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Adversarial Instance Augmentation for Building
Change Detection in Remote Sensing Images
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Abstract—Training deep learning-based change detection (CD)
models heavily relies on large labeled datasets. However, it
is time-consuming and labor-intensive to collect large-scale bi-
temporal images that contain building change, due to both
its rarity and sparsity. Contemporary methods to tackle the
data insufficiency mainly focus on transformation-based global
image augmentation and cost-sensitive algorithms. In this paper,
we propose a novel data-level solution, namely Instance-level
change Augmentation (IAug), to generate bi-temporal images
that contain changes involving plenty and diverse buildings by
leveraging generative adversarial training. The key of IAug is to
blend synthesized building instances onto appropriate positions
of one of the bi-temporal images. To achieve this, a building
generator is employed to produce realistic building images that
are consistent with the given layouts. Diverse styles are later
transferred onto the generated images. We further propose
context-aware blending for a realistic composite of the building
and the background. We augment the existing CD datasets and
also design a simple yet effective CD model - CDNet. Our method
(CDNet + IAug) has achieved state-of-the-art results in two
building CD datasets (LEVIR-CD and WHU-CD). Interestingly,
we achieve comparable results with only 20% of the training
data as the current state-of-the-art methods using 100% data.
Extensive experiments have validated the effectiveness of the
proposed IAug. Our augmented dataset has a lower risk of class
imbalance than the original one. Conventional learning on the
synthesized dataset outperforms several popular cost-sensitive
algorithms on the original dataset. Our code and data will be
made publicly available.

Index Terms—High-resolution optical remote sensing image,
Convolutional neural networks, Building change detection, Ad-
versial instance augmentation, Synthetic data.

I. INTRODUCTION

CHANGE detection (CD) based on remote sensing (RS)
images is the process of identifying differences in RS

images at different times in the same geographical location
[1]. Nowadays, the availability of very high-resolution (VHR)
satellite data (e.g., WorldView-3, QuickBird, and Gaofen-
2) and aerial data is opening up new avenues for urban
monitoring at a fine scale. Specifically, the detailed spatial
information provided by the VHR optical RS images makes
it possible to detect small objects, such as buildings at the
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instance level. Identifying the change of buildings has a wide
range of applications in urban planning [2], illegal construc-
tion detection [3], and disaster assessment [4]. Information
extraction based on RS images is still mainly based on manual
visual interpretation. Automatic building CD technology can
reduce considerable labor costs and time consumption, which
has raised increasing attention [2, 5–9].

Supervised deep learning techniques have achieved great
success in information extraction on RS images due to its
powerful ability to learn high-level feature representation [10–
13] The prosperity of deep learning technology is inseparable
from large labeled datasets. Unfortunately, in the remote
sensing image building CD task, it is hard to collect effective
bi-temporal images because of the rarity and sparsity of the
positive class (see Fig. 1 (left)). Annotating a large-scale CD
dataset is also time-consuming and labor-intensive. Existing
building CD datasets [6, 14] usually only cover very small
regions and limited image conditions. A deep learning-based
CD model lacks sufficient generalization ability to be appli-
cable to new RS images that contain building objects of dif-
ferent appearances or that are obtained from different imaging
conditions, if not preparing new training data through heavy
work. Especially, when only a small amount of training data
available, the CD model is prone to overfitting or presenting
poor performance on the change category. Therefore, it is of
great value to develop an automated method to synthesize new
change detection data that contains plenty of target changes.

Contemporary methods to improve the generalization ability
of the CD model under a small data regime are mainly fo-
cusing on transformation-based image augmentation (e.g., flip
and rotation) [6], transferring a pre-training model (e.g., from
ImageNet) [15], or adjusting the optimization objectives (e.g.,
the weighted loss) [16–18]. Different from existing methods,
we propose a novel data-level solution to improve building
CD performance. Our synthesis method, namely Instance-level
change Augmentation (IAug), can generate new CD data that
contains changes involving spatially densely distributed and
color-diverse buildings by leveraging generative adversarial
training and image blending. For ease of implementation,
we augment the samples from the existing CD dataset with
synthesized building targets. To this end, we aim to synthesize
effective and realistic CD samples (see Fig. 1 (right)) by
making full use of existing bi-temporal images and building
targets. The motivation of our method lies in two aspects:

Firstly, the building change in the real scene is usually rarely
and sparsely distributed. Conventional learning algorithms on
such an imbalanced dataset including rare classes may bias
towards dominant classes while exhibiting poor performance
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Fig. 1. An example of a CD sample in the LEVIR-CD dataset [6]. (Left) An original CD sample. (Right) The synthesized CD sample using our instance
augmentation method.

in minority classes. Superimposing more changed targets into
the image can increase the number of the positive class, and
reduce the risk of class imbalance.

Secondly, the redundant information in the no-change areas
(e.g., bare land, grassland) may bring limited gain to the
performance of a CD model. We could blend building targets
of diverse patterns on these areas to further enhance the
discrimination power of the CD model.

The key idea of IAug is to blend the external building
instance onto an appropriate position of one of the bi-temporal
images. In the framework of IAug, there are two main com-
ponents: building object generation and CD sample synthesis.
The procedure of IAug is demonstrated in Fig. 2 (top).

