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Neural Rendering for Game Character
Auto-creation

Tianyang Shi†, Zhengxia Zou†, Zhenwei Shi and Yi Yuan*

Abstract—Many role-playing games feature character creation systems where players are allowed to edit the facial appearance of
their in-game characters. This paper proposes a novel method to automatically create game characters based on a single face photo.
We frame this “artistic creation” process under a self-supervised learning paradigm by leveraging the differentiable neural rendering.
Considering the rendering process of a typical game engine is not differentiable, an “imitator” network is introduced to imitate the
behavior of the engine so that the in-game characters can be smoothly optimized by gradient descent in an end-to-end fashion.
Different from previous monocular 3D face reconstruction which focuses on generating 3D mesh-grid and ignores user interaction, our
method produces fine-grained facial parameters with a clear physical significance where users can optionally fine-tune their
auto-created characters by manually adjusting those parameters. Experiments on multiple large-scale face datasets show that our
method can generate highly robust and vivid game characters. Our method has been applied to two games and has now provided over
10 million times of online services.

Index Terms—Game character customization, role-playing games, neural rendering, deep learning.
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1 INTRODUCTION

THE character customization system in many Role-
Playing Games (RPGs) provides an interactive interface

for players to edit the facial appearance of the in-game char-
acters with their preferences instead of using default tem-
plates. To improve the player’s immersion and interactivity,
character customization systems are becoming sophisticated
- in many modern RPGs such as “Grand Theft Auto Online”
(https://www.rockstargames.com/GTAOnline) and “Dark
Souls III” (https://www.darksouls.jp), players are now al-
lowed to precisely manipulate their characters on detailed
parts, e.g., corner of the eyes, hairstyles, and even makeups.
As a result, the character customization process turns out to
be laborious and time-consuming for most players. To create
an in-game character with a desired facial appearance (e.g.
a pop star or the players themselves), most players need to
spend hours manually adjusting hundreds of parameters,
even after considerable practice.

In computer vision, efforts have been made in generating
3D faces based on a single input face photo, in which a
representative group of methods are the 3D Morphable
Model (3DMM) [1] and its variants [2–4]. However, these
methods are difficult to be applied to in-game environments
due to the style gap and the different infrastructure be-
tween the two environments. In this paper, we propose a
novel method to automatically create in-game characters for
players according to a single input face photo1, as shown
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Fig. 1. We propose a novel method for game character auto-creation
under a self-supervised learning framework by leveraging differential
neural rendering. The proposed method converts a single input face
photo to a large set of physically meaningful facial parameters. Users
can further fine-tune the parameters optionally according to their needs.

in Fig. 1. We frame this “artistic creation” process under a
self-supervised learning paradigm by leveraging the differ-
entiable neural rendering. Different from the 3DMM based
methods which focus on generating 3D mesh-grid and
ignore user interaction, our method produces fine-grained
facial parameters with a clear physical significance where
users can optionally fine-tune their auto-created characters
by manually adjusting those parameters according to their
needs. We refer to our methods as a “Face-to-Parameter”
translation method. In our method, each facial parameter
controls the attribute (e.g., the position, orientation, and
scale) of an individual facial component. As the rendering
process of a typical game engine is not differentiable, a
generative network G is designed as an “imitator” to im-
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itate the physical behavior of the game engine so that our
model can be learned by gradient descent in an end-to-end
fashion. By taking advantage of the differentiable rendering
in our method, the character auto-creation can be naturally
formulated as a cross-domain facial similarity measurement
problem between the face of a generated character and a
real one. The training of our framework neither requires any
ground truth references nor any user interactions.

Fig. 2 (a) shows an overview of the proposed method.
Our method consists of multiple components:

- An imitator G. We design an imitator G to imitate
the behavior of a game engine and make the rendering
process differentiable, as shown in Fig. 2 (b). The G takes
in a group of facial customization parameters and is trained
to produce the face images of the corresponding in-game
character. Fig. 2 (c) shows two examples of the “rendering”
output of our imitator and their in-game “ground truth”.

- A translator T . We introduce a facial parameter trans-
lator T , which aims to transform an input facial image to a
set of in-game facial parameters. The generated parameters
can be either used for rendering 3D characters in the game
environments or further manually fine-tuned by players.

- A facial descriptor F . We take advantage of the deep
Convolutional Neural Networks (CNNs) and introduce a
facial descriptor F which learns high-level facial represen-
tations in terms of both global facial identity and local
details. The descriptor consists of two networks, a face
recognition network Frecg , and a face segmentation network
Fseg , where the former encodes an input face image to a
set of pose-irrelevant face embeddings and the latter learns
position-sensitive face representations.

We formulate the training of our method as a multi-
task regression process with multiple self-supervised loss
functions. To measure the similarity between the input face
and the generated one, we define two loss functions, an
“identity loss” Lidt and a “facial content loss” Lctt, where
the former one focuses on facial identity (pose-irrelevant)
and the later one compute facial similarity base on pixel-
wise representations. To improve the robustness and sta-
bility of the generation, we further introduce a “loopback
loss” Lloop, which ensures the translator correctly interprets
its own output [3]. By minimizing the distance between the
created face and the real one, the input face photos can be
effectively converted to vivid in-game characters. On basis
of the above framework, we propose two generation modes
for facial parameters, a “one-shot” generation mode and an
“iterative” generation mode, where the former one gener-
ates the facial parameters directly from the input image
through the translator T in a single forward propagation
while in the latter one we discard the translator and frame
the generation as a parameter searching process at the input
end of the renderer. We show in different aspects of their
advantages in our experiment, such as high-quality facial
generation, robustness, and speed. Our method has been
applied to two role-playing games, a PC game “Justice”
(in October 2018, https://n.163.com) and a mobile game
“Heaven” (coming soon, https://tym.163.com/) and now
has provided over 10 million times of online services.

