networks offer restrictions for the stu-
dent networks and updates the parameters from the student
networks at regular intervals using a moving average method.

θt ← αθt + (1− α)θs, (7)

where θt and θs represent the training weights of teacher
networks and student networks respectively. α controls the
update speed of the teacher network weights.

The KL (Kullback–Leibler) loss function is used to measure
the similarity between image representation from networks and
knowledge representation.

Lkr =
∑
i

Ailog
Ai

Si
, (8)

where A represents the knowledge representation and S
represents the student networks outputs after operations of
softmax. The above formula can be transformed into the
following form:

Ls = −
∑
i

AilogSi. (9)

We also use KL loss function to measure the distance
between outputs of student networks and teacher networks:

Lt = −
∑
i

SilogTi, (10)

where S represents outputs of student networks and T repre-
sents outputs of teacher networks. The total training function
is as follows:

L = γ1Ls + γ2Lt, (11)



6

where γ1 and γ2 are balance coefficients. As the teacher
networks can avoid the fluctuation during the training, we use
the teacher model as the pre-training model on downstream
tasks.

C. Implementation Details

We develop our code using pytorch-1.5. The rate of learning
is 1e-3. Following each epoch, the learning rate decreases
to 90% of the previous one. The batch size is configured
to be 128. The pre-training steps are 194209. The teacher
model updates the parameters once every 3000 batches, and
the smoothing control parameter α is set to 0.95. The balance
coefficients γ1 and γ2 are both set to 1. The image size for
pre-training and downstream tasks are both set to 256× 256.

To increase the diversity of training data, we employ several
data augmentation methods, including random rotation (rota-
tion angle is chosen from [0◦,90◦,180◦,270◦), random flip up
and down, and random flip left and right. Additionally, we use
the color jitter method to increase the color diversity.

It’s worth noting that the method of data augmentation
described above is completely distinct from that used in con-
trastive learning methods. Positive samples must be generated
via data augmentation for contrastive learning methods such
as MoCo [20], and the loss function is then constructed using
both positive and negative samples. Our proposed method, on
the other hand, can generate supervision information based on
geographical knowledge. The supervision information gener-
ated for each remote sensing image can be used to construct
the loss function and complete the network pre-training, which
eliminates the need for data augmentation to generate positive
samples. The purpose of data augmentation in this paper is
identical to the purpose of most image processing researches:
to increase the diversity of training data and improve the
network’s generalization ability.

IV. DATASET FOR PRE-TRAINING

A. Introduction on Pre-training Dataset

We build up a pre-training dataset called Levir-KR. In this
part, we introduce the statistical information of this dataset
and the pre-processing methods to build it.

Levir-KR data are derived from the Gaofen series satellites,
including Gaofen-1 fusion images with a resolution of 2
meters, Gaofen-1 multi-spectral images with a resolution of
16 meters, Gaofen-2 fusion images with a resolution of 0.8
meters, and Gaofen-6 multi-spectral images with a resolution
of 16 meters. We convert the original scenes’ front three bands
to RGB (red, green, blue) mode. Then, with an overlap rate
of 0.2, we cut them into images measuring 256×256. Table I
lists details about them. Columns from left to right represent
the imaging sources, resolutions, number of original scenes
and images.

Due to the inescapable effect of clouds and sunlight on
remote sensing images, we use unsupervised methods to
remove images obscured by clouds or with low contrast. Given

TABLE I
DETAILS ABOUT THE DATA WE COLLECT. COLUMNS FROM LEFT TO RIGHT

REPRESENT THE DATA SOURCE, RESOLUTION, NUMBER OF ORIGINAL
SCENES AND IMAGES.

Data source Resolution Scenes Images

Gaofen-1 fusion 2 meter 86 240994

Gaofen-1 multi-spectral 16 meter 56 84365

Gaofen-2 fusion 0.8 meter 25 1041502

Gaofen-6 multi-spectral 16 meter 25 362835

TABLE II
DETAILS ABOUT CATEGORIES OF LEVIR-KR DATASET. COLUMNS FROM

LEFT TO RIGHT ARE THE NAME OF EACH CATEGORY, NUMBER OF IMAGES
AND PROPORTION IN ALL THE DATA.

Index Class name Number Ratios

0 Artificial surfaces 232163 0.1621

1 Bareland 164365 0.1148

2 Cultivated land 766697 0.5354

3 Forest 37117 0.0259

4 Grassland 62419 0.0436

5 Permanent snow 3263 0.0023

6 Water bodies 127453 0.0890

7 Wetland 38473 0.0269

that the majority of clouds are brilliant white, we estimate the
cloud proportion in each image using the following formula:

rc =
1

N

∑
i

1t(R(i) > t), (12)

where 1t(R(i) > t) indicates whether the pixel i is covered
by clouds. If the pixel value is greater than t, it is covered
by clouds and we set 1t = 1, otherwise it is not covered by
clouds and we set 1t = 0. The threshold t is set to 230. N
represents the number of pixels. rc represents the proportion
of clouds in the image. If the value is greater than 0.5, we
discard this image. We use the method of scikit-learn [63] to
judge whether the image is low contrast. If it is a low contrast
image, we also directly discard it.