The first stage is to generate building targets. We propose
a building synthesis approach for controllable shape and
appearance. Firstly, a semantic building generator is employed
to generate realistic images conditioned on the input semantic
layouts. The GAN-generated images are semantically aligned
with the input labels. Then, a color transfer method is proposed
to control the style of the generated building image. Through
the transfer process, we could generate images with more
diverse styles. In the second stage, we blend the generated
building instances on each sample in the existing building
CD dataset to synthesize new samples. Context information
(e.g., shadow) is an important clue for building detection [19].
Therefore, we propose a context-aware approach, i.e., extract
the context surrounding a building and then utilize it for realis-
tic and effective image composition. Furthermore, we employ
several blending strategies to obtain diverse results, which can
prevent the CD model from overfitting one composition mode.

To inspect the effectiveness of the proposed IAug, we also
design a simple yet effective CD network (CDNet), which con-
sists of a feature extractor (deep siamese fully convolutional
networks) and change classifier (shallow fully convolutional
networks), as shown in Fig. 2 (bottom). We adopt a late-
fusion difference strategy to fuse the bi-temporal information,
that is, to difference the high-level bi-temporal features to
obtain the feature difference image (FDI). We prefer to employ
”difference” rather than ”concatenate” because the ”concate-
nate” operation introduces asymmetry to the model, which is
contrary to the task of symmetric CD (i.e., when swapping the
chronological order of the bi-temporal images, the prediction
result remains the same).

The contribution of this work can be summarised as follows:

• We propose a synthesis framework, namely IAug, to effi-

ciently synthesize new CD samples that contain changes
involving plenty and diverse buildings. We augment the
existing CD dataset by leveraging generative adversarial
training and image blending. Our synthesized dataset can
also reduce the risk of class imbalance.

• We propose a building synthesis method towards con-
trollable shape and style. As far as we know, we are
the first to use GAN-based synthesized image data to
manipulate the CD samples in a controllable manner.
Furthermore, our context-aware instance augmentation
could synthesize realistic and effective CD samples.

• We have reproduced several state-of-the-art (SOTA) CD
methods on both the LEVIR-CD and WHU-CD datasets,
and our method (IAug + CDNet) obtains the best results.
Our method achieves comparable results with only 20%
of the training data as the current SOTA methods using
100% data.

II. RELATED WORK

A. Building Change Detection Methods

Some progress has been made in building change detection
for high-resolution optical RS images.

Many early attempts extract handcrafted features that con-
tain spatial/contexture information of buildings in the texture-
rich images. Spatial features such as gray level co-occurrence
matrices [3, 20, 21], wavelets [21], and morphological features
[2, 3, 20, 22–24], are employed as a complement of spectral
features to suppress false alarms. The morphological building
index (MBI) [25] is widely employed for indicating the
presence of buildings. For example, Huang et al. [2] leverage
MBI, spectral variation, and shape conditions to identify the
building change in an unsupervised manner.

Traditional building CD methods that rely on handcrafted
features have limited performance due to insufficient feature
discrimination. Recently, deep learning techniques, especially
deep convolutional neural networks (CNN), which automat-
ically learn hierarchical abstract image representations, have
been successfully applied in building CD [5, 7, 8, 26, 27].
When giving sufficient training samples, deep learning-based
methods show superior performance than traditional coun-
terparts [11]. Our paper falls into the deep learning-based
approach.
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Fig. 2. Illustration of our proposed method. (Top) Procedure of synthesizing CD samples. (Bottom) Change detection model.

B. Deep learning based remote sensing image change detec-
tion

Here, we provide a brief review of extant DL-based super-
vised CD methods for optical RS images. In general, there are
two main streams for using CNNs for CD [28].

The post-classification method [7, 27, 29] has two steps.
First, a CNN/FCN is trained to separately classify the bi-
temporal images, and then their classification results are
compared to obtain the change category. For example, Ji et
al. [7] used an FCN for pixel-wise building segmentation, and
then fed the two binary building maps into a change detection
network to obtain the change map. Because of requiring
the semantic labels for both temporal images, this kind of
method is impractical in the condition of only the change label
available.

Another approach trains CNNs to directly generate the
change result from the bi-temporal images. Many early at-

tempts [30–32] model the CD task as a similarity detection
process by splitting bi-temporal images into many patch-
level pairs and applying a CNN on each pair to obtain its
center prediction. The Pixel-level approach [5, 6, 8, 18, 33–
41] uses FCNs to directly produce a high-resolution change
map from the two inputs, which is usually more efficient
and reliable than the patch-level approach. Existing FCN-
based methods for fusing the two temporal information can
be roughly divided into image-level and feature-level. Image-
level fusion [33–35] concatenates the bi-temporal images as a
single input to a semantic segmentation network. Feature-level
fusion [5, 6, 8, 18, 33, 36–41] fuses the bi-temporal features
from the middle of neural networks and then make decisions
based on the fused features.

We conclude that the recent advances in RS CD are mainly
focusing on addressing the three issues: 1) enhance feature
discrimination power, 2) small labeled data, 3) imbalanced
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CD samples.
Many recent works aim to improve the feature discrimina-

tion power of the neural networks, such as designing multi-
level feature fusion structures [5, 6, 8, 36, 38], introducing
attention modules [5, 8, 36], and self-attention mechanism
[6, 41], or combining GAN-based optimization objectives
[38, 39, 42, 43]. For instance, Hou et al. [38] introduced
the GAN loss into CD to model the distribution of the two
input images and the change map such that the CD network
could generate more desirable results. Reducing the domain
discrepancy of the two temporal images in the image-level
can indirectly enhance network discrimination power. Fang et
al. [39] used CycleGAN [44] as a preprocessing method to
translate the bi-temporal images into one single domain so
that the irrelevant appearance differences can be reduced and
the real change can be highlighted.