Our contributions are summarized as follows:
• We propose a novel method for game character auto-

creation. To our best knowledge, we are the first to

launch this feature in the gaming industry.
• Since the rendering process of mainstream game en-

gines is not differentiable, we introduce an imitator
by building a deep generative network to imitate
the behavior of the engine. In this way, the gradi-
ent of the facial similarity can be smoothly back-
propagated all-though the generating pipeline and
the model can be optimized in an end-to-end fashion.

• We introduce multiple loss functions under a self-
supervised learning paradigm which proves to be
effective for cross-domain facial similarity measure-
ment. The loss functions can be jointly optimized by
multi-task learning.

2 RELATED WORK

2.1 Monocular 3D face reconstruction
Recovering 3D information from a single 2D face image has
long been a challenging but important task in computer
vision. On one hand, it forms the foundation of a large
group of real-world applications, such as game production,
medical plastic surgery, facial augmented reality, and virtual
reality, etc. On the other hand, it is a typical ill-posed
problem where the difficulty lies not only in the missing
of the stereoscopic information but also in a highly variable
imaging environment such as illumination changes, occlu-
sion, blurring, etc.

A representative of early monocular 3D face reconstruc-
tion is the 3D Morphable Model (3DMM), which was orig-
inally proposed by Blanz et al. in 1999 [1]. In 3DMM and
its recent variants [1, 7–13], a 3D mesh of a morphable
face model is first parameterized and then optimized to fit
the projection of the model to the 2D input face. In recent
years, deep CNNs [14, 15] were introduced to the monocular
3D face reconstruction by taking advantage of the high-
level image representations [2, 16–21]. These methods typi-
cally formulate the reconstruction as a standard regression
problem between the 2D input and the morphable model.
The regression based paradigm allows the integration of
auxiliary constraints on their objectives such as the adver-
sarial loss [22] and the loopback loss to achieve high-fidelity
reconstruction results [3, 4].

2.2 Differentiable rendering
Graphic rendering is a fundamental problem in computer
graphics that converts 3D models into 2D images. Tradi-
tional rendering pipelines used in 3D graphics consider
the forward process only. These methods typically involve
a discrete operation called rasterization, which prevents
gradient back-propagation and thus makes the renderer
non-differentiable. Differentiable Rendering (DR), which al-
lows calculation of the derivative from the rendering out-
put to the input 3D model, camera parameters, and even
environment variables (e.g., light conditions), has drawn
increasing attention in recent years. The key to the DR is to
approximate the gradient of the rendering process by using
a set of differentiable operators or structural units. The first
differentiable renderer, OpenDR [23], was proposed by M.
Loper et al. in 2014. In their method, they use the first-order
Taylor expansion, i.e., a series of predefined spatial filters to
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Fig. 2. An overview of our method. (a) Our model consists of multiple components: an imitator G, a facial parameter translator T , and a facial
descriptor F . The G, as shown in (b), aims to imitate the behavior of a game engine by taking in a set of user-customized facial parameters x
and producing a “rendered” facial image y. The T is trained to convert an input face photo to facial parameters which maximize the facial similarity
between the input and the “rendering” result in the feature space produced by the F . In (c), we show two groups of faces generated by our imitator
and their in-game ground truth.

approximate the gradient of the rasterizer. Later, some other
approaches based on interpolation approximation [24, 25],
triangle barycentric interpolation [3], and Monte Carlo [26]
were proposed to improve the fidelity rendering result as
well as the accuracy of the gradients. Since deep neural
networks provide naturally differentiable topology, a new
research topic called “neural rendering” quickly emerged
and the neural networks were introduced to the rendering
tasks [27–29].

As the 3D face reconstruction can be essentially consid-
ered as a parameter fitting problem between pre-scanned 3D
faces and input facial image, making renderer differentiable
recently became the key to solve this problem. Thanks
to the development of the differentiable rendering and
self-supervised learning, neural networks are now able to
achieve high-fidelity rendering results even without using
pre-scanned 3D faces [3, 19]. Despite the recent advances in
this field, most of the 3D face reconstruction methods are
not naturally applicable to RPGs. The main reason behind
this is that the face models in these methods are typically
designed based on statistical (PCA) shape basis but the
statistical shape basis is not friendly for user interactions.
As a comparison, the 3D faces in most RPGs are usually
represented by using manually defined shape basis (e.g.,
bone-driven face models) in which the parameters have
clear semantics. Table 1 shows a comparison between the
two groups of representation methods.

Beyond the above morphable face model and bone-
driven face model, Gruber et al. recently proposed a new

TABLE 1
A comparison between “Statistical Shape Basis (SSB)” and “Manually

Defined Shape Basis (MDSB)” on 3D face representation.

SSB MDSB

Semantics ambiguous explicit
Flexibility normal high
Texture style real real or game-style
Ground truth 3D scans none
Makeup a few many (in-game)
Face model morphable face model bone-driven face model

anatomical local face model for interactive sculpting [30]. In
their method, the authors integrate anatomical knowledge
into the 3D scanned face models to obtain a high degree
of freedom for face editing. Note that since our proposed
neural renderer – the imitator, is not limited to the choice
of the face model, our method can also be well applied on
either of the morphable face model or the anatomical local
face model. However, considering that the bone-driven face
model is more frequently used in Massively Multi Player
On-line Role-Playing Games (MMO-RPGs) than other types
of face models, we only focus on the bone-driven face
models in this paper.

