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Transformer-based Multi-Stage Enhancement for
Remote Sensing Image Super-Resolution

Sen Lei, Zhenwei Shi∗, Member IEEE, Wenjing Mo

Abstract—Convolutional neural networks have made great
breakthrough in recent remote sensing image super-resolution
tasks. Most of these methods adopt upsampling layers at the end
of the models to perform enlargement, which ignores feature
extraction in the high-dimension space and thus limits super-
resolution performance. To address this problem, we propose
a new super-resolution framework for remote sensing image to
enhance the high-dimensional feature representation after the up-
sampling layers. We name the proposed method as Transformer-
based Enhancement Network (TransENet), where transformers
are introduced to exploit features at different levels. The core
of the TransENet is a transformer-based multi-stage enhance-
ment structure which can be combined with traditional super-
resolution frameworks to fuse multi-scale high/low-dimension
features. Specifically, in this structure, the encoders aim to embed
the multi-level features in the feature extraction part and the
decoders are used to fuse these encoded embeddings. Experi-
mental results demonstrate that our proposed TransENet can
improve super-resolved results and obtain superior performance
over several state-of-the-art methods.

Index Terms—Super-resolution, remote sensing images, deep
convolutional neural networks, transformer

I. INTRODUCTION

Image super-resolution (SR) is one kind of image processing
technology, which aims to recover high-resolution (HR) im-
ages from low-resolution (LR) ones. It has been widely used in
medical imaging [1], video monitoring [2] and remote sensing
analysis [3, 4]. In the field of remote sensing, the ground
targets in HR images own more clear edges and contours
than the ones in LR images, and the HR images thus often
play an important role in many high-level remote sensing
tasks such as object detection [5], change detection [6] and
semantic labeling [7]. Instead of developing physical imaging
technologies, SR is an alternative way to effectively produce
HR remote sensing images and has drawn much attention in
recent years.

SR from one image is a typical ill-posed problem. Nowa-
days, most researchers leverage deep learning to obtain strong
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feature representations from a large amount of HR/LR im-
age pairs [8]. Compared with the traditional learning-based
algorithms such as neighborhood embedding-based [9], sparse
representation-based [10, 11] and local linear regression-based
[12, 13] methods, the deep learning-based methods can auto-
matically learn powerful feature representations and produce
HR images with clearer edges and contours. Many specific
structures are further proposed to enhance the performance,
such as the residual block [14], recurrent structure [15, 16],
attention mechanism [17, 18].

For deep learning-based SR methods, an up-sampling op-
eration is utilized to enlarge the LR input. According to
the position of the upsampling operation, these existing
methods can be divided into two categories: pre-upsampling
framework[19, 20] and post-upsampling framework[14, 21–
24]. In this paper, we proposed a new SR framework for
remote sensing images. All these frameworks are illustrated
in Fig. 1.

The Pre-upsampling Framework. This framework is
adopted widely at the early stages of deep learning-based
SR algorithm. It first performs a interpolation operation (such
as bicubic interpolation) on LR input and enlarges it to the
same size as the HR reference. Then a SR model is used
to recover the HR image from the interploated input. The SR
model learns a nonlinear mapping between the interpolated LR
input and the HR reference, without involving up-sampling
operations, which reduces the learning difficulty to some
extent. However, the computational cost significantly increases
for a very deep network, since the feature extractions are all
performed in the enlarged high-dimensional feature space.

The Post-upsampling Framework. In order to alleviate
the problem of high computational cost, some researchers
introduce the post-upsampling framework to construct an end-
to-end SR architecture, in which the whole feature extractions
are implemented in a low-dimensional space. For this purpose,
the traditional up-sampling method is replaced with learnable
upsampling layers, such as deconvolution [25] and sub-pixel
convolution [26], which are inserted at the backend of the
network and become one part of the SR model. Compared
with the pre-upsampling framework, the computational cost
reduction of this framework is proportional to the square of the
preset magnification, where a feed-forward pass of a trained
model can be significantly accelerated. This architecture de-
sign has become the mainstream in the image SR community
[14, 21–24]. However, for this framework, the HR image will
be directly recovered after up-sampling layers without further
perform enhancement of feature expression. It increases the
difficulty of training and restricts the improvement of recon-
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Fig. 1. The illustration of different SR frameworks: (a) pre-upsampling
framework (b) post-upsampling framework (c) the proposed framework.