As it is difficult to collect enough remote sensing images
of some rare categories, we discarded data of two categories:
tundra and shrubland. Finally, we build up our pre-training
dataset, Levir-KR, with 1,431,950 images. Details about the
Levir-KR dataset, including the name of each category, num-
ber of slices and proportion in all the data, are shown in the
Table II and Fig. 3. The category of each image is defined as
one with the largest proportion.

As a result of the uneven distribution of land cover on the
actual land, the number of distinct classes is unbalanced. This
will inevitably introduce bias into the pre-training model. As
a result, during the network training process, we duplicate the
images according to the number of different categories in order
to balance the training data.
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B. Analysis on Pre-training Dataset

The feasibility of using GlobeLand30 for pre-training will
be discussed in this part. GlobeLand30 2000, GlobeLand30
2010, and GlobeLand30 2020 are the three versions of Glo-
beLand30. We use GlobeLand30 2010 and GlobeLand30 2020
to analyze changes in land covers over the last decade because
the Levir-KR images are collected between 2010 and 2020.

We begin by calculating the changes in the eight land
covers we used over the last decade, as shown in Fig. 4 and
Table III. The table’s first two rows depict the proportions of
various land covers in the 2010 and 2020 versions. We evaluate
land cover changes using ”Mean Absolute Error (MAE)”
and ”Mean Absolute Percentage Error (MAPE)”. Results are
shown in the final two rows of Table III. Apart from the
relatively large changes in the artificial surfaces, the changes
in other land covers over the last decade have been relatively
small. Additionally, when combined with Fig. 4, despite the
fact that the artificial surface changes are relatively large,
their proportion in the dataset is small. Thus, our assumption
that the majority of supervision information is accurate is
confirmed, but there will be some noises. We can obtain a
more intuitive understanding of this conclusion in Fig. 4. The
histogram heights for various land covers are nearly identical
in the 2010 and 2020 versions, indicating that the land covers
have changed very little over the last decade.

Additionally, we have analyzed changes in land covers in
the Levir-KR dataset. Globeland30 2010 and 2020 are used to
calculate the land covers of the images in the dataset, and the
land cover with the highest proportion is chosen as the image

Cultivated Land

Foreast

GrassLand

Wetland

Water Bodies

Artifical Surfaces

Bareland

Permanent Snow 

Gaofen-1 GlobeLand30 Gaofen-1 GlobeLand30 Gaofen-1 GlobeLand30

Fig. 5. Some examples of GlobeLand30 2010 and corresponding Gaofen-1
images with the same location (Better viewed in color). The column ”Gaofen-
1” represents images from the Gaofen-1 satellite. The column ”GlobeLand30”
means the land cover map corresponding to the left Gaofen-1 images.

category. Then, we count the images with different categories
in the two versions and calculate the percentage of images with
category changes relative to the total number of images. Our
calculation indicates that the proportion is approximately 5%,
suggesting that the supervision information obtained using our
proposed method is reasonably reliable.

In addition, it can be seen from the above analysis that
there are few differences between the supervision information
generated by GlobeLand30 2010 and GlobeLand30 2020. We
chose GlobeLand30 2010 released in 2014 as our experimental
data, as its release time is closer to the imaging time of the
images in the Levir-KR dataset.

Fig 5 lists some examples in GlobeLand30 2010 and their
corresponding Gaofen-1 images with the same location. Be-
cause of differences of imaging resolutions and imaging times
between GlobeLand30 2010 and remote sensing images, the
land covers maps can not be used for specific tasks. But they
can also be roughly distinguished. Therefore, they can be used
to provide a guide for remote sensing representation learning.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, our proposed method is evaluated on a
variety of commonly used remote sensing image downstream
tasks, including scene classification, semantic segmentation,
object detection, and cloud / snow detection. Because our
purpose is to verify the effect of representation learning on
downstream tasks, we do not focus on designing the optimal
network structure for downstream tasks, but rather on selecting
a relatively simple network and comparing downstream task
performance under various pre-training models. As mentioned
in the Section.III, the representation learning networks are
composed of an encoder f and a project head g. Encoder
f represents the portion of the network prior to the global
pooling layer, while projection head g represents the portion of
the global pooling layer and fully connected networks. When
pre-training models are transferred to downstream tasks, only
the network parameters of encoder f are initialized with our
pre-training model, while other parts are initialized randomly.

Random initialization, ImageNet pre-training and recently
proposed self-supervised representation learning methods such
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TABLE III
THE PROPORTIONS AND CHANGES OF LAND COVERS GENERATED BY GLOBELAND30 2010 AND GLOBELAND30 2020.