To solve the small labeled data issue, transfer learning [15,
28], semi-supervised learning [45, 46] and active learning [47]
have been adopted in recent work. We will latter discuss the
class imbalance of CD in Section II-C.

The main purpose of our paper is to explore synthesizing
data for enhancing the CD performance. Moreover, we design
a simple yet effective symmetric siamese FCN for CD as our
change detection network. We argue that symmetric structure
is important for binary CD, which has rarely been discussed in
recent work (see Sec. IV). The most similar CD work to us is
[31]. They used the DIRSIG [48] generated imagery to train a
patch-level CD network. The DIRSIG simulation environment
could generate imagery from a constructed 3D scene model
and illumination condition. However, constructing 3D scenes
are so time-consuming and laborious that it is difficult to
scale to large scenes. Also, there still remains a domain
gap between the generated images and real-world images.
Different from previous works, we synthesize the instance
changes by leveraging the advanced GAN techniques. And we
blend the generated instances onto the real CD samples. Our
approach has many advantages: 1) generate realistic composite
CD samples, 2) able to control the number and shape of
changed instances, 3) easy to scale to a large dataset, 4)
alleviate the small labeled data and class imbalance issues.

C. Class imbalance in change detection

The class imbalance phenomenon in remote sensing image
change detection is severe due to the intrinsic low-frequency
of change in the real-world. The targets of interest usually only
occupy a much smaller number of pixels than the background
[49]. In other words, the number of pixels that belong to
the change class is much less than that of no-change. Naive
machine learning algorithms on such imbalanced data have a
bias toward the no-change class and tend to ignore the change
class. Many studies [6, 8, 16, 17, 17, 18, 28, 50] have been
performed to solve the class imbalance on the CD task.

One type of method is to over-sample the change examples
such that the same number of positive and negative samples
are selected for training the learner [50]. A more common way
is to use weighted losses of different versions for enforcing
the learner paying more attention to the change examples in

the training phase. For instance, weighted cross-entropy loss
[16, 17, 28], weighted dice loss [17] and weighted contrastive
loss [6, 18] have been explored in recent CD works. Liu
et al. [8] proposed a weighted focal loss that reshaped the
original focal loss and added different weights in a non-linear
form to different classes. Different from existing CD works,
we leverage the advanced image generation and composition
techniques to synthesize new samples of the change class. To
the best of our knowledge, we are the first to blend the GAN-
generated targets onto the bi-temporal sample to augment the
number of instance changes.

III. INSTANCE-LEVEL AUGMENTATION FOR SYNTHESIZING
CHANGE DETECTION SAMPLES

In this section, we firstly give an overview of the procedure
for synthesizing CD data, then introduce a semantic object
synthesis method towards controllable shape and appearance.
Lastly, we present context-aware instance augmentation to
synthesize CD samples.

A. overview

The real-world RS building CD task exhibits an imbalance
in class distribution, wherein the number of the no-change
class is much more than that of change. It is time-consuming
and laborious to collect large amounts of bi-temporal images
that contain changes of buildings. We present an automated
synthesis method to effectively synthesize efficient CD data
based on the existing CD dataset by leveraging additional
building targets with semantic segmentation labels. We term
our synthesis method as instance-level change augmentation
(IAug). Our synthesizing procedure has two main steps:

1) Object image generation. We train a semantic building
generator to generate an object image of controllable
shape and size by specifying the input semantic mask.
Then we transform the style of the generated image by
matching its color distribution to that of a random style
image. In this way, we can obtain collections of generated
object/mask pairs. For more details see Section III-B.

2) CD sample synthesis. For each sample from the original
CD dataset, we sequentially blend (with multiple modes)
a certain number of object instances (with context) on
any appropriate positions (via position sampling) of any
one of the bi-temporal images. More details of our
position sampling, context-aware blending, and multiple
composition modes are later discussed in Section III-C.

B. Object Image Generation

1) Semantic Building Generator: Instead of directly using
the cropped object images from the building segmentation
dataset for image composition, we train a conditional gen-
erative adversarial network (GAN) on the collected object
samples to generate building images. Our GAN-based gen-
eration approach has two main advantages: 1) accurate object
mask. As shown in Fig. 3, the object mask from the original
building labeling dataset is not accurately aligned with the
building roof. The object cropped by the incorrect mask may
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Comparison of semantic consistency between the original image and the generated image. (Top) Some selected misaligned 
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(Green denotes the object mask, red denotes the outline of the building)

Fig. 3. Comparison of semantic consistency between the original image and
the generated image. (Top) Some selected misaligned labels/wrong labels in
the Inria dataset [51]. (Bottom) GAN-generated images. Our generated objects
are well aligned with the label. (Green denotes the object mask and red denotes
the outline of the building)
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bring in a negative impact on the CD model. On the contrary,
our approach could generate the object well aligned with the
semantic mask. 2) controllable geometry characteristics. The
building object in different datasets may have different geom-
etry characteristics (shape and size) due to both the variance
of buildings across different regions and the difference in
camera conditions. To generate objects with similar geometry
characteristics as in the target CD dataset, we could feed the
generator the semantic mask cropped from the target dataset.

Semantic image synthesis refers to the task of generating
realistic images conditioning on the input semantic layout [52,
53]. In our setting, we aim to generate a photorealistic image
given a semantic label map, which has two classes: building
and others.