struction accuracy especially for a large magnification.
Our Proposed Framework. To address the above prob-

lem, we propose a new SR framework for remote sens-
ing images, named Transformer-based Enhancement Net-
work (TransENet), which aims at making full use of high-
dimensional and low-dimensional features to further enhance
the feature representation ability after upsampling layers.
Moreover, we introduce transformer model [27] to leverage
the features of different stages. Compared with the traditional
convolution, the transformer can capture long-distance depen-
dencies and effectively mine the correlation between high/low-
dimensional features. Meanwhile, in order to utilize multi-
level information in remote sensing images, we further design
a transformer-based multi-stage enhancement structure which
consists of multiple encoders and decoders. Specifically, the
encoders are used to encode features of different stages in
the feature extraction part, and the decoders perform multi-
stage fusion with high/low-dimensional features to strengthen
the expressive ability of high-dimensional features. It should
be noted that this structure can be combined with most SR
methods based on the post-upsampling framework.

The main contributions of this paper are summarized as
follows:

• We propose a new SR framework named TransENet for
remote sensing images to enhance the high-dimensional
feature representation after upsampling layers. Trans-
formers are introduced to leverage features at different
stages. Our design can further improve super-resolved
results and obtain state-of-the-art SR performance on two
public remote sensing dataset.

• We design a transformer-based multi-stage enhancement
structure. This structure can be combined with traditional
SR framework to fuse multi-scale high/low-dimension
features, where encoders aim to embed the multi-level
features in the feature extraction and decoders are used
to fuse these encoded features. Comprehensive ablation
experiments verify the effectiveness of this design.

The rest parts of this paper are organized as follows. In

Section II, we provide detailed related works of image SR
and transformer for image processing. The overview of the
proposed TransENet and the Transformer-based multi-stage
enhancement structure are carefully discussed in Section III.
In Section IV, ablation studies and quantitative and qualitative
results are presented. Finally, the conclusions are drawn in
Section V.

II. RELATED WORK

A. CNN-based Natural Image SR

In recent years, convolutional neural networks (CNN) have
greatly boosted the development of the natural image SR
community. Different from the traditional methods [10–13],
CNN-based methods often attempt to build an end-to-end
network to directly learn a linear mapping from the given
LR input to the HR reference. The up-sampling operation
is usually utilized to complete the enlargement of the input
image. Based on the position of the upsampling operation
in CNN models, these methods can be divided into two
categories of the pre-upsampling framework based and the
post-upsampling framework based. Early methods are most
based on the pre-upsampling framework. SRCNN [8] is the
first shallow convolutional neural network to recover high-
frequency information from an upsampled LR image. Kim
et al. [20] introduced a very deep convolutional network
(VDSR) with 20 layers to learn the image residual between
the HR reference and the upsampled LR one. Recent post-
upsampling framework based methods often incorporate de-
convolution layers or sub-pixel convolution layers into the SR
network. FSRCNN [28] directly adopts the original LR image
as input and uses a deconvolution layer at the end of the model
to perform upsampling. Lim et al. [14] improved residual
blocks by getting rid of batch normalization, and several
residual blocks are stacked to construct feature extraction part
followed by a upsample block with sub-pixel convolution
layers. From then, many researchers denote to developing
the feature extraction part to learn better representations on
low-dimension feature space. Zhang et al. [17] introduced
residual channel attention to exploit interdependencies among
feature channels. Mei et al. [18] proposed a cross-scale non-
local attention module to leverage the long-range feature-wise
similarities.

B. SR for Remote Sensing Images

Nowadays remote sensing image SR has attracted much
attention. In early time, sparse representation-based methods
leaded the researches. Pan et al. [29] first introduced the
sparse representation and combined structure self-similarity
prior to perform remote sensing image SR. Hou et al. [30]
proposed a global joint dictionary model to recover remote
sensing HR images. Shao et al. [31] developed a coupled
sparse autoencoder to better learn the mapping between LR
images and HR ones with sparse representation coefficients. In
recent years, the deep learning-based methods [22, 24, 31, 32]
have achieved much better performance than these early sparse
representation-based methods. LGCNet [32] is the first CNN-
based model for remote sensing image SR, where local and
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global representations are both exploited to learn the image
residual between HR images and the upscaled LR ones. Same
with the trend in natural image SR field, most SR methods for
remote sensing images adopt the post-sampling framework.
Haut et al. [22] combined residual units, skip connections
and network-in-network structure to extract more informative
features. Qin et al. [23] introduced gradient maps to guide
the proposed model to focus more on the edges of ground
targets. Dong et al. [31] proposed a second-order learning
strategy to capture multi-scale feature information. Meanwhile,
some works introduce attention mechanism to further improve
reconstructed results. MSAN [33] extracts multi-level features
via a multi-scale attention design, and a scene-adaptive SR
strategy is adopted to make the MSAN to better handle
different scenes. HSENet [24] exploits the hybrid-scale self-
similarity information in the remote sensing images using
non-local attentions. Moreover, many researchers introduced
generative adversarial networks (GAN) to improve the visual
quality of the super-resolved. Jiang et al. [34] designed an
edge-enhancement strategy to weaken the artifacts and noised
caused by adversarial training. Lei et al. [21] introduced cou-
pled adversarial training to learn better discriminative ability
and achieved better visual quality.