Artificial
surfaces Bareland Cultivated

land Forest Grassland Permanent
snow

Water
bodies Wetland

GlobeLand30 2010 0.0102 0.1645 0.1617 0.3212 0.2634 0.0204 0.0301 0.0285
GlobeLand30 2020 0.0129 0.1608 0.1669 0.3262 0.2501 0.0227 0.0311 0.0293

MAE 0.0026 0.0037 0.0053 0.005 0.0133 0.0023 0.001 0.0007
MAPE 0.2582 0.0227 0.0326 0.0156 0.0504 0.114 0.0341 0.0256

TABLE IV
SCENE CLASSIFICATION RESULTS ON UCMERCED AND RSSCN7. BEST RESULTS ARE MARKED IN BOLD. GEOKR? INDICATES THAT IT IS

CONTINUOUSLY UNSUPERVISED FINE-TUNED ON THE IMAGENET PRE-TRAINING MODEL.

UCMerced RSSCN7
5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

VGG16 Random 0.4552 0.5238 0.7752 0.8686 0.8705 0.5714 0.7586 0.8342 0.8814 0.8971
ResNet50 Random 0.4247 0.5238 0.6362 0.7689 0.9105 0.4790 0.6143 0.6610 0.7179 0.8357
VGG16 ImageNet 0.7238 0.8400 0.8781 0.8667 0.9448 0.7571 0.7729 0.8714 0.9057 0.9171

ResNet50 ImageNet 0.6622 0.8273 0.8806 0.9022 0.9562 0.6752 0.7829 0.8276 0.8593 0.9229

MoCo [20] 0.6533 0.7911 0.8381 0.9073 0.9378 0.6819 0.7790 0.8329 0.8710 0.9024
SimCLR [21] 0.5746 0.7403 0.8127 0.9168 0.9365 0.6914 0.7581 0.7919 0.8138 0.8710
BYOL [22] 0.5702 0.7632 0.8787 0.8737 0.9422 0.6948 0.7748 0.7733 0.8252 0.8714

GeoKR (VGG16) 0.6286 0.7905 0.8610 0.9346 0.9575 0.8333 0.8600 0.8771 0.9204 0.9443
GeoKR (ResNet50) 0.6229 0.7867 0.8368 0.8978 0.9416 0.8029 0.8548 0.8843 0.8924 0.9005
GeoKR? (VGG16) 0.6330 0.8197 0.8673 0.9276 0.9702 0.8481 0.8662 0.8748 0.9210 0.9443

GeoKR? (ResNet50) 0.7048 0.8470 0.9092 0.9549 0.9695 0.8448 0.8933 0.8933 0.9152 0.9419

as MoCo [20], SimCLR [21], BYOL [22] are used as com-
parison pre-training methods in the experiment. All methods
are trained on the Levir-KR dataset except for random ini-
tialization and ImageNet pre-training. For each downstream
task, we sample the downstream dataset separately to compare
the fine-tuning effects of different pre-training models on
different data scales. This is to ascertain the effectiveness
of our method in terms of reducing the burden associated
with data annotation. Additionally, our method includes two
pre-training initialization methods: random initialization pre-
training (represented by GeoKR) and continuing training based
on the ImageNet pre-training model (represented by GeoKR?).
Only ResNet50 is used to evaluate the comparative self-
supervised representation learning method.

In addition, the pre-training dataset we use is collected
completely independently, and there is no overlap with the
downstream datasets. It means that downstream dataset’s im-
age has not ever appeared in the pre-training dataset and there
is no overlap between the coverage of the downstream dataset
and that of the pre-training dataset.

A. Scene Classification

Experimental setup. The UCMerced [64] and RSSCN7
[65] datasets are used to evaluate our proposed model for
scene classification task. The UCMerced dataset contains 21
categories with 100 images each, while the RSSCN7 dataset
contains seven categories with 400 images each. The training
and testing sets were randomly divided in a 3:1 ratio. All

weights have been fine-tuned, including the backbone and
linear classification layer. Each of the comparative methods
utilizes the identical network structure and training strategy.
The rate of learning is set to 0.001, and a total of 200 epochs
are trained. Random flip and random rotation are added to
increase the diversity of the data. The mean average of the
top-1 accuracy of each class is used as evaluation metric.
Additionally, we repeated each experiment three times and
took the average of the three results as the final results.

Experimental results. The experimental results are shown
in the Table IV. The best results are marked in bold. Each
column denotes the results obtained using various proportions
of training data. Our method achieves the best results in almost
all cases, as demonstrated by the experimental results.

As the most frequently used method, ImageNet pre-training
is still superior to other comparison methods. When all training
data is used, however, our method outperforms ImageNet pre-
training by two percentage, demonstrating that our method
can indeed improve scene classification performance. Self-
supervised learning methods fall between ”ResNet50 Random”
and ”ResNet50 ImageNet” in terms of performance. This
demonstrates that while the current self-supervised repre-
sentation learning method can improve scene classification
performance, adding geographical knowledge can improve
performance even further.