Here, we present our building generator, which is based
on a SOTA conditional GAN (GauGAN [53]). GauGAN is a
generator network composed of several SPADE residual blocks
(Resblks) with upsampling. The semantic layout is fed into
each block to better preserve semantic information through the
whole depth of the generator. We make a little modification
on the original GauGAN to produce more diverse and higher
quality synthesis results. Concretely, we introduce explicit
learnable noises into each stage of generation. Previous works
[54, 55] have shown that adding such noise could improve the
quality of synthesized images.

Fig. 4 illustrates the architecture of our building generator
G, which starts from a downsampled semantic mask, trans-

forms it into a photorealistic image in a progressive manner
via seven SPADE Resblks [53]. We add a noise inserting layer
before each SPADE Resblk. To achieve this, we generate seven
single-channel images consisting of uncorrelated Gaussian
noise. These noise images are fed into each noise inserting
layer respectively. In a noise inserting layer, the noise image
is broadcasted to feature maps using learnable per-channel
scaling factors A, then the generated noise maps are added
to the original feature maps. Except for the last Resblk, an
upsampling layer via bilinear interpolation is added after each
Resblk. Therefore, our generator has six upsampling layers
in total. At first, the input semantic mask is downsampled to
h/64×w/64 from h×w, then pass through the generator to
output a synthesized image of size h× w.

The architecture of our discriminator D follows the one
used in the GauGAN [53]. It takes the concatenation of the
semantic label map and the image as input.

Given a training set including pairs of corresponding images
{(si,xi)}, where si is a semantic label map and xi is a
corresponding real image, our conditional GAN learns to
generate new data with the same statistics as the real images
conditioned on the input semantic label maps via the following
minimax game:

min
G

max
D
LGAN(G,D), (1)

where we employ a hinge loss as our GAN loss:

LGAN = E(s,x)∼pdata(s,x)[max(0, 1−D(s,x))]

+ Es∼pdata(s)[max(0, 1 +D(s, G(s)))].
(2)

To further improve the performance, we employ the discrim-
inator feature matching loss LF [52] and the perceptual loss
LP [56]. Therefore, our full objective function is the weighted
sum of the GAN loss, feature matching loss, and perceptual
loss, which is given by:

L = min
G

max
D
LGAN(G,D)

+ λFLF(G,D) + λPLP(G,D),
(3)

where λF , λP control the importance of the three terms. We
follow Pix2PixHD [52] to set λF = 10, λP = 10.

We use Adam solver with β1 = 0, β2 = 0.9 to train our
generator for 100 epochs. The initial learning rate of 2×10−4

is used for the generator and discriminator. We keep the same
learning rate for the first 50 epochs and linearly decay it to 0
over the remaining 50 epochs.

2) Object Style Transfer: We observe that the GAN-
generated building images have a different appearance (i.e.,
color distribution) from those in the building CD dataset.
Formally, let source S be a set of GAN-generated images,
and target T be a set of building images from the original CD
dataset. In other words, there exists a domain shift between
S and T . Unpaired image-to-image translation methods, such
as CycleGAN [44] could be utilized to fill in the domain
gap. However, in our setting, we do not have enough object
samples from the original CD dataset to train CycleGAN.
Therefore, we resort to a simple yet effective non-learning
approach to match the color distribution of the two image
sets. We transfer the style of a random reference image onto
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Fig. 5. Examples of color transfer. The color of the target image is transferred
to the source image. The target images are cropped from the LEVIR-CD
dataset [6] and the source images are generated by our building generator.

the object image. By doing so, we can obtain various styles
of transformed images, whose distribution is closer to that of
the target domain. Fig. 5 illustrates some selected examples
of object style transfer.

To achieve this, we employ a color transfer (CT) method
[57] which can change one image’s color characteristics to ac-
cord with another in the three-dimension color space directly.
Considering an image as a set of points in the RGB space, we
can fit this cluster using a 3-dimensional Gaussian distribution.
The key of this method is to calculate a transformation matrix,
which moves data points of the source cluster by scaling,
rotation, and translating, such that the transformed cluster has
the same mean and covariance as the target one.

We make a little modification on the original CT method
towards a more faith color transfer in the building areas. Our
hypothesis is that the pixels that belong to the same kind of
category in one image follow the Gaussian distribution. The
non-building areas in the image may contain various kinds of
objects (e.g., shadow, tree, grass, soil, and road), and it may
not be suitable to describe all the pixels in these areas with a
single Gaussian distribution. Therefore, we use the pixels that
belong to the building area, instead of all the pixels in the
image, to calculate the transformation matrix. Then we apply
this matrix to translate the source images. Because we have
the semantic masks that indicate the building category for both
the source image and the target image, it is easy to implement
this idea. Please note that although the non-building area in
the transformed image may present an unnatural appearance
due to the calculated transform matrix may not be suitable
for objects of all kinds, its impact can be reduced by context
extraction and image blending in the follow-up process.

C. CD Sample Synthesis

Here, we present context-aware instance-level augmentation
to synthesize CD samples. Our synthesis method has three
main steps:

• Object Context Extraction. The mere presence of the
context surrounding the building is a critical cue for

No context shadowdirect paste shadow + neighborhood

(b) (c) (d) (e)(a)

Fig. 6. An example of composite images to illustrate the importance of
context. Superimpose the building target (a) onto the image (b) with different
modes to obtain the image composition: no context (c), shadow (d), and
shadow + neighborhood (e).

(b) (c) (d) (e)(a)

(a) (b) (c)

Comparison of different image composition modes. (a) Direct paste. (b) Gaussian blending. (c) Poisson blending. 