C. Transformer for Image Processing
Transformer [27] has been widely used in the filed of natural

language processing [35–37] and more recently, many attempts
have been made to get rid of convolutions and adopt trans-
former models into computer vision tasks. ViT [38] is a pure
transformer-based image classification model and achieves
the state-of-the-art. There are also some CNN-transformer
hybrid works. DETR [39] combines CNN backbone and the
encoder-decoder transformer to build a fully end-to-end detec-
tor without anchor generation and non-maximum suppression
post-processing. SETR [40] treats semantic segmentation as
a sequence-to-sequence prediction task where the transformer
is leveraged to accomplish global context model. Meanwhile,
some researchers also try to generalize the transformer to
low-level visual tasks. Parmar et al. [41] proposed Image
Transformer to perform conditional image generation that can
sequentially predict each pixel given its previous generated
pixels. Jang et al. [42] built the first GAN using purely
transformers (TransGAN), free of any convolution operation,
and it can achieve high quality image synthesis. Moreover,
Chen et al. [43] introduced a new pre-training model, namely,
image processing transformer (IPT), to simultaneously handle
many low-level computer vision tasks such as denoising, SR
and deraining. IPT uses the encoder-decoder transformer as the
main body of feature extraction part and is pre-trained on a
large-scale dataset via contrastive learning. Different from IPT,
our model aims to leverage the transformer to capture long
range dependency between high-dimension and low-dimension
features to enhance the final feature representation for remote
sensing image SR.

III. METHODOLOGY

In this section, we introduce the Transformer-based En-
hancement Network (TransENet) for remote sensing SR. The

overall framework of TransENet is presented in Section III-A
and the transformer-based multi-stage enhancement structure
is carefully discussed in Section III-B. Besides, we will give
a brief introduction to the implementation details in Section
III-C.

A. Overview of TransENet

Fig. 2 illustrates the overall framework of our TransENet.
Given a LR image ILR, one convolutional layer is utilized to
transform the input from RGB pixel space to feature space:

f0 = Conv(ILR) (1)

where the Conv denotes a convolutional operation and the
f0 represents initial feature which will be the input of the
following low-dimensional feature extraction part.

As shown in Fig. 2, in the low-dimensional feature extrac-
tion part, we use several feature extraction modules (FEM) to
extract high-frequency details of the ground targets in remote
sensing images from different scales. Specifically, we consider
two basic components including basic blocks and residual
blocks. The structure of the FEM constructed by some basic
blocks is shown in Fig. 3 (a). The basic block consists of a
convolutional layer and a non-linear function ReLU and uses
a local skip connection to ease the training special for a deep
model. Moreover, Fig. 3 (b) shows the structure of the FEM
constructed by some residual blocks. The residual block is
borrowed from ResNet [44] and is widely used in the field of
image SR reconstruction [14, 21]. In the experimental part, we
will use these two kinds of structure to verify the effectiveness
of the transformer-based multi-stage enhancement. The entire
low-dimensional feature extraction part is defined as:

fn = FEMn(fn−1) = FEMn(FEMn−1(...FEM1(f0)...))
(2)

where FEMn represents the nth feature extraction module,
and we use three FEMs in this paper considering of both
speed and performance. Under this condition, the number of
encoder modules is decided as 4 (3 for low-dimension feature
embedding and 1 for high-dimension feature embedding) and
the number of decoder modules is decided as 3.

After the feature extraction in the low-dimension feature
space, we employ sub-pixel layer [26] to achieve the feature
transformation from the low-dimension space to the high-
dimension space.

fup = Subpixel(fn) (3)

The low-dimension feature f1, ..., fn and the high-
dimension feature fup will be the input of the proposed
transformer-based multi-stage enhancement structure, where
several encoders and decoders are applied to perform feature
enhancement. It should be noted that we reduce the feature
dimension via 1× 1 convolution considering of the efficiency
of the TransENet. Finally, one convolutional layer is applied
to obtained the final super-resolved HR image ISR based on
the enhanced features.
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Fig. 2. The flowchart of the proposed method.