In addition, when using only 50% labeled data for scene
classification, our method can obtain the comparable perfor-
mance as ImageNet pre-training method with 100% labeled
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TABLE V
SEMENTAIC SEGMENTATION RESULTS ON VAIHINGEN DATASET. MIOU IS USED AS THE EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD.

GEOKR? INDICATES THAT IT IS CONTINUOUSLY UNSUPERVISED FINE-TUNED ON THE IMAGENET PRE-TRAINING MODEL.

0.25% 0.33% 0.5% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 0.3600 0.3207 0.3540 0.3810 0.4041 0.4596 0.4770 0.5024 0.6313 0.6521
ResNet50 Random 0.3054 0.3439 0.3369 0.3846 0.3757 0.4194 0.4727 0.5106 0.6309 0.6448
VGG16 ImageNet 0.3218 0.3430 0.3777 0.3866 0.3855 0.4731 0.4807 0.5028 0.6293 0.6753

ResNet50 ImageNet 0.2974 0.3424 0.3575 0.3470 0.4050 0.4640 0.4455 0.5177 0.6611 0.7015

MoCo [20] 0.3295 0.3407 0.3463 0.4800 0.4354 0.5450 0.5929 0.6128 0.6406 0.6819
SimCLR [21] 0.3270 0.2609 0.3349 0.4102 0.4450 0.5098 0.5939 0.5979 0.6417 0.6651
BYOL [22] 0.2325 0.2694 0.3179 0.3976 0.4913 0.5925 0.6447 0.6829 0.6870 0.7271

GeoKR (VGG16) 0.3480 0.3530 0.4244 0.4826 0.5423 0.6023 0.6347 0.6749 0.6999 0.7210
GeoKR (ResNet50) 0.3634 0.3152 0.4285 0.5165 0.5783 0.6209 0.6423 0.6796 0.6861 0.7110
GeoKR? (VGG16) 0.3405 0.3738 0.4176 0.4812 0.5491 0.6185 0.6704 0.6978 0.7154 0.7401

GeoKR? (ResNet50) 0.3607 0.4138 0.4155 0.5150 0.5665 0.6390 0.6397 0.6978 0.7159 0.7268

TABLE VI
SEMENTAIC SEGMENTATION RESULTS ON POTSDAM DATASET. MIOU IS USED AS THE EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD.

GEOKR? INDICATES THAT IT IS CONTINUOUSLY UNSUPERVISED FINE-TUNED ON THE IMAGENET PRE-TRAINING MODEL.

0.25% 0.33% 0.5% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 0.3620 0.3026 0.3534 0.4007 0.4240 0.4864 0.5407 0.5814 0.6748 0.6810
ResNet50 Random 0.3253 0.3673 0.3495 0.4098 0.4435 0.5340 0.5364 0.5624 0.6522 0.6768
VGG16 ImageNet 0.3764 0.3303 0.4066 0.4568 0.5132 0.5414 0.6282 0.6175 0.6662 0.6656

ResNet50 ImageNet 0.3225 0.3864 0.3884 0.4211 0.4637 0.5514 0.5651 0.6088 0.6281 0.6828

MoCo [20] 0.3570 0.3565 0.3670 0.3984 0.4317 0.5581 0.5986 0.6204 0.6443 0.6683
SimCLR [21] 0.3123 0.3848 0.3905 0.3951 0.4151 0.5527 0.5917 0.6011 0.6362 0.6581
BYOL [22] 0.3072 0.3568 0.3398 0.3919 0.4222 0.5158 0.5903 0.6004 0.6290 0.6501

GeoKR (VGG16) 0.4010 0.4354 0.4524 0.4924 0.5208 0.6107 0.6433 0.6489 0.6789 0.6951
GeoKR (ResNet50) 0.4104 0.4233 0.4528 0.4813 0.5253 0.6226 0.6517 0.6648 0.6848 0.6986
GeoKR? (VGG16) 0.4004 0.4251 0.4636 0.4975 0.5315 0.6120 0.6532 0.6661 0.6801 0.6953

GeoKR? (ResNet50) 0.4040 0.4388 0.4812 0.4955 0.5537 0.6450 0.6704 0.6778 0.6959 0.7048

data. It demonstrates that our method can alleviate some of the
burden associated with data annotation. In practice, only half
of the original work may be required to achieve the desired
performance.