3 METHODOLOGY

Here we introduce each part of our method in details,
including our imitator G, facial parameter translator T , our
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Fig. 3. (a) To effectively measure the cross-domain similarity between a generated face and a real one, we design three loss functions: 1) a facial
identity loss Lidt, which computes the distance between two images on top of the facial embeddings produced by a pre-trained face recognition
network Frecg , as shown in (b); 2) a facial content loss Lctt, which computes the pixel-wise similarity based on the facial semantic maps produced
by a face segmentation network Fseg , as shown in (c); 3) a loopback loss Lloop, which ensures the facial parameter translator T correctly interprets
its own output. (d) shows the architecture of our translator T . The key to our method is a self-supervised learning framework where a “recursive
consistency” is introduced to enforce the facial representation of the rendered image I0 to be similar with the input I: I0 = G(T (I)) ⇡ I.

facial similarity measurement, and other implementation
details.

3.1 Imitator
We train a convolutional neural network with eight trans-
posed convolution layers as our imitator G to learn the
behavior of a game engine so as to make the character
customization system differentiable. We take the similar
network configuration of the DCGAN [31] for our imitator.
Fig. 4 shows an illustration of our imitator.

We frame the “rendering” as a standard pixel-wise re-
gression problem, where we aim to minimize the difference
between the in-game rendered image and the generated one
in their raw pixel space. We train our imitator to minimize
the following objective function:

LG(x) = Ex⇠u(x){kG(x)� Engine(x)k1}, (1)

where x is the facial parameters sampled from a uniform
distribution. Given a group of input parameters x, G(x)
and Engine(x) represent the outputs of our imitator and
the game engine (ground truth), respectively. We use the
pixel-wise l1 loss rather than l2 since the l1 encourages
less blurring effect. In the training process, we randomly
generate 20,000 faces as well as their corresponding facial
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Fig. 4. The architecture of our imitator G(x). We train the imitator to
learn a mapping from a group of facial customization parameters x to a
rendered facial image ŷ produced by the game engine.

customization parameters for each game by using the game
engine. For simplicity, our imitator G only fits the front
view images of the facial model. An advantage of using
neural networks for rendering is that it can handle complex
lighting/shading models under a unified framework. This is
a reason why we train a CNN as our differentiable renderer
in our method.
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3.2 Translator
In our facial parameter translator T , we train a neural
network T 0 to map the facial embeddings to our in-game
facial parameters x:

x = T (I) = T 0(Frecg(I)), (2)

where I is an input face photo and frecg = Frecg(I) is
the facial embeddings produced by the face recognition
network Frecg . Since the embeddings correspond to a global
description of the facial identity while the facial parameters
depict local details, to learn better correspondence of the
two fields, we introduce an attention-based block as the
core building block of our translator. We use three residual
attention blocks and two Fully Connected (FC) layers on
top of the facial embeddings to translate the embeddings
to facial parameters. Fig. 3 (d) shows the details of our
translator.

In each of our attention-based block, we compute the
element-wise importance of the neurons and then performs
feature re-calibration by multiplying the representations
with them. We make a simple modification of the squeeze
and excitation block in SENet [32] to apply it to an FC
layer (the global pooling layer thus is removed). Suppose
v 2 Rc⇥1 represents a c dimensional internal representation
of our translator. We use a gating function to learn a group
of attention weights ↵ = �(W2�(W1v)), where �(·) and �(·)
denote the sigmoid and ReLU activation function, respec-
tively. W1 and W2 are the weights of two FC layers. The
internal representation v is element-wisely re-scaled by the
attention weights evk = ↵kvk, k = 1, . . . c.

3.3 Facial Similarity Measurement
Once we have a well-trained imitator G, the generation of
the facial parameters finally becomes a face similarity mea-
surement problem. The measurement is conducted under a
self-supervised learning framework, i.e., to enforce the facial
representation of the rendered image I 0 to be similar to that
of its input face photo I :

I 0 = G(T (I)) ⇡ I. (3)

As the input face photo and the rendered game character
belong to different image domains, to effectively measure
the facial similarity, we design three types of loss functions
as measurements - a facial identity loss Lidt, a facial content
loss Lctt, and a loopback loss Lloop, as shown in Fig. 3 (a).
The final loss function in our model can be written as the
summary of the above three losses:

L(G, T, Frecg, Fseg) = �1Lidt + �2Lctt + �3Lloop, (4)

where �i > 0, i = 1, 2, 3 control the balance between
different loss terms.

Facial identity loss: We use a popular face recognition
network named LightCNN-29v2 [33] to conduct measure-
ment of the global appearances of the two faces, as shown in
Fig 3 (b). We follow the idea of perceptual distance, which
has been widely applied in a variety of tasks, e.g. image
style transfer [34], super-resolution [35, 36], and feature
visualization [37], and assume that for the different portraits
of the same person, their features should have similar repre-
sentations. We use the backbone of the the LightCNN-29v2

to compute a 256-d face embedding and define the facial
identity loss between two faces as the cosine distance on
their embeddings:

Lidt = 1� eT1 e2/
q
ke1k22ke2k22, (5)

where e1 = Frecg(I), e2 = Frecg(I 0) are the face embed-
dings of an input face photo I and a rendered face image
I 0.