Fig. 3. The illustration of two kind of basic components including (a) the
basic block and (b) the residual block.

We train the proposed model with L1 loss function. Given
LR images ILR and the corresponding HR reference IHR, the
loss function can be obtained as

L(θ) =
1

N

N∑
i=1

||I(i)HR −Gθ(I
(i)
LR)||1. (4)

where Gθ is the proposed model with parameters θ and
Gθ(I

(i)
LR) is exactly the aforementioned I

(i)
SR, and N is the

number of training images.

B. Transformer-based Multi-stage Enhancement

In this subsection, we introduce a transformer-based multi-
stage enhancement structure to enhance the representation
ability of the high-dimension feature after upsampling layers.
This structure can be combined with traditional SR frame-
works to fuse multi-scale high/low-dimension features, which
is shown in Fig. 2. We use several transformers consisted
of encoders and decoders to capture long-distance dependen-
cies and effectively mine the correlation between high/low-
dimensional features. Here, we take Encoder-3 and Decoder-3
in the Fig. 2 as examples to provide a clear description about
the process of the feature enhancement which are carefully
illustrated in Fig. 4.

Transformer Encoder. The standard Transformer takes a
set of 1D sequences of token embedding as input. In order to
handle 3D features, we split the feature f ∈ RH×W×C into
some patches and reshape them into a sequence of vectors
fpi ∈ RPHPWC , i = {1, ..., N}, where H , W , and C denote
the height, the width and the number of channels of the feature
maps, respectively. PH and PW are the height and the width of
patches, and N = HW

PHPW
is the number of these patches and

also is the length of the input sequence. Following [27, 38], the
input vector size is usually fixed as D dimension, and we need
to map fpi to D with a trainable linear projection. However,
different from the setting in [27, 38], the positional embedding
is not involved for each feature patches and more detailed
discussions will be provided in the next experimental part.
Thus the input of the transformer encoder can be represented
as

y0 = [fp1W, fp2W, ..., fp2W ] (5)

in which W ∈ R(PHPWC)×D is the linear projection matrix.
The main architecture of the encoder is following the

original design in [27], which contains a multi-headed self-
attention (MSA) module and a multi-layer perceptron (MLP)
network. Referring to [38], we use the layer normalization
(LN) [45] before each module and local residual structures are
utilized. The architecture of Encoder-3 is carefully illustrated
in Fig. 4 (a) and other encoders in our model have the same
structure with the Encoder-3. The overall calculations of the
encoder can be represented as

y
′

i = MSA(LN(yi−1)) + yi−1, i = 1, . . . , Le

yi = MLP (LN(y
′

i)) + y
′

i, i = 1, . . . , Le

[fE1 , fE2 , . . . , fEN
] = yLe

(6)

where fEi is the output of the encoder corresponding to fpiW ,
which own the same dimension with fpi

W . Besides, the MLP
has two layers in which GELU [46] non-linear function is
used.

These encoders can encode the features of different stages
of the proposed model, and then some decoders are applied
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Fig. 4. The illustration of encoders and decoders including (a) the fusion
stage with Encoder-3 and Decoder-3 and (b) the linear projection.

to fuse these embedding representations to enhance the high-
dimensional feature.

Transformer Decoder. Comparing with the aforementioned
encoder, apart from the MSA module and the MLP network,
the transformer decoder also contains a specific MSA module
with cross attention. This module can simultaneously handle
the input features of the decoder and the output of the
connective encoder, which is the core part of the decoder. The
output of the decoder can be obtained as

z0 = [fE1 , fE2 , . . . , fEN
]

z
′

i = MSA(LN(zi−1)) + zi−1, i = 1, . . . , Ld

z
′′

i = MSA(LN(zi−1), LN(z0)) + z
′

i−1, i = 1, . . . , Ld

zi = MLP (LN(z
′′

i )) + z
′′

i , i = 1, . . . , Ld

[fD1
, fD2

, . . . , fDN
] = yLd

(7)

where fDi
is the output of the decoder, and Ld denotes the

number of layers in the decoder.
Multi-Stage Enhancement. In order to make full use of

the features extracted by the SR model in the low-dimensional
space and combine the multi-scale information in the remote
sensing image, we design a multi-stage feature enhancement,
that is, multiple encoders are utilized to encode features at
different levels. At the same time, multiple decoders are used
to fuse and adjust the encoded features. The basic structure
design is shown in Fig. 2.