B. Semantic Segmentation

Experimental setup. We demonstrate our method’s effec-
tiveness in semantic segmentation of remote sensing images
using the Potsdam and Vaihingen datasets [66]. Six categories
are included in the datasets. Each dataset is randomly divided
into a training set, a validation set, and a testing set in the
ratio 3:1:1. Each image in the datasets is cut into slices
with 256× 256 size. We construct simple fully convolutional
neural networks [67] and incrementally up-sample feature
maps using the bilinear layer. Each bilinear layer is followed
by a convolutional layer and a batch normalization layer [68],
which doubles the size of the output feature maps. During
training, the learning rate is set to 0.005 and decreases to
90% of the previous value every ten epochs. The model is
trained over a period of 200 epochs. To increase generalization
ability, random flip and random rotation are added. As an
evaluation metric for the semantic segmentation task, we use

mIoU (mean average of Intersection-over-Union). Meanwhile,
we will calculate the accuracy of the validation set every 20
epochs and choose the model with the highest accuracy as the
final one.

Experimental results. The segmentation results are shown
in the Table V and Table VI. The best results are marked
in bold. Each column represents the results with different
proportions of training data. Experimental results demonstrate
that our method consistently produces the best results, and the
improvement is more pronounced with less training data.

In comparison to random initialization, ImageNet pre-
training does not significantly improve semantic segmenta-
tion accuracy, whereas self-supervised representation learning
methods can in some cases outperform ImageNet pre-training.
The performance of different comparison methods is approach-
ing saturation as the amount of training data grows, but our
method still improves by about 4% on the Vaihingen dataset
and 2% on the Potsdam dataset. It demonstrates the critical
role of geographical knowledge in representation learning for
remote sensing semantic segmentation.

In addition, when using only 20% labeled data for semantic
segmentation, our method can obtain the comparable perfor-
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a) Image b) Label c) Random d) ImageNet e) Moco f) SimCLR g) BYOL h) GeoKR

Fig. 6. (Better viewed in color) The semantic segmentation visualization results. The figure’s first three rows depict the visualization results for the Vaihingen
dataset, while the last three rows depict the visualization results for the Potsdam dataset. The first column corresponds to the input image, while the second
column corresponds to the label. The last six columns illustrate the effects of various methods.

mance as ImageNet pre-training method with 100% labeled
data.

Fig. 6 illustrates the semantic segmentation visualization
results. The figure’s first three rows depict the visualization
results for the Vaihingen dataset, while the last three rows
depict the visualization results for the Potsdam dataset. The
first column corresponds to the input image, while the second
column corresponds to the label. The last six columns illustrate
the effects of various methods. As illustrated in the figure, the
semantic segmentation visualization results are nearly identical
to the quantitative results, indicating that our method can
achieve the best outcomes.

C. Object Detection
Experimental setup. We verify the effectiveness of our

method in object detection of remote sensing images on the
Levir dataset [1]. It consists of three categories: airplane, ship
and oil-tank. We randomly divide the dataset into training set,
validation set and testing set according to the ratio of 3:1:1.
And we also cut images into slices with the size of 256×256.

TABLE VII
OBJECT DETECTION ON LEVIR DATASET. MAP IS USED AS THE

EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD. GEOKP?

INDICATES THAT IT IS CONTINUOUSLY UNSUPERVISED FINE-TUNED ON
THE IMAGENET PRE-TRAINING MODEL.

0.5% 1% 5% 10% 50% 100%

Random 0.0192 0.0522 0.2139 0.4678 0.7009 0.7178
ImageNet 0.0175 0.0551 0.3189 0.5250 0.7191 0.7370

MoCo [20] 0.0092 0.0589 0.3425 0.5787 0.6512 0.6826
SimCLR [21] 0.0092 0.0398 0.1632 0.5048 0.7243 0.7229
BYOL [22] 0.0071 0.0452 0.2396 0.5391 0.7215 0.7370

GeoKR 0.0715 0.0729 0.3886 0.5979 0.7164 0.7288
GeoKR? 0.0231 0.0740 0.3716 0.5969 0.7395 0.7632

We choose mAP (mean average precision) as the evaluation
metric. We select CenterNet [69] as the evaluation networks.
The learning rate is set to 0.005, and will drop to 95% of
the previous every 200 epochs. Meanwhile, after every 200
epochs, we will calculate the accuracy in the validation set,
and select the model with the highest accuracy as the final
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a) Image b) Label c) Random d) ImageNet e) Moco f) SimCLR g) BYOL h) GeoKR

Fig. 7. (Better viewed in color) The object detection visualization results on Levir dataset. The first two columns contain the input images and their labels,
respectively. The last six columns illustrate the effects of various methods.

one. The model is trained for 1000 epochs. We choose mAP
(mean average precision) as the evaluation metric. To ensure
the object detection method’s fundamental performance, we
conduct experiments using only ResNet50.

Experimental Results. The detection results are shown in
the Table VII. The best results are marked in bold. Each
column represents the results with different proportions of
training data. In almost every case, our method yielded the
best results, but the improvements are not as noticeable as
with scene classification and semantic segmentation.

All methods have low accuracy when there is a small
amount of training data, which indicates that there is a high
demand for annotated data in the object detection task. Our
method can increase object detection performance over 2%,
but it has a limited impact on the number of annotations.