Facial content loss: In addition to the facial identity
loss, we also define a content loss by computing pixel-
wise image distance based on the facial representations
extracted from a pre-trained face semantic segmentation
model Fseg , as shown in Fig 3 (c). The facial content
loss provides constraints on the contour and displacement
of different face components in two images regardless of
different image domains. We build our face segmentation
model based on Resnet-50 [15]. To improve the position
sensitivity of the facial semantic feature, we further use
the segmentation results (class-wise probability maps) as
the pixel-wise weights of the feature maps to construct the
position-sensitive content loss function. We define the facial
content loss as follows:

Lctt = k!1f1 � !2f2k1, (6)

where k is the pixel location of the feature map. f1 =
Fseg(I), f2 = Fseg(I 0) are the facial semantic features of
the image I and I 0. !1 and !2 are the class-wise probability
maps of facial components.

Loopback loss: Inspired by the unsupervised 3D face
reconstruction method proposed by Genova et al. [3], we
also introduce a “loopback loss” to further improve the
robustness of our prediction. After we obtain the rendered
face image I 0, we further feed it into our translator T to
produce a set of new parameters x0 = T (I 0) and force
the generated facial parameters before and after the loop
unchanged, as shown in Fig 3 (d). The loopback loss can be
defined as follows:

Lloop = kx� T (I 0)k1. (7)

3.4 One-shot generation and iterative generation
We propose two types of methods for facial parameter
generation under our facial similarity measurement frame-
work - 1) one-shot generation (our default method) and 2)
iterative generation.

3.4.1 One-shot generation

In the one-shot generation mode, the facial parameters
are directly generated from the input photo I by passing
through a fully trained translator T ?: x? = T ?(I). In the
training phase, the G, Frecg and Fseg are first trained sepa-
rately. Then we fixed their weights and train our translator
T by minimizing the facial similarity loss function (4)

T ? = argmin
T

L(G, T, Frecg, Fseg)

= argmin
T

(�1Lidt + �2Lctt + �3Lloop).
(8)

A detailed optimization pipeline of the one-shot genera-
tion is summarized as follows:
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Fig. 5. In our iterative generation mode, the game character auto-
creation can be considered as a searching process on the manifold of
the imitator. We aim to find an optimal point y⇤ = G(x⇤) that minimizes
the distance between y and the reference face photo yr in their feature
space.

• Stage I (training). Train the imitator G, face recog-
nition network Frecg and the face segmentation net-
work Fseg separately.

• Stage II (training). Fix G, Frecg , Fseg , and train the
translator T .

• Stage III (inference). Given an input photo I , pre-
dict the facial parameters by using the well-trained
translator T ?: x = T ?(I).

We use the CelebA dataset [38] to train our translator T .
We freeze all other networks (Frecg , Fseg , and T ) when train-
ing our translator, and set �1 = 0.01, �2 = 1, and �3 = 1. We
use the Adam optimizer [39] with the learning rate = 10�4

and max-iteration = 20 epochs. To improve the prediction on
side-view faces, we set �2 = 0 every 4 training steps. When
the �2 is set to 0, we update the T by sampling from the full
CelebA training set, while when the �2 is set > 0, we update
the T by sampling from a subset of the CelebA training set
which only contains high-quality front-view faces.

3.4.2 Iterative generation

In the iterative generation mode, we frame the facial pa-
rameter generation as a parameter searching process. In this
case, we remove the translator T and its loopback loss Lloop,
and directly optimize on the facial parameters x from the
very input-end of the renderer. We use the gradient descent
to update the parameters x so that to minimize the facial
similarity loss:

x? = argmin
x

(�1Lidt + �2Lctt), s.t. x 2 [0, 1]. (9)

To help understand, we can also express the above op-
timization process as a facial distance minimization process
over the manifold S of the game characters:

y? = argmin
y

LS(y, yr), s.t. y = G(x), x 2 [0, 1]. (10)

where we aim to find an optimal face y⇤ = G(x⇤) that
minimizes the distance between y and the reference face

TABLE 2
A detailed configuration of our Imitator G.

Layer Component Configuration Output Size

Conv 1 Deconv + BN + ReLU 512⇥4⇥4 / 1 4⇥4
Conv 2 Deconv + BN + ReLU 512⇥4⇥4 / 2 8⇥8
Conv 3 Deconv + BN + ReLU 512⇥4⇥4 / 2 16⇥16
Conv 4 Deconv + BN + ReLU 256⇥4⇥4 / 2 32⇥32
Conv 5 Deconv + BN + ReLU 128⇥4⇥4 / 2 64⇥64
Conv 6 Deconv + BN + ReLU 64⇥4⇥4 / 2 128⇥128
Conv 7 Deconv + BN + ReLU 64⇥4⇥4 / 2 256⇥256
Conv 8 Deconv 3⇥4⇥4 / 2 512⇥512

photo yr . Fig. 5 shows an illustration of the searching
process.

A detailed optimization pipeline of the iterative genera-
tion is summarized as follows:

• Stage I (training). Train the imitator G, face recog-
nition network Frecg and the face segmentation net-
work Fseg .

• Stage II (inference). Initialize the facial parameter x
based on the “average face”. Fix G, Frecg , Fseg , and
update x until reach the max-number of iterations:
- x x� µ@LS

@x (µ: learning rate).
- Project xi to [0, 1]: xi  max(0,min(xi, 1)).

In Stage II, we set the max-number of iteration to 50,
the learning rate µ to 10, and the decay rate to 20% per 5
iterations.

3.5 Integrating facial priors
To further improve the robustness of our method, instead of
predicting facial parameters directly in the original param-
eter space, we learn their low-dimensional representation
and making predictions in their orthogonal subspace. This
can be seen as an integration of facial priors or an additional
regularization on the predicted parameters. We found this
operation greatly improves the stability of the generated
characters.