Specifically, the feature extraction module FEMi(i =
1, 2, 3) extracts the feature representation after dimensionality
reduction, and then enters the corresponding encoding mod-
ule Encoder-i through block and linear mapping. The high-
dimensional features after upsampling are encoded by the
Encoder-4 module. In the subsequent feature enhancement
process, high-dimensional features will be mainly used as
the Q component in the Decoder, and the encoded low-
dimensional features will be sequentially input as K and
V into Decoder-1 to Decoder-3 to be combined with high-
dimensional features. The combination process takes place in
the multi-input MSA module in the Decoder can be formulated
as

Atten = softmax(QKT /
√
dk)

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

whereheadi = Atten(QWQ
i ,KWK

i )VWV
i

(8)
where dk denotes the dimensions of features in these decoders,
h is the heads of the MSA module and WQ

i , WK
i , WV

i and
WO

i are all projection matrices. It should be noted that in Fig.
2 the subscript of Q/K/V variables is decided according to the
index of the related components. Take Q43 for an example, the
subscript of this variable is decided by the related Encoder-4
and Decoder-3.

C. Implementation Details

This paper focuses on remote sensing image SR at three
magnifications of ×2, ×3 and ×4. In the training phase,
48 × 48 patches are randomly extracted from LR remote
sensing images as well as the reference patches from their
corresponding HR ones. Meanwhile, we use random rotation
(90◦, 180◦ and 270◦) and horizontal flipping to augment
the training samples. In the test phase, the LR test images
are cropped into a set of 48 × 48 patches. We further use
back-projection technology [47, 48] to reduce the blocking
effect in the preliminary results, so as to obtain the final HR
reconstructed images. The parameter settings of the encoder
and the decoder in our model are listed in Table I. The number
of layers in the encoder is set to 8, and that in the decoder is
set to 1. The detailed analyses and experiments are provided
in the next section.

For optimization, we use Adam optimizer [49] to train our
model, where β1 = 0.9, β2 = 0.99 and ϵ = 10−8. The initial
learning rate is set to 10−4, and mini-batch size is set to 16.
The total training epochs is 2000 and the learning rate will
decrease half at 1500. The proposed method is implemented
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TABLE I
THE PARAMETER SETTINGS OF THE ENCODER AND THE DECODER IN OUR

PROPOSED METHOD.

Layers Hidden size D MLP dim Heads Head dim

Encoder 8 512 512 6 32
Decoder 1 512 512 6 32

by PyTorch[50], and all experiments are run on a NIVIDIA
GeForce GTX 1080Ti graphics card. Our codes will be pub-
licly available at https://github.com/Shaosifan/TransENet.

IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Experimental Data set and Settings

In this paper, we use two public remote sensing data sets
including UCMecred [51] and AID [52] to verify the effec-
tiveness of the proposed method. These data sets have been
widely used in the field of remote sensing SR [22, 23, 32].

• UCMerced dataset [51]. This dataset contains 21 classes
of remote sensing scenes including agricultural, airplane,
baseball-diamond, beach, and etc. There are 100 images
for each class with a size of 256 × 256 pixels, and the
spatial resolution of these images is 0.3 m/pixel. We split
this data set into two halve for train and test, where 20%
of the training set are taken as validation.

• AID dataset [52]. This dataset consists of 10000 image
in 30 classes of remote sensing scenes including airport,
bareland, church, dense-residential, and etc. All images
are in 600 × 600 pixels, and the spatial resolution is
up to 0.5 m/pixel. For AID data set, 80% of the whole
dataset are randomly selected to be the training set, and
the remaining images are used as the test set. Moreover,
we randomly select 5 images per class in total of 150
images to construct the corresponding validation.

In our experiments, the original image in each data set
is regarded as a real HR reference, and the corresponding
LR image is obtained via the bicubic interpolation, so as to
construct HR/LR image pairs for the training and evaluation.
All results are measured by peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) [53].

B. Ablation Studies

In this section, we conduct a series of experiments on
the UCMereced dataset to explore the importance of each
component in our method, where all models are trained with
the same settings. For simplicity, these experiments are carried
out with a magnification of ×4.