Fig. 7 illustrates the object detection visualization results on
Levir dataset. The first two columns contain the input images
and their labels, respectively. The last six columns illustrate
the effects of various methods. As can be seen, our method
outperforms other methods in terms of false alarm reduction

and detection rate improvement.

D. Cloud / Snow Detection

Experimental Setup. The effect of our method on cloud
and snow detection is verified by the dataset Levir CS [70].
Because cloud and snow detection is a subset of semantic
segmentation, we use the same network structure and train-
ing strategy as the semantic segmentation section, with the
exception that the learning rate is set to 0.001.

Experimental Results. Cloud detection results are shown
in Table. VIII, while snow detection results are shown in
Table. IX. The best results are marked in bold. Each column
represents the results with different proportions of training
data.

As a subset of semantic segmentation, there are numerous
parallel conclusions between the cloud / snow detection and
semantic segmentation experiments. For instance, our methods
significantly improved performance, whereas the performance
difference between comparative methods is relatively small.
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TABLE VIII
CLOUD DETECTION ON LEVIR CS DATASET. MIOU IS USED AS THE EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD. GEOKR? INDICATES

THAT IT IS CONTINUOUSLY UNSUPERVISED FINE-TUNED ON THE IMAGENET PRE-TRAINING MODEL.

0.5% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 0.6546 0.6402 0.6290 0.6975 0.6705 0.6924 0.6977 0.7148
ResNet50 Random 0.6582 0.6364 0.6198 0.6905 0.6764 0.6889 0.7093 0.7320
VGG16 ImageNet 0.6683 0.6705 0.6965 0.6726 0.7325 0.7405 0.7351 0.7601

ResNet50 ImageNet 0.6892 0.6586 0.7077 0.6817 0.6618 0.7219 0.7026 0.7344

MoCo [20] 0.6703 0.6611 0.6920 0.6755 0.6816 0.6853 0.7210 0.7338
SimCLR [21] 0.5994 0.6581 0.6363 0.6690 0.6532 0.7128 0.6651 0.7256
BYOL [22] 0.6712 0.6830 0.7020 0.7078 0.6881 0.7230 0.7349 0.7359

GeoKR (VGG16) 0.6992 0.6970 0.7176 0.7287 0.7339 0.7348 0.7376 0.7319
GeoKR (ResNet50) 0.6905 0.6954 0.7130 0.7181 0.7371 0.7563 0.7484 0.7622
GeoKR? (VGG16) 0.6922 0.7088 0.7098 0.7440 0.7421 0.7649 0.7308 0.7537

GeoKR? (ResNet50) 0.6930 0.6989 0.7099 0.7337 0.7233 0.7332 0.7510 0.7507

TABLE IX
SNOW DETECTION ON LEVIR CS DATASET. MIOU IS USED AS THE EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD. GEOKR? INDICATES

THAT IT IS CONTINUOUSLY UNSUPERVISED FINE-TUNED ON THE IMAGENET PRE-TRAINING MODEL.

0.5% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 0.0502 0.2039 0.2518 0.3308 0.3290 0.3882 0.3996 0.4302
ResNet50 Random 0.0057 0.1578 0.2513 0.2928 0.3190 0.4154 0.4012 0.4447
VGG16 ImageNet 0.2147 0.2494 0.3447 0.3273 0.4240 0.4772 0.4662 0.5580

ResNet50 ImageNet 0.2326 0.2743 0.3425 0.2911 0.3115 0.3670 0.4060 0.4700

MoCo [20] 0.2631 0.3088 0.3176 0.3176 0.2750 0.3288 0.4349 0.4447
SimCLR [21] 0.1630 0.2599 0.2747 0.2942 0.3237 0.2635 0.3304 0.4031
BYOL [22] 0.2669 0.2704 0.3491 0.3722 0.3558 0.4221 0.4361 0.4486

GeoKR (VGG16) 0.2496 0.3294 0.3473 0.4230 0.4939 0.5194 0.5060 0.5030
GeoKR (ResNet50) 0.2025 0.3059 0.3778 0.4070 0.4749 0.5421 0.5102 0.5730
GeoKR? (VGG16) 0.2181 0.3297 0.4186 0.4902 0.4929 0.5485 0.4978 0.5075

GeoKR? (ResNet50) 0.2532 0.3566 0.3938 0.4526 0.4006 0.4628 0.5055 0.4992

However, the experimental results for the cloud detection and
snow detection tasks are quite different.

Firstly, cloud detection is generally more accurate than snow
detection. The performance improvement for cloud detection
is not readily apparent at various dataset scales. Comparing
the use of 0.5% training data and the use of all training
data, the performance gap does not exceed 10%. This also
means that our method is restricted in its application to cloud
detection, as cloud detection does not require a large amount
of annotation data. However, our method can significantly aid
in the improvement of snow detection. The improvement can
even exceed 10% in some cases, particularly with less data.