We first run our method on the faces from CelebA [38]
(front-view only) to obtain a large set of facial parameters.
We then learn a whitening projection P by performing
singular value decomposition on the parameter matrix. The
dimension reduction can be expressed as follows:

x̂ = PT (x�m), (11)

where m is the mean of the facial parameters which is
subtracted from the input. We finally recover the predicted
parameters x? by the following inverse mapping:

x? = (PPT )�1Px̂? +m, (12)

where x̂? is the prediction in the low-dimensional space.
Fig. 6 (a) plots the reconstruction energy on seven groups

of facial components with a different number of subspace
dimensions. The curves suggest high redundancy of the
original facial parameters. In Fig. 6 (b)-(c), we show the
importance of the facial prior (dimension reduction) and
how it affects the rendering results. We show the integra-
tion of facial priors helps generate more stable and more
meaningful characters.
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(c) Random characters without facial priors

(b) Random character creation with facial priors

Number of dimensions

Energy

(a) Reconstruction energy on number of principal components

Fig. 6. Human faces are typically embedded in a low-dimensional subspace with facial priors. We investigate the importance of the dimension
reduction and how it affects the rendering results. (a) Reconstruction energy vs. Number of principal components in the parameter space of CelebA
dataset. We divide the facial parameters into seven groups and perform dimension reduction accordingly. (b)-(c) Randomly generated characters
w/ and w/o dimension reduction.

TABLE 3
A detailed configuration of our face segmentation model Fseg .

Layer Component Configuration Resolution

Conv 1 Conv + BN + ReLU 64⇥7⇥7 / 2 (1/2)⇥(1/2)
MaxPool MaxPool 3⇥3 / 2 (1/4)⇥(1/4)
Conv 2 3 ⇥ ResNet Block 64 / 2 (1/8)⇥(1/8)
Conv 3 4 ⇥ ResNet Block 128 / 1 (1/8)⇥(1/8)
Conv 4 6 ⇥ ResNet Block 256 / 1 (1/8)⇥(1/8)
Conv 5 3 ⇥ ResNet Block 512 / 1 (1/8)⇥(1/8)
Conv 6 Convolution 11⇥1⇥1 / 1 (1/8)⇥(1/8)

TABLE 4
A detailed configuration of our facial parameter translator T .

Layer Component Configuration

Embedding Facial recognition network LightCNN-29v2 [33]
FC 1 Fully-Connected (256, 512)
Res Att 2 Residual-Attention Block (512, 512)
Res Att 3 Residual-Attention Block (512, 512)
Res Att 4 Residual-Attention Block (512, 512)
FC 5 Fully-Connected (512, nc + nd)

3.6 Implementation Details

Here we provide some additional implementation details
on our method. We use the well-known framework Py-
Torch [40] to implement our method.

Imitator. Our imitator consists of eight transposed con-
volution layers. In each layer, the convolution kernel size is
set to 4 ⇥ 4 and the stride of each transposed convolution
layer is set to 2 so that the size of the feature map is doubled
after a convolution operation. The detailed configuration
of our imitator G is listed in Table 2. Specifically, in a
c ⇥ w ⇥ w/s of transposed convolution layer (denoted
as “Deconv” in Table 2), c denotes the number of filters,
w ⇥ w denotes the filter’s size and s denotes the filter’s
stride. A Batch-Normalization (“BN”) layer and a ReLU
layer are embedded in our imitator after every convolution

TABLE 5
A detailed configuration of the facial customization parameters

(continuous part) in the game “Justice”.

Component Controllers # c

eyebrow-head (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 8
eyebrow-body (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 8
eyebrow-tail (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 8

eye (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
outside eyelid (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
inside eyelid (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
lower eyelid (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
inner eye corner (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
outer eye corner (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9

nose body (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 3
nose bridge (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
nose wing (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
nose tip (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
nose bottom (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6

mouth (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 3
middle upper lip (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
outer upper lip (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
middle lower lip (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
outer lower lip (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
mouth corner (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9

forehead (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
glabellum (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
cheekbone (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 5
risorius (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 5
cheek (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
jaw (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 6
lower jaw (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
mandibular (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9
outer jaw (tx, ty , tz), (✓, �, ⇢), (sx, sy , sz) 9

layers, except for the output layer. In each game, we adopt
three imitators to fit three models for adult male characters,
adult female characters, and young girl characters, respec-
tively. We use the SGD optimizer to train our imitator with
batch size = 16, and momentum = 0.9. The learning rate is
set to 0.01 and the learning rate decay is set to 10% per 50
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Aligned input Ours (3D) 3DMM-CNN

Fig. 7. A visual comparison between our method and a well-known
monocular 3D face reconstruction method 3DMM-CNN [2].

epochs. The training stops after 500 training epochs.
Face segmentation network. We use the Resnet-50 [15]

as the backbone of our segmentation network. We remove
its fully connected layers and adding a 1 ⇥ 1 convolution
layer on its top. We also change the stride of the “Conv 3”
and “Conv 4” from 2 to 1 to increase its output resolution
from 1/32 to 1/8. The face segmentation network is first
pre-trained on the ImageNet [41] and then fine-tuned on
the Helen face semantic segmentation dataset [42] with
pixel-wise cross-entropy loss. We use the same training
configurations as our imitator, except that the learning rate
is set to 0.001.

Facial parameter translator. Our translator consists of a
facial recognition network, three residual attention blocks
and two fully connected layers. We design two individual
prediction head on top of the translator network to predict
continuous and discrete facial parameters separately. We
finally concatenate the outputs of two heads together and
feed them to our imitator or the game engine for rendering.
A detailed configuration of our translator is shown in Ta-
ble 4. In column “Configuration”, (in dim, out dim)” repre-
sents the input and output dimension of its layer. “nc” and
“nd” represent the dimensions of continuous and discrete
facial parameters respectively. We follow the ResNet [15]
and SENet [32], and set the layers in the residual attention
blocks to “FC(512,1024) - FC(1024,512) - SE(512,16,512)”.