(a) (b) (c)

Fig. 7. Comparison of different image composition modes. (a) Direct paste.
(b) Gaussian blending. (c) Poisson blending.

object recognition. For realistic and effective image com-
position, we cut the building area as well as its nearby
context (i.e., shadow and neighborhood pixels) from the
object image. We display an example of the composition
results in Fig. 6 to show the importance of the context
information for realistic image synthesis. Our shadow
extraction algorithm is given in Section III-C1. More con-
text information (neighborhood pixels) could be obtained
by the subtraction between the dilated object mask and
the original object mask.

• Position Sampling. A naive method is to uniformly
sample a position in the image for inserting the object.
To avoid inserting the object overlapped with the existing
object in the image, we use a reference mask R to
guide the sampling process. The reference mask records
the areas of existing objects. We use rejection sampling
[58] to avoid sampling the positions within the object
areas. The reference mask is updated after a new object
insertion. The initial reference mask is the union of two
temporal label maps. The label map can be generated
by feeding the original background image to a semantic
segmentation model (UNet) [59], which has been trained
on a building segmentation dataset.

• Image Composition. We utilize three different image
composition methods to prevent the CD model from
overfitting one composition mode. Fig. 7 shows the
composition results of different image blending methods.

To sum up, we give the overall process of synthesizing CD
samples. First, for each sample (bi-temporal images B1, B2,
a change mask L) in the CD dataset D, we randomly sample
N objects from the generated building object dataset Dobject.
Then we extract the mask with context Mc for each object
image I . Rejection sampling is used to sample an appropriate
position from the reference mask R, such that the inserted
object is not overlapped with existing objects. Finally, each
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object is superimposed on an image of either temporal. Here,
we use three different blending modes to obtain three groups
of augmented samples. Details of Instance-level augmentation
for CD sample synthesis are shown in Algorithm 1.

Algorithm 1: Instance-level Augmentation for CD
Sample Synthesis.

Input: Dobject = {(Ik,Mk)|k = 1 : K} (a set of
building samples with a size of K)

Input: N (the number of instances to blend on each
CD sample)

Input: D = {(Bj
1, B

j
2, L

j)|j = 1 : J} (the original CD
training set with a size of J)

Input: R = {(Rj |j = 1 : J} (the referenced label set
with a size of J)

Output: Daug (augmented CD training set)

1 Initialize Daug ← ∅
2 // iterate each sample in D
3 for j in 1 : J do
4 // perform image composition for each blending

mode
5 for mode in {’Direct’, ’Gaussian’, ’Poisson’} do
6 B1, B2, L,R← Bj

1, B
j
2, L

j , Rj

7 // random sample N instances from Dobject

8 for i in 1 : N do
9 sample (Ii,M i) ∼ Dobject

10 M i
s ←ShadowExtract(Ii,M i)

11 M i
c ←dilation(M i

s)
12 // sample either image from two temporals
13 sample Bt ∼ {B1, B2}
14 // sample an effective position from R
15 while True do
16 h,w ← sizeof(M i)
17 H,W ← sizeof(R)
18 sample x ∼ Uniform(0, H − h)
19 sample y ∼ Uniform(0,W − w)
20 if M ∩R[x : x+ h, y : y + w] is None

then
21 break
22 end
23 end
24 // blend the object and Bt, update L, R
25 Bt[x : x+ h, y : y + w]←

ImageComposite(Bt[x : x+ h, y :
y + w], Ii,M i

c ,mode)
26 L[x : x+ h, y : y + w]←M i

27 R[x : x+ h, y : y + w]←M i
c

28 end
29 Daug ← Daug ∪ (B1, B2, L)
30 end
31 end

1) Shadow Extraction: Based on the observation of the
generated object image, we conclude that the shadow area has
three important attributes, in terms of brightness, shape, and
location.

• Brightness. The brightness of a shadow area is usually
smaller than that in other areas due to its low spectral
reflectance. Most shadow regions could be extracted by
pre-defined thresholding.

• Location. The shadow is usually near a building structure.
We could exclude the dark pixels that are far away from
the building or is inside the building region. Moreover,
a building instance has at least four sides. We observe
that in most images more than two sides of the building
cast shadows and the centroid of the shadow structure is
in the building region. We could use these properties to
choose the real shadow area from candidate areas.

• Smoothness. The shadow is usually continuous and con-
tains no holes.

Based on the above recognition, we propose a simple yet
effective method to extract the shadow structure surrounding
the building. Given an object image I and its mask M , we
want to obtain the mask with shadow MS . Here, we give the
three main steps to obtain MS .

• Thresholding. We segment from I a group of dark pixels,
each of whose average intensity is below a pre-defined
threshold t.

• False alarm removal. We use a morphological dilation
operation to obtain the region surrounding a building
structure. Me = M ⊕ E − M , where Me denotes the
region surrounding the building, the structuring element
E has a size of e×e. We could adjust the e to control the
expanding size. We remove the dark pixels that do not
belong to this region. Then we obtain all the connected
components in this region as candidate shadow areas.
For each candidate shadow, if its centroid is in the
building area, we assign this component as a shadow area,
otherwise remove it.

• Hole filling. We fill the holes in the remaining shadow
areas to give the final shadow mask. We merge the
shadow mask with M to get MS .

Fig. 8 shows some selected examples of shadow extraction.
We can observe that the presence of the shadow area of the
building makes the building image more realistic.

2) Image Compostion: Let I be an object image, Mc be
its mask with context, Bpatch be a cropped patch from the
background image, and C be the composite image. Here, we
give three methods to calculate C.

• Direct paste. The masked object is directly placed on the
selected position in the background image. The composite
image can be calculated by an alpha blending: C =Mc ·
I + (1−Mc) ·Bpatch.