Effects of Encoders and Decoders. The encoders and
decoders are key components of the proposed method. We
investigate the effect of these components with the aforemen-
tioned basic blocks and residual blocks. Table II lists super-
resolved results with different settings, where the number of
layers of the encoders and decoders in our model is set to 1.
Comparing with the baseline model, our method with encoders
and decoders can achieve significant improvement both on
basic blocks and residual blocks. Specifically, our method

TABLE II
PSNR(DB) AND SSIM RESULTS WITH DIFFERENT COMPONENTS.

basic-blk res-blk De. En. PSNR SSIM

✓ × × × 27.55 0.7547
✓ × ✓ × 27.75 0.7613
✓ × ✓ ✓ 27.74 0.7614
× ✓ × × 27.59 0.7573
× ✓ ✓ × 27.73 0.7614
× ✓ ✓ ✓ 27.76 0.7623

TABLE III
PSNR(DB) AND SSIM RESULTS WITH DIFFERENT DECODER SETTINGS.

Decoder-3 Decoder-2 Decoder-1 PSNR SSIM

× × × 27.59 0.7573
✓ × × 27.72 0.7602
✓ ✓ × 27.74 0.7616
✓ ✓ ✓ 27.76 0.7623

obtain 0.19 dB and 0.18 dB higher in term of PSNR than the
baseline model with basic blocks and with residual blocks,
respectively. It verifies the effectiveness and versatility of the
proposed framework on different blocks. According to the
results in Table II, residual blocks are finally used to construct
the feature extraction modules, and the encoders and decoders
are employed to enhance the features.

Effects of Multi-stage Feature Enhancement. The design
of multi-stage feature enhancement aims to leverage the multi-
scale information in remote sensing images to obtain superior
performance, where multiple decoders are involved to fuse
high/low-dimensions feature stage-by-stage. Here, we investi-
gate the effect of this design with different decoder config-
urations. It should be noted that when one certain decoder
is added, the corresponding encoder will also be employed
to fulfill feature embedding. Table III shows that the more
decoders are involved, the better super-resolved performance
will be achieved. At this time, more features at bottomed layers
will passed to higher layers, and it relieves the difficulty in
optimization and it beneficial to convergence of deep models.
This phenomenon emphasizes the effectiveness of the multi-
stage feature enhancement, and when these three decoders are
used at the same time, the highest PSNR and SSIM values
will be simultaneously obtained.

Is Positional Embedding Important for This Task?
Position coding usually plays an important role in some
transformer-based models, such as Bert [35], GPT [36] and
ViT [38]. However, we find that the positional coding matters
little in the proposed SR framework. To verify this point, we
retrain the proposed model with or without learned positional
encoding. In order to obtain a convincing comparison, we
repeat the experiments for three times and report the mean
and standard deviation of the results in Table IV, where P.E.
denotes the position coding, En. and De. denote these encoders
and decoders respectively. It can be observed that the position
coding does not improve the reconstruction results, and the
model with the P.E. trends to have a little lower PSNR and
SSIM. We speculate that the reason for this phenomenon lies
in the fact that the proposed model can implicitly learn the
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TABLE IV
PSNR(DB) AND SSIM RESULTS WITH OR WITHOUT POSITION

EMBEDDING.

P.E. in En. P.E. in De. PSNR SSIM

× × 27.76 ± 8.05e−3 0.7623 ± 4.12e−4

✓ × 27.73± 1.08e−2 0.7614± 1.70e−4

× ✓ 27.72± 5.17e−3 0.7603± 2.52e−4

✓ ✓ 27.72± 8.02e−3 0.7603± 7.22e−4

TABLE V
RESULTS WITH DIFFERENT EN. AND DE. LAYERS SETTINGS

En. Layers De. Layers PSNR SSIM

1 1 27.76 0.7623
1 2 27.73 0.7619
1 4 27.75 0.7626
1 8 27.72 0.7622
2 1 27.76 0.7624
4 1 27.75 0.7627
8 1 27.77 0.7630
12 1 27.75 0.7625

position information between different tokens to minimize the
pixel-wise loss function in the training phase, and thus it is
not necessary to add the learned positional encoding.

Number of Layers of Encoder and Decoder. The number
settings of layers of the encoder and decoder can influence
the final performance of our method. Therefore, we conduct
a series of experiments about this point. Table V lists the
reconstruction comparisons with different layer settings on
the UCMerced test data set where the upscale factor is 4.
We can see that when the numbers of layers of the encoder
and the decoder are set to 8 and 1, TransENet can obtion the
higher PSNR and SSIM. It implies that it is relatively harder
to encode the low/high-dimension features than performing
feature fusion.