Facial parameters. Here we use the character customiza-
tion system of the game “Justice” as an example to show
how the facial parameters are configured in our exper-
iments. In “Justice”, there are 264 facial parameters for
“male” characters and 310 for “female” characters. Among
these parameters, 208 of them are in continuous values,
which are listed in Table 5. In the column “Controllers”, the
parameters (tx, ty , tz), (✓, �, ⇢), and (sx, sy , sz) correspond
to the translation, rotation and scale changes of a facial bone
on x, y and z axis respectively. The “# c” represents the
number of user-adjustable controllers in each group. For
those strikethrough controllers, their movements are banned
considering the symmetry of the human face. Besides, there
are additional 102 discrete parameters for female (22 for

hairstyle, 36 for eyebrow style, 19 for lipstick style, and 25
for lipstick color) and 56 discrete parameters for male (23
for hairstyles, 26 for eyebrow styles, and 7 for beard styles),
which are not listed in Table 5.

In our method, we encode the discrete parameters as
one-hot vectors so that the prediction for the two types
of parameters can be performed under a unified frame-
work. Since it is difficult to directly optimize the one-
hot vectors, we use the softmax function to smooth those
binary values. The smoothing can be written as h(xk,�) =

e�xk/
PD0

i=1 e
�xi , k = 1, 2, . . . , n,

where D0 represents the dimension of the discrete pa-
rameters. � > 0 controls the degree of smoothness. We set
a relatively large value on �, say, � = 100, to speed up
optimization in iterative mode (� = 1 in one-shot mode).

Face alignment. We perform face alignment by using
the “dlib” library [43] before feeding the input face photo
into our networks. We use the rendered “average face” as a
reference for the alignment.

4 EXPERIMENTAL RESULTS AND ANALYSIS

We test our method on two role-playing games named
“Justice” and “Heaven”, where the former one is a PC game
launched in June 2018 with over 20 million registered users,
and the latter one is a new mobile game on Android/IOS de-
vices (coming soon). The two games are mainly developed
for East Asian gamers.

We train our model on a large-scale celebrity face
attributes dataset CelebA [38]. For quantitative evalua-
tion, we test our method on multiple large scale face
verification datasets, including LFW [44], CFP FF [45],
CFP FP [45], AgeDB [46], CALFW [47], CPLFW [48], and
Vggface2 FP [49]. We also build an HD celebrity dataset
with 50 high-resolution facial close-up photos, all along with
the images in CelebA, to conduct subjective evaluations.

4.1 Game character auto-creation
Fig. 7 shows four input face photos and their auto-
customization results. We visually compares our method
with a well-known monocular 3D face reconstruction
method: 3DMM-CNN [2], where we can see the 3DMM-
CNN only focuses on the facial outlines in its generated
masks while ignores the modeling of the facial components.
In Fig. 8 we give more examples of our auto-customization
results. With the generated facial parameters, in-game 3D
characters can be rendered by the game engine at multiple
views. Fig. 9 and Fig. 10 shows some close-look, front-
view customization results of our method. The generated
characters share a high degree of similarity to the input
photos where both of the “identity” and “expressions” are
modeled although we do not make any manual adjustments
on the facial parameters. Note that although the 3DMM-
CNN was not initially designed for game character cus-
tomization, here we still make a comparison with it in our
experiment. This is because as far as we know, there are very
few researches on the automatic creation of game characters
and there is no open source code on this topic released
yet. For more generated examples and comparison results,
please refer to our supplementary material.
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Generated character Generated in-game 
character (front-view)

Generated facial 
parametersInput photo Aligned input Generated in-game 

character (side-view)

Fig. 8. Four examples of the auto-created game characters in the game “Justice” by using our method. All the example results in this figure are
generated by the iterative method.

TABLE 6
Quantitative performance comparison of different methods on their accuracy and speed. The accuracy is computed on seven face verification

datasets: LFW [44], CFP FF [45], CFP FP [45], AgeDB [46], CALFW [47], CPLFW [48], and Vggface2 FP [49]. We follow the evaluation
benchmark “face.evoLVe” [50] to compute the accuracy in each of these datasets. Higher scores indicate better. Face embeddings are normalized

by principal components analysis as applied in 3DMM-CNN for a fair comparison.

Datasets
Method LFW CFP FF CFP FP AgeDB CALFW CPLFW Vggface2 FP Speed⇤

3DMM-CNN [2] 0.9235 - - - - - - ⇠ 102Hz
Ours (iterative) 0.6977 0.7060 0.5800 0.6013 0.6547 0.6042 0.6104 ⇠ 1Hz
Ours (one-shot) 0.9402 0.9450 0.8236 0.8408 0.8463 0.7652 0.8190 ⇠ 103Hz

LightCNN-29v2⇤⇤ 0.9958 0.9940 0.9494 0.9597 0.9433 0.8857 0.9374 ⇠ 103Hz
* Inference time under GTX 1080Ti. The time cost for data exchange and face alignment are not considered.
** Here we use the performance of LightCNN-29v2 on input photos as a reference (upper-bound accuracy).

TABLE 7
Subjective evaluation: selection ratio [51] of different methods on two

datasets. A higher score indicates a higher user preference for the
generated result.