• Gaussian blending. Similarly, we use alpha blending to
composite images. The difference is that we blur the ob-
ject mask by a Gaussian filter to alleviate the composition
artifact.

• Poisson blending. We use Poisson blending [60] to make
a composition that looks seamless and natural. Note that
the color of the object may be adjusted to make it
harmonious with the background.
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Examples of shadow extraction 

results. (Top) building images. 

(Middle) building targets. (Bottom) 

building targets with shadows. 

Fig. 8. Examples of shadow extraction results. (Top) building images.
(Middle) building targets. (Bottom) building targets with shadows.

IV. CHANGE DETECTION NEURAL NETWORK

In this section, we elaborate on the proposed model for
building change detection. First, we will introduce the overall
architecture of the model, and then explain its detailed imple-
mentation.

A. Model

Given two registered images captured at different times,
our goal is to obtain a pixel-level binary mask where each
location indicates a change category (building change or not).
To extract the change information, we employ Deep Fully
Convolutional Networks (DFCN), which could learn complex
image representations with multiple levels of abstraction.
Building a DFCN that can predict a pixel-level change mask
for a given image pair is straightforward: the network must
feed the two input images through several convolutional layers,
and generates an output map where each location assigns a
possibility to each of the change categories.

Note that the change detection network must handle two
input image patches. It is important to discuss when and how
to merge the information of the two patches. We split this issue
into two parts: ”when to merge” and ”how to merge”. ”When
to merge” cares about in which stage to merge the information
of the two input patches. For this part, we introduce the
early-fusion mode and the late-fusion mode, as shown in
Fig. 9. In the early-fusion mode, the two input patches are
merged before fed into DCNN. While in the late-fusion mode,
the two patches are first fed to DCNN to generate high-
level image representations and then merged in the feature
space. ”how to merge” the information of the two patches is
critical for the consequent change decision process. Here, we
give two operations: Concat and Sub. The Concat operation
concatenates the features (or images) of the two patches, which
preserves all the information of the two patches. While the
Sub operation calculates the element-wise absolute distance
between the features (or images) of the two patches.

In our work, we consider the combination of the late-fusion
mode and the Sub operation. The binary CD task has inher-
ently ’symmetric characteristics’, which means that the change

(a)

(c)
(b)

(d)

𝑰𝟏/𝑰𝟐

Differenet ways to 

process the two 

input patches.

𝑰𝟏/𝑰𝟐
Illustration of different neural networks architectures for merging the bi-

temporal information. (a) Early fusion. (b) Late fusion. feature map

I1

I2

ConvNet

CM

I1

I2

CM

CM

Conv layer

Fuse layer

Fig. 9. Illustration of different neural networks architectures for merging the
bi-temporal information. (a) Early fusion. (b) Late fusion.

detection result remains the same if we shuffle the order of
the input two images. To facilitate network learning, instead of
forcing the networks to learn the ’symmetric characteristics’,
we directly design a symmetric CD network that naturally
has this property. Our symmetric change detection structure
is invariant to the order change of the two input patches.
To simplify the explanation, we note the Concat operation as
[x, y], and the Sub operation as |x − y|, where x, y are two
different scalars. Then we have [x, y] 6= [y, x], |x−y| = |y−x|.
Therefore, we prefer the Sub operation to the Concat oper-
ation. Directly performing Sub operation in the raw-image
space may induce many false alarms and lose much significant
information, due to the radiometric difference between the bi-
temporal images caused by variations in imaging conditions
(.e.g., illumination). Therefore, we adopt the late-fusion mode
instead of the early-fusion mode.

The structure of our CD networks (CDNet) is illustrated
in Fig. 2 (bottom). We have a relatively complex pixel-level
image feature extractor (deep FCN) that happens in parallel
for both patches, and a distance metric to calculate the Feature
Difference Images (FDI) between the two patches, followed by
a relatively simple classifier (shadow FCN) that receives the
FDI as input to give the change probability maps. We wish
to learn a semantic feature embedding for each image pixel,
such that semantically similar pixels are close to each other,
and semantically different ones are far apart in the embedding
space. In this way, the distance between the bi-temporal pixels
in the embedding space indicates semantic change information.
Then, the change information could be easily detected from
the FDI by a simple classifier.

Let I = (I1, I2) be a bi-temporal image pair, f :
RH×W×3 → RH×W×C be the feature extractor and g :
RH×W×C → RH×W×2 be the classifier, where H,W are
the image height and width respectively, and C is the channel
dimension of the image embedding. Given a bi-temporal image
pair I , our change detection networks generate the predicted
change probability maps P ∈ RH×W×2, which is given by

P = σ(g(D)) = σ(g(|f(I1)− f(I2)|)), (4)

where FDI D ∈ RH×W×C is the element-wise absolute dis-
tance between the two feature maps and σ(·) denotes a softmax
function pixel-wisely operated on the channel dimension of the
score maps from the output of the classifier.
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In the inference phase, the prediction mask M ∈ RH×W is
computed by a pixel-wise Argmax operation on the channel
dimension of P .

In the training phase, let B represents the minibatch size,
where b indexes the bth minibatch. Given input samples
{(Ib, Y b)|b ∈ {1, 2, ..., B}} in a minibatch, change detection
networks generate the change probability maps {P b}. We
denote P b

hw = [P b
hw0, P

b
hw1] as a length-2 vector for the

pixel located at (h,w) of P b, where P b
hw0 and P b

hw1 is the
probability of no-change and change, respectively. Ground
truth Y b ∈ {0, 1}H×W provide the change category for each
location of the bth sample, where 0 and 1 indicate no-change
and change respectively. The loss function of the change
detection networks is defined as follows:

L =
1

B ×H ×W

B∑
b=1

H,W∑
h=1,w=1

l(P b
hw, Y

b
hw), (5)

where l(P b
hw, y) = −log(P b

hwy) is the cross-entropy loss, and
Y b
hw is the label for the pixel at location (h,w) in the bth

batch.