Illustration of Training Processes. In order to present
a different perspective about the transformer-based method,
we illustrate the training processes of TransENet and the
corresponding baseline model which is a pure CNN-based
architecture. We plot the training curves in Fig. 5. Two inter-
esting phenomena can be observed: the first is that at the initial
training stage, the performance of the baseline model is better
than TransENet, but our model would achieve better results
after around 750 epochs; the second is that compared with the
baseline model, the accuracy of TransENet is more volatile
in the training process which is especially obvious at early
stage. We guess that the reason for these two phenomena is that
the CNN-based architecture has some inductive biases such as
local receptive field and weight sharing, which makes it easier
to learn for image processing tasks than the transformer-based
method at the early stage. However, as the training progresses,
the transformer-based method can gradually learn from the
amount of image data and can obtain better recovered results.

C. Comparisons with Other Methods

In this subsection, we compare the proposed method with
some SR methods, including the classic bicubic interpolation,

Fig. 5. The training curves of the proposed method and the baseline method
on UCMerced dataset.

sparse coding (SC) [54], deep learning-based methods such
as SRCNN [8], FSRCNN [28], VDSR [20], LGCNet [32],
DCM [22] and DGANet-ISE [23]. Among them, SC, SRCNN,
FSRCNN and VDSR are the approaches proposed for natural
image SR task, while LGCNet, DCM and DGANet-ISE are
recently proposed SR methods specifically designed for remote
sensing images.

Quantitative Results on UCMerced Dataset. Table VI lists
the results of these methods for upscale factor ×2, ×3 and
×4 on the UCMerced test dataset, where the best outcome is
expressed in bold font. It should be noted that some results
are reported in several published papers [22, 23]. It can be
observed that TransENet obtain the highest value in term of
PSNR and the second best in term of SSIM. Specifically,
compared with other methods, the average PSNR value of
our method at the three magnifications is 0.41 dB higher than
DGANet-ISE, 0.44 dB higher than DCM, and 0.65 dB higher
than LGCNet, 0.84 dB higher than FSRCNN, 1.15 dB higher
than SRCNN, 1.39 dB higher than SC, and 2.62 dB higher than
bicubic interpolation. For SSIM, the average performance of
our method is 0.0039 lower than DGANet-ISE, 0.0048 higher
than DCM, 0.0178 higher than LGCNet, 0.0236 higher than
FSRCNN, 0.0310 higher than SRCNN, 0.0350 higher than
SC, and 0.0731 higher than bicubic interpolation. The detailed
results of different methods for the all 21 scene classes 1 of the
UCMeced dataset is provided in Table VII at a upscale factor
of 3. We can see that TransENet can achieved the best PSNR
values in 12 scene classes, while DCM performed better in the
other 9 categories. Compared with the DCM model, TransENet
is more effective in some scenes with rich edges and contours,
such as buildings, dense residential, storage tanks, and tennis
court. At the same time, the overall PSNR of the method is

1All these 21 classes of UCMerced dataset: 1—Agricultural, 2—Airplane,
3—Baseballdiamond, 4—Beach, 5—Buildings, 6—Chaparral, 7—Denseres-
idential, 8—Forest, 9—Freeway, 10—Golfcourse, 11—Harbor, 12—In-
tersection, 13—Mediumresidential, 14—Mobilehomepark, 15—Overpass,
16—Parkinglot, 17—River, 18—Runway, 19—Sparseresidential, 20—Stor-
agetanks, 21—Tenniscourt.
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TABLE VI
MEAN PSNR (dB) AND SSIM OVER THE UCMERCED TEST DATA SET

scale Bicubic
PSNR / SSIM

SC[54]
PSNR / SSIM

SRCNN[19]
PSNR / SSIM

FSRCNN[28]
PSNR / SSIM

LGCNet[32]
PSNR / SSIM

DCM[22]
PSNR / SSIM

DGANet-ISE[23]
PSNR / SSIM

Ours
PSNR / SSIM

2 30.76 / 0.8789 32.77 / 0.9166 32.84 / 0.9152 33.18 / 0.9196 33.48 / 0.9235 33.65 / 0.9274 33.68 / 0.9344 34.03 / 0.9301
3 27.46 / 0.7631 28.26 / 0.7971 28.66 / 0.8038 29.09 / 0.8167 29.28 / 0.8238 29.52 / 0.8394 – / – 29.92 / 0.8408
4 25.65 / 0.6725 26.51 / 0.7152 26.78 / 0.7219 26.93 / 0.7267 27.02 / 0.7333 27.22 / 0.7528 27.31 / 0.7665 27.77 / 0.7630