Method In-the-wild HD-front view

3DMM-CNN [2] 17.4% ± 1.2% 1.7% ± 0.1%
Ours (iterative) 33.9% ± 1.2% 70.0% ± 1.1%
Ours (one-shot) 48.7% ± 1.1% 28.3% ± 1.3%

4.2 Quantitative and subjective evaluation

We also evaluate the two different versions of our method
(“iterative” and “one-shot”) quantitatively and subjectively

on both their accuracy and speed.
To make quantitative comparisons, we follow the

3DMM-CNN [2] and use the “face verification accuracy”
as our evaluation metric. We first generate facial parameters
for every pair of input faces in each face verification datasets
and then use the benchmarking toolkit “face.evoLVe” [50,
52, 53] to compute the verification accuracy based on the
generated parameters. The intuition behind is that if the
two face images belong to the same person, they should
have similar facial parameters. Table 6 shows the verifica-
tion scores of different methods on seven face verification
datasets. A higher score suggests a better performance. The
evaluation score of the 3DMM-CNN is reported by Tran et

al. [2]. The right-side column of Table 6 shows the speed
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Fig. 9. A close look at the game characters generated by our method in two games: “Justice” (first two rows) and “Heaven” (last two rows). In each
group of the image, the left one shows an input photo (after alignment) and the right one shows the generated faces. All the example results in this
figure are generated by the iterative method and rendered by the game engines.

performance of different methods.
The subjective comparisons are conducted on two

datasets, an “HD front-view” dataset, which consists of
50 high-resolution facial close-up photos and an “in-the-
wild” dataset where the face images are collected from
the CelebA and are captured in an open environment with
different poses, occlusions, and light conditions. We follow
the subjective evaluation used by Wolf et al. [51] and invite
15 non-professional volunteers to rank the results generated
by different methods, in which the generated characters are
in random order. We define the “selection ratio” of an output
character as the percentage of volunteers who select the
character in each group. Finally, the overall selection ratio
is used to evaluate the quality of the results generated by
each method. Due to a large number of images, we only
randomly select 50 images from CelebA test set for a proxy
evaluation. Table 7 shows the subjective evaluation results
of different methods on the above two datasets.

Together from Table 6 and Table 7 we can see that
our method has higher accuracy than the 3DMM-CNN in
terms of both quantitative and subjective evaluations. We
also observe that the “one-shot” version of our method
has a much faster speed than other approaches (1000x over
the “iterative” version and 10x over the 3DMM-CNN) and
also is more robust on the face images from the open
environment (on the “in-the-wild” dataset). However, when
dealing with the HD front-view images, the “iterative”
version of our method can better catch the facial details but

at the same time has a lower speed. We believe the reason
why the scores in Table 6 and Table 7 are inconsistent is
because that the criteria we used have different focuses. The
quantitative indicator we used (face verification accuracy)
pays more attention to the consistency of the facial identity,
while under subjective evaluation, people tend to pay more
attention to the generated facial details.

4.3 Robustness

We further test the robustness of our method on the faces
with different poses, different light and blurring conditions.
Fig. 11 shows some examples of the generation results.

Not limited to real photos, our method can also generate
vivid game characters for some artistic portraits, including
the sketch image and caricature. Although these images
are either collected from an open environment or in totally
different styles, we still obtain high-quality results.

4.4 Controlled experiment

Here we discuss the importance of each technical compo-
nent of the proposed method and how they contribute to
the result, including:

• the facial identity loss (see Lidt in Eq. 5 and Fig. 3
(b));

• the facial content loss (see Lctt in Eq. 6 and Fig. 3 (c));
• the loopback loss (see Lloop in Eq. 7);
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Fig. 10. A close look at the game characters generated by our method in two games: “Justice” (first two rows) and “Heaven” (last two rows). In each
group of the image, the left one shows an input photo (after alignment) and the right one shows the generated faces. All the example results in this
figure are generated by the one-shot method and rendered by the imitators.

TABLE 8
Ablations studies on different technical components of our method: 1) the facial content loss Lctt, 2) the facial identity loss Lidt, 3) the loopback

loss Lloop, and 4) the residual attention block (ResAtt) in our translator. We show the integration of the above components yields consistent
improvements in face verification accuracy.

Ablations Datasets
Lctt Lidt Lloop ResAtt LFW CFP FF CFP FP AgeDB CALFW CPLFW Vggface2 FP

X ⇥ ⇥ X 0.7880 0.7930 0.6666 0.6868 0.6792 0.6252 0.6696
X X ⇥ X 0.8843 0.8777 0.7507 0.7917 0.7675 0.7032 0.7432
X X X ⇥ 0.8870 0.8901 0.7626 0.7875 0.7725 0.7042 0.7618
X X X X 0.9243 0.9200 0.7896 0.8152 0.8130 0.7400 0.7854

LightCNN-29v2⇤ 0.9948 0.9939 0.9476 0.9537 0.9438 0.8872 0.9326
* Here we use the performance of LightCNN-29v2 on input photos as a reference (upper-bound accuracy).

TABLE 9
Subjective evaluation results of two technical components of our

method 1) facial identity loss Lidt, and 2) facial content loss Lctt. A
higher selection ration indicates a higher user preference for the result.

Ablations
Identity loss Lidt Content loss Lctt Selection Ratio

X ⇥ 13.47%± 0.38%
⇥ X 36.27%± 0.98%
X X 50.26%± 0.40%

• the residual attention mechanism in our facial pa-
rameter translator, (see Fig. 3 (d)).