Fig. 8 illustrates the cloud / snow detection results on
Levir CS dataset [70]. The marked areas in black, white,
and gray correspond to ground objects, snow masks, and
cloud masks, respectively. As can be seen, different methods
for cloud detection have few differences in effect and can
all achieve accurate detection. However, for snow detection,
our method outperforms other methods in terms of detection
accuracy and stability.

As demonstrated in the preceding experiments, despite the
fact that both the contrastive learning method and our proposed
method pre-train on the same Levir-KR dataset, our method
can still outperform the contrastive learning method. The
reason is that the large number of remote sensing images with
similar land covers makes networks difficult to distinguish
positive and negative samples for contrastive learning methods,
thereby impairing the pre-training performance. Contrastive
learning methods require a large number of data augmentation
strategies in order to generate positive samples, which can eas-
ily result in excessive differences between the augmented and
original data, resulting in unstable pre-training. Additionally,
because there are a large number of remote sensing images
with similar land covers, the randomly selected negative sam-
ples may be very similar to the input images. The preceding
issues will result in oscillation and instability during the pre-
training process, which will result in a loss of accuracy. Thus,
contrastive learning’s accuracy is lower than our proposed
method’s accuracy.
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a) Image b) Label c) Random d) ImageNet e) Moco f) SimCLR g) BYOL h) GeoKR

Fig. 8. The cloud / snow detection results on Levir CS dataset . The marked areas in black, white, and gray correspond to ground objects, snow masks, and
cloud masks, respectively.

E. Ablation Experiments

We design the ablation experiment to determine the ef-
fect of the proposed method’s various components. Table
X summarizes the experimental findings. We validate the
effectiveness of pre-training on the RSSCN7 and Vaihingen
datasets, respectively, using ResNet50 as the backbone. The
baseline model is based on ResNet50 and fine-tuned using the
ImageNet pre-training model. Each ablation item is described
in detail below:

• Classification. Pre-training is accomplished through the
use of classification method. To begin, the land cover type
with the greatest proportion in the image is chosen as the
category label, and an ImageNet-like classification dataset
is constructed. Then, a classification layer is added to the
ResNet50 backbone to complete the network pre-training.
It can also be regarded as the simplest method to generate
knowledge representations.

• Representation. The knowledge representation is used to
provide supervision information, and the KL loss is used

to guide the network pre-training. The ResNet50 back-
bone and projection layer continue to be used. Teacher
networks is not adopted.

• Student. The teacher networks is added to further con-
strain the training of student networks, but the student
model is used as the pre-training model on downstream
tasks.

• Teacher. The teacher networks is added to further con-
strain the training of student networks, and the teacher
model is also used as the pre-training model on down-
stream tasks.

It can be seen that with the geographical knowledge, even
the simplest methods for generating knowledge representation
can significantly improve the effectiveness of the pre-training
model. It fully demonstrates the necessity and effectiveness
of geographical knowledge for representation learning in re-
mote sensing images. But the method we adopt to generate
knowledge representations in this paper and teacher networks
can further improve the performance of pre-training. The best
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TABLE X
ABLATION STUDIES ON RSSCN7 AND VAIHINGEN DATASET. ABLATIONS ARE PERFORMED ON 1) CLASSIFICATION, 2) REPRESENTATION, 3) STUDENT

AND 4) TEACHER.

Ablations RSSCN7 Vaihingen
Classification Representation Student Teacher 5% 10% 20% 50% 100% 0.33% 1% 5% 20% 100%

× × × × 0.6752 0.7829 0.8276 0.8593 0.9229 0.3424 0.3470 0.4640 0.5177 0.7015
X × × × 0.7976 0.8395 0.8833 0.9133 0.9281 0.2942 0.4756 0.6249 0.6976 0.7236
× X × × 0.8071 0.8500 0.8881 0.8943 0.9376 0.2926 0.4777 0.6150 0.7104 0.7322
× X X × 0.8310 0.8790 0.8971 0.9305 0.9357 0.3178 0.4992 0.6377 0.7038 0.7374
× X × X 0.8448 0.8933 0.8933 0.9152 0.9419 0.4138 0.5150 0.6390 0.6978 0.7268

results are achieved with teacher model. Moreover, it is of
little effect whether to select student model or teacher model,
but both are better than that without the constrain of teacher
networks. It is proved that the teacher networks can really
play a guiding role during training, and remove the impact on
differences of imaging time between remote sensing images
and the geographical knowledge.

VI. DISCUSSION

Although the experimental results have proved the effec-
tiveness of our proposed method, it still has the following
problems to be solved:

1) Since the main purpose of this paper is to study the
feasibility of geographical knowledge for remote sensing
image representation learning, we only use optical remote
sensing images for experiments, without considering SAR
images and hyperspectral images. But from the principle
of the proposed method, the method can also be extended
to other types of remote sensing images, as long as the
processing tasks of this type of remote sensing images
can be solved by deep learning methods and have corre-
sponding geographical location information.