TABLE VII
MEAN PSNR (dB) OF EACH CLASS FOR UPSCALING FACTOR 3 ON

UCMERCED TEST DATASET

class Bicubic SC
[54]

SRCNN
[19]

FSRCNN
[28]

LGCNet
[32]

DCM
[22] Ours

1 26.86 27.23 27.47 27.61 27.66 29.06 28.02
2 26.71 27.67 28.24 28.98 29.12 30.77 29.94
3 33.33 34.06 34.33 34.64 34.72 33.76 35.04
4 36.14 36.87 37.00 37.21 37.37 36.38 37.53
5 25.09 26.11 26.84 27.50 27.81 28.51 28.81
6 25.21 25.82 26.11 26.21 26.39 26.81 26.69
7 25.76 26.75 27.41 28.02 28.25 28.79 29.11
8 27.53 28.09 28.24 28.35 28.44 28.16 28.59
9 27.36 28.28 28.69 29.27 29.52 30.45 30.38

10 35.21 35.92 36.15 36.43 36.51 34.43 36.68
11 21.25 22.11 22.82 23.29 23.63 26.55 24.72
12 26.48 27.20 27.67 28.06 28.29 29.28 29.03
13 25.68 26.54 27.06 27.58 27.76 27.21 28.47
14 22.25 23.25 23.89 24.34 24.59 26.05 25.64
15 24.59 25.30 25.65 26.53 26.58 27.77 27.83
16 21.75 22.59 23.11 23.34 23.69 24.95 24.45
17 28.12 28.71 28.89 29.07 29.12 28.89 29.25
18 29.30 30.25 30.61 31.01 31.15 32.53 31.25
19 28.34 29.33 29.40 30.23 30.53 29.81 31.57
20 29.97 30.86 31.33 31.92 32.17 29.02 32.71
21 29.75 30.62 30.98 31.34 31.58 30.76 32.51

AVG 27.46 28.23 28.66 29.09 29.28 29.52 29.92

0.40 dB higher than that of DCM.
Quantitative Results on AID Dataset. In order to further

verify the effectiveness of TransENet, we compare the pro-
posed method with other methods on AID dataset. Different
from the UCMerced dataset, this one is larger in amount and
contains more scene categories in total of 30. The overall
results of various methods on this dataset are shown in Table
VIII. It can be seen that, compared with other methods,
TransENet has the best results on these three magnifications.
In addition, Table IX lists the detailed outcomes on the 30
classes 2 with the magnification of 4 and the average PSNR
is measured. It shows that TransENet achieves the best results
on all the ground target scenes. From Table VII and Table IX,
it implies that when the size of data set increases, TransENet
can obtain better results than DCM.

Qualitative Comparisons. In addition to quantitative com-
parison, we here provide a qualitative comparison of the recov-
ered results with different methods. Fig. 6 shows some super-
resolved examples of UCMerced dataset including ’airplane’
and ’runway’ scenes, and Fig. 7 presents some ones of AID

2All these 30 classes of AID dataset: 1—Airport, 2—Bareland, 3—Base-
balldiamond, 4—Beach, 5—Bridge, 6—Center, 7—Church, 8—Commercial,
9—Denseresidential, 10—Desert, 11—Farmland, 12—Forest, 13—Industrial,
14—Meadow, 15—Mediumresidential, 16—Mountain, 17—Park, 18—Park-
ing, 19—Playground, 20—Pond, 21—Port, 22—Railwaystation, 23—Resort,
24—River, 25—School, 26—Sparseresidential, 27—Square, 28—Stadium,
29—Storagetanks, 30—Viaduct.

dataset including ’stadium’ and ’medium-residential’ scenes.
Overall, comparing with other methods, the proposed method
can obtain better results with clearer edges and contours which
are also closer to the HR references.

V. CONCLUSION

In this paper, we propose a new SR framework for re-
mote sensing images, namely, Transformer-based Enhance-
ment Network (TransENet). TransENet aims at making full
use of high/low-dimensional features and enhance the high-
dimensional feature representation after the upsampling lay-
ers. The core part of the TransENet is a transformer-based
multi-stage enhancement structure which can be combined
with traditional SR frameworks to fuse multi-scale high/low-
dimension features. In our TransENet, encoders aim to embed
the multi-level features in the feature extraction and decoders
are used to fuse these encoded features. Ablation studies
have verified the effectiveness of the multi-stage enhancement
structure. Meanwhile, experimental results on two public data
sets show that compared with some state-of-the-arts, our
method can obtain better super-resolved results.
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