B. Implement Details

Feature Extractor: Note that we need to obtain a change
map with the same size as the input images. To achieve this, it
is essential to generate high-resolution semantic feature maps.
However, the high-level features in DFCN are accurate in
semantics but coarse in location, while the low-level features
contain fine details but lack semantic information. Therefore,
we fuse the low-level, fine appearance information, and the
high-level, coarse semantic information to balance the inherent
tension between semantics and location. Here, we employ a
UNet [59] structure to extract pixel-level image representa-
tions. As illustrated in Fig. 10, the networks have an encoder-
decoder structure with the same amount of downsampling
and upsampling. The encoder follows the ResNet-18 [61]
structure that has 5 stages each with downsampling of a stride
of 2. The decoder also has 5 stages each with upsampling
by a factor of 2. Each of the first 4 stages in the decoder
consists of upsampling the high-level feature maps, followed
by concatenation with the corresponding low-level feature
maps of the same size from the encoder, and two 3 × 3
convolutions, each followed by a ReLU and a BatchNorm. The
configuration of the convolutional layers 1 in Conv Block1,
Decoder Block1-4, Conv Block2 are [(512, 3 × 3, 1) × 2],
[(256, 3 × 3, 1) × 2], [(128, 3 × 3, 1) × 2], [(64, 3 ×
3, 1) × 2], [(32, 3 × 3, 1) × 2], [(16, 3 × 3, 1) × 2],
respectively. In this way, we fuse the upsampled high-level
features with the low-level features to obtain finer semantic
feature representations.

Classifier: Benefiting from the high-resolution and high-
level semantic change features extracted by the deep feature
extractor, a very shallow FCN can be employed here for
change discrimination. The classifier consists of two 3 × 3

1The configuration of convolution layers is ”[(Number of the Filters, Size,
Stride) × number of convolution layers]”. The batch normalization (BN) and
ReLU layers are omitted for simplicity.

ResNet

Res Stage2

Conv2d

Input Image Output Feature Map

Decoder Block4

Concat

1×1 Conv

ReLU

BatchNorm

Conv2d

ReLU

BatchNorm

2× upsample

Structure of the feature extractor.  

Decoder Block3

Conv Block1

Decoder Block2

Conv Block Decoder Block1

Res Stage4

Res Stage5

Res Stage1

Res Stage3

Conv Block2

input

output

Fig. 10. Structure of the feature extractor.

convolutional layers ([(16, 3 × 3, 1) × 2]) and a 1 × 1
convolutional layer ([(2, 1 × 1, 1) × 1]).

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Change Deteciton Datasets

To evaluate the effectiveness of our method, we employ
two VHR RS image building CD datasets: LEVIR-CD[6] and
WHU Building CD dataset[14].

LEVIR-CD. LEVIR-CD is a public large scale building
CD dataset, which contains 637 pairs of bi-temporal images,
each size of 1024× 1024. These images have a 0.5 m spatial
resolution. The dataset has over 31K changed building in-
stances. We follow the default dataset split [6]: 445/64/128 for
training/validation/testing. Considering GPU memory capacity
limitation, we cut images into small patches of size 256×256
with no overlap. Therefore, we obtain 7120/1024/2048 pairs
of patches for training/validation/testing respectively.

WHU-CD. WHU Building CD dataset includes one pair
of optical RS images with a size of 32507 × 15354 and
0.075 m spatial resolution. Similar to LEVIR-CD, we crop
images into small patches of size 256× 256 with no overlap.
In this way, we collect 7620 pairs of patches. As the data
provider has not given a dataset split suggestion, here we
randomly split the dataset into three parts: 6096/762/762 pairs
for training/validation/testing respectively.

B. Synthesis Details

1) Synthesizing Building Objects: To train our building
generator, we collect building samples from two public RS
building labeling datasets: Inria building dataset[51] and AIRS
(Aerial Imagery for Roof Segmentation)[62]. The Inria dataset
consists of 1800 pairs of bi-temporal aerial RGB images, each
size of 5000 × 5000 and spatial resolution of 0.3 m. Inria
contains more than 210K building instances. The AIRS dataset
contains aerial images covering the area of Christchurch city
in New Zealand (at 7.5 cm resolution, with RGB bands). AIRS
includes more than 230K building instances.

We collect 27041/69694 training samples from these two
datasets respectively. Each sample including a semantic map
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TABLE I
SUMMARY OF ALL THE TRAINING DATASETS. N DENOTES THE NUMBER

OF BUILDING INSTANCES BLENDED ON EACH SAMPLE. N=0 REPRESENTS
THE ORIGINAL TRAINING SET.

Training data N Imbalanced Ratio

LEVIR-CD 0 21.09
LEVIR IR15 15 15.42
LEVIR IR10 50 9.80
LEVIR IR5 120 5.36

WHU-CD 0 22.26
WHU IR15 1920 14.67
WHU IR10 4562 9.85
WHU IR5 10434 5.36

and a corresponding image (size of 256 × 256), is cropped
from the provided image/label map in the existing building
dataset. Each sample has a building instance at its center and
contains at least one complete building instance. We train our
building generators on these two training sets respectively. To
match the resolution between the CD dataset and the building
dataset, the building generator trained on the Inria dataset is
for the LEVIR-CD dataset and the one trained on the ARIS
dataset is for the WHU-CD dataset.