2) Although there are numerous publicly available global
land cover products, we use only GlobeLand30 product.
We may use a variety of global land cover products
to extract more accurate land covers for remote sensing
images in the future.

3) Although we have developed some methods to mitigate
the effect of noises, the generated supervision information
cannot be modified adaptively, which means that our
method can only mitigate the effect of noises to the
greatest extent possible, but not improve the quality of
the generated supervision information. In future work,
we may develop more reasonable methods for generating
and adjusting supervision information, thereby increasing
the quality of supervision information generated during
pre-training.

VII. CONCLUSION

We propose a geographical knowledge-driven representation
learning method for remote sensing images (GeoKR). We
employ geographical knowledge (including global land cover
products and the geographical location of remote sensing
images) to supervise representation learning and network pre-
training using millions of unlabeled remote sensing images.

Due to the difference in imaging times and resolutions be-
tween remote sensing images and geographical knowledge,
generated supervision information may contain noises. We
develop an efficient pre-training framework based on mean-
teacher networks and complete network pre-training by align-
ing the network’s image representations with the knowledge
representations generated using geographical knowledge. In
addiction, Levir-KR dataset is build up with 1,431,950 images
from Gaofen satellites. On downstream tasks such scene clas-
sification, semantic segmentation, object detection, and cloud
/ snow detection, our proposed method outperforms ImageNet
pre-training and self-supervised representation learning and
can effectively reduce the burden of data annotation. Our
method can improve semantic segmentation and object detec-
tion accuracy by more than 2% when using all training data.
When training data is limited, improvements are even more. To
achieve the effect of ImageNet pre-training with total training
data, our method only requires approximately half of the
training data in the scene classification task and approximately
20% of the training data in the semantic segmentation task. All
experiments confirm that our proposed method can be used as
a novel paradigm for networks pre-training.
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arXiv preprint arXiv:1904.07850, 2019.

[70] X. Wu, Z. Shi, and Z. Zou, “A geographic information-driven
method and a new large scale dataset for remote sensing
cloud/snow detection,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 174, pp. 87–104, 2021.

Wenyuan Li received his B.S. degree from North
China Electric Power University, Beijing, China in
2017. He is currently working toward his doctorate
degree in the Image Processing Center, School of
Astronautics, Beihang University. His research in-
terests include self-supervised learning and remote
sensing image processing.



17

Keyan Chen received the B.S. degree from the
School of Astronautics, Beihang University, Beijing,
China, in 2019. He is currently working toward the
M.S. degree in the Image Processing Center, School
of Astronautics, Beihang University. His research
interests include image processing, machine learning
and pattern recognition.

Hao Chen received his B.S. degree from the Image
Processing Center School of Astronautics, Beihang
University in 2017. He is currently pursuing his doc-
torate degree in the Image Processing Center, School
of Astronautics, Beihang University.His research in-
terests include machine learning, deep learning and
semantic segmentation.

Zhenwei Shi (M’13) received his Ph.D. degree in
mathematics from Dalian University of Technology,
Dalian, China, in 2005. He was a Postdoctoral
Researcher in the Department of Automation, Ts-
inghua University, Beijing, China, from 2005 to
2007. He was Visiting Scholar in the Department
of Electrical Engineering and Computer Science,
Northwestern University, U.S.A., from 2013 to 2014.
He is currently a professor and the dean of the
Image Processing Center, School of Astronautics,
Beihang University. His current research interests

include remote sensing image processing and analysis, computer vision,
pattern recognition, and machine learning.

Dr. Shi serves as an Associate Editor for the Infrared Physics and Tech-
nology. He has authored or co-authored over 100 scientific papers in refereed
journals and proceedings, including the IEEE Transactions on Pattern Analysis
and Machine Intelligence, the IEEE Transactions on Neural Networks, the
IEEE Transactions on Geoscience and Remote Sensing, the IEEE Geoscience
and Remote Sensing Letters and the IEEE Conference on Computer Vision
and Pattern Recognition. His personal website is http://levir.buaa.edu.cn/.

http://levir.buaa.edu.cn/

	Introduction
	Related Work
	Representation Learning
	Representation Learning for Remote Sensing Images
	Global Land Cover Products

	The Proposed Method
	Geographical Knowledge Supervision
	Efficient Pre-training framework
	Implementation Details

	Dataset for Pre-training
	Introduction on Pre-training Dataset
	Analysis on Pre-training Dataset

	Experimental Results and Analysis
	Scene Classification
	Semantic Segmentation
	Object Detection
	Cloud / Snow Detection
	Ablation Experiments

	Discussion
	Conclusion
	Biographies
	Wenyuan Li
	Keyan Chen
	Hao Chen
	Zhenwei Shi