Ablation studies are conducted to analyze the impor-
tance of each of the above components. We use the same

evaluation metric as we used in Table 6. We first evaluate
the baseline of our method, where we train our model
only based on the facial content loss, then we gradually
add other loss components. All evaluations are made based
on the “one-shot” version of our method. To verify the
effectiveness of the residual attention block in our translator,
we remove all attention modules on top of the full imple-
mentation of our method and simply apply a vanilla multi-
layer perceptron which is used in Genova’s method [3]. Ta-
ble 8 shows their performance on different face verification
datasets. We observe the integration of the facial identity
loss, loopback loss, and the residual attention mechanism
in our translator brings consistent improvements in the
accuracy. Particularly, the identity loss and the attention
mechanism bring noticeable improvement to our baseline
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(b) First row: input caricature and sketch images. Second row:
generated characters.

(a) First row: input photos with pose changes and blurring. Second
row: generated characters.

Fig. 11. (a) We test our method on faces with different poses, different light and blurring conditions. (b) Not limited to real face photos, our method
can also generate realistic game characters for artistic portraits although they have completely different styles with our training data. The results in
(a) are generated by the one-shot method, and the results in (b) are generated by the iterative method.

Semantic map Edge maps (w/ ℒ2)Edge maps (w/o ℒ2)

Aligned photo Ours (w/ ℒ2)Ours (w/o ℒ2)

Fig. 12. (Better viewed in color) A comparison of the generated faces w/
or w/o the help of the facial content loss Lctt. The first column shows the
aligned photo and its semantic map produced by our face segmentation
network. The second and third columns show the generated faces w/
or w/o the help of facial content loss. Their edge maps are presented
for a better visual comparison, where the yellow pixels correspond to
the edge of the reference photo and the red pixels correspond to the
generated faces.

method.
We also studied the visual impact on characters with

different loss items. We follow the subjective evaluation
method we used in Tabel 7 and analyze the user preference
w/ or w/o the help of the facial identity loss Lidt and the
facial content loss Lctt. Ablations are conducted on top of
our full implementation. The statistics are shown in Table 9.
We show that both loss items are essential for improving
the visual quality of the result and the facial content loss
contributes more to a higher visual preference.

Fig. 12 shows a comparison of the generated faces w/ or
w/o the help of the facial content loss. For a better view, the

facial semantic maps and the edges of the facial components
of the generated characters are presented. In the edge maps,
the yellow pixels correspond to the edge of the reference
photo and the red pixels correspond to the generated faces.
We observe a better correspondence of the pixel location
between the input photo and the generated face when we
apply the facial content loss.

4.5 Discussion
One-shot vs. Iterative. Here we give a further discussion on
the the difference and connection between the two methods
(one-shot vs. iterative). As we mentioned in 4.2, the two
approaches have different properties in different application
scenarios. We show that on HD front-view face photos, the
iterative method can better catch the details than the one-
shot method. On the face photos captured in the wild, the
one-shot method is more robust than the iterative method.
To discuss the two methods more clearly, let’s consider a
special case where we only have a single face image in
our training set. In this case, the two methods will become
almost equivalent – the only difference is that the one-shot
method optimizes parameters indirectly through the T and
the iterative method optimizes directly on the parameters
themselves. This means that if the T has a large enough
capacity and if its loss surface is smooth, the two approaches
should have similar performance. However, since the face
parameters are nonlinear and their dimensions are usually
highly coupled, we found that the T is usually difficult to
fit all training images, particularly on large-scale datasets
(e.g. CelebA). In other words, it is always easy to “overfit”
on a single training sample but hard on many, especially
when the model capacity is limited, and the parameter
space is highly complex. Therefore, in the one-shot method,
sometimes we can see the facial details are not recovered
very well.

In real application scenarios, we would recommend the
following as an automatic way to choose a better mode for
arbitrary input. Without considering the speed, we recom-
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Fig. 13. A failure case of our iterative method. (a) shows an input face
photo with pose and (b) shows an overfitted generation result of our
iterative method. As we can see, although the 2D facial components are
well aligned, the 3D structures are ignored. For a better comparison, in
(c), we show another front-view face photo of the same celebrity shown
in (a).

mend using the iterative method on HD front-view images
and using the one-shot method on the faces captured in the
wild. When speed is the priority, the one-shot method is
clearly a better choice.

Limitation and future work. Limitation of our method is
twofold. First, we found in our experiment that the iterative
version of our method may fail on the faces with poses. The
possible reason behind is that the iterative method tends to
overfit on the 2D facial component layout and ignores the
3D structures. Fig. 13 shows a failure case of our iterative
method. Our second limitation lies in our imitator. Since
we use a single neural network to imitate the behavior
of the renderer, it may be difficult to deal with the face
models with large deformations. Fortunately, the faces in
RPGs are usually built with simple deformation basis. That
is to say, our methods can be easily applied to most RPG
environments. In other fields, such as animated movies
where character faces are typical with a more complex
deformation space, we may need to design a more complex
differentiable rendering model than what we used in our
paper. This will be one of our future research direction (e.g.,
using differentiable mesh renderer or neural mesh renderer).
Another of our future work is to find a potential solution
to unify the two approaches into a single pipeline and
complement each other.

5 CONCLUSION

We propose a novel method to automatically create char-
acters in game environments based on a single input face
photo. We frame the auto-creation under a self-supervised
learning paradigm by leveraging the differentiable neural
rendering, which bridges the gap between the deep learning
and game graphics. We propose two generation modes
based on this framework, namely, a one-shot generation
mode and an iterative generation mode, and show in dif-
ferent aspects of their advantages, such as the generation
quality and speed. Comparison results and ablation analysis
on seven face verification benchmark datasets and a high-
resolution celebrity dataset suggest the effectiveness of our
method. Our method achieves a high degree of generation
similarity and robustness between the input face photo and
the rendered in-game character. Our method also proves to
be robust to pose variants and image style changes.
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