In the inference phase, the building generator produces
building images conditioned on the input semantic label maps,
which are cropped from the label maps of the original CD
dataset. Each semantic mask is centered on a building object.
We use masks size of 16× 16 ∼ 64× 64 to generate building
images for LEVIR-CD, and use masks size of 64 × 64 ∼
256 × 256 for WHU-CD. To this end, the generated images
have similar geometric characteristics as those in the original
building CD dataset.

Then, for each GAN-generated image, we randomly choose
a target building image from the CD dataset and perform CT
to transfer its color information onto the source image.

2) Synthsizing CD Training Samples: For the LEVIR-CD
dataset, N1 instances are blended onto either temporal images
(size of 1024×1024) of each sample from the training set. For
the WHU-CD dataset, as all the data is one pair of large-size
images, we first blend N2 instances onto these images (size of
32507× 15354) to obtain an augmented image pair, and then
we cut it into pairs of small patches (size of 256 × 256) and
select the corresponding 6096 pairs as the augmented training
set. Note that we only augment the training set of the CD
dataset without changing the validation set and the testing set.

Based on the LEVIR-CD and WHU-CD datasets, we con-
struct several synthesized training sets with different imbal-
ance ratios [63] by using different numbers of augmented
instances on each CD sample. Here, the imbalance ratio is the
proportion of the number of pixels belong to the no-change
class to the number of the change class. The summary of the
original training sets and corresponding synthesized training
sets are listed in Table I. Some selected samples from these
datasets are shown in Fig. 11. More details on the discussion
of the hyperparameter N are given in Section V-G.

C. Experimental Setup

We make a comparison of our method with several state-
of-the-art CD methods:

• FC-EF [33]: Image-level fusion method, where the bi-
temporal images are concatenated as a single input to a
fully convolutional network.

• FC-Siam-Di [33]: Feature-level fusion method, where a
Siamese FCN is employed to extract multi-level features
and feature difference is used for fusion of the bi-
temporal information.

• FC-Siam-Conc [33]: Feature-level fusion method, where
a Siamese FCN is employed to extract multi-level features
and feature concatenation is used to fuse the bi-temporal
information.

• DTCDSCN [8]: Multi-scale feature concatenation
method, where a deep siamese FCN is trained using
a weighted focal loss and two additional semantic
segmentation decoders are trained under the supervision
of the label maps of each temporal. We omit the semantic
segmentation decoders for a fair comparison.

• STANet [6]: Metric-based siamese FCN based method,
which integrates the spatial-temporal attention mecha-
nism to obtain more discriminative features.

We implement the above CD networks using their public
codes with default hyperparameters.

To further verify the effectiveness of the proposed IAug,
we make a comparison with some popular cost-sensitive tech-
niques for addressing the class imbalance on the imbalanced
CD dataset. For a fair comparison, all these comparison
methods are based on the same baseline CD network.

• CDNet: our baseline CD network is trained on the origi-
nal CD training set using conventional cross-entropy loss.

• CDNet (W): Using a weighted cross-entropy loss to
train the CDNet on the original CD training set. The
weight assigned to each incorrect example is inversely
proportional to the number of representatives of that class.

• CDNet (F): Using the focal loss [64] to train the CDNet
on the original CD training set.

• CDNet (WF): Using a weighted focal loss [8] to train the
CDNet on the original CD training set.

• CDNet (D): Using a dice loss [17] to train the CDNet on
the original CD training set.

• CDNet+IAug: Training the CDNet on our synthesized
CD training set using conventional cross-entropy loss.

Our models are implemented on a PyTorch deep learning
framework [65] and trained using a single NVIDIA Tesla
V100 GPU. In the training phase, the inputs of the CDNet are
images of 256×256 pixels with data augmentation, including
flip, rescale, crop, and gaussian blur. The stochastic gradient
descent (SGD) with momentum is applied for training. The
initial learning rate is set to 0.01, the momentum and the
weight decay is set to 0.99 and 0.0005, respectively. ”Poly”
learning rate policy [66] is used to polynomially decay the
learning rate during iteration. The decay coefficient is set to
0.9. After completing training 100 epochs, the learning rate
drops to zero. The batch size is set to 8. After each training
epoch, the validation data is used to evaluate the performance
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Fig. 11. Illustration of the synthesized samples from several training sets of different imbalanced ratios. (a) LEVIR-CD, (b) LEVIR IR15, (c) LEVIR IR10,
(d) LEVIR IR5, (e) WHU-CD, (f) WHU IR15, (g) WHU IR10, (h) WHU IR5.

of the model. The best model on the validation set is saved as
the final training result.

D. Evaluation Metrics

To evaluate the proposed approach quantitatively, we use the
F1-score with regard to the change category as the evaluation
indices. F1-score is calculated by the precision and recall of
the test. Let TP, FP, FN represent the number of true positive,
false positive, and false negative respectively. F1-score is
computed by the following formula:

F1 =
2

recall−1 + precision−1 , (6)

where the precision and recall are defined as follows:

precision = TP / (TP + FP)
recall = TP / (TP+FN).

(7)

E. Overall Comparison

1) Comparison with other SOTA CD methods.
To verify the effectiveness of the proposed method (CDNet

+ IAug), the compared CD networks are trained on the
original CD datasets and the proposed CDNet is trained on
our synthesized CD datasets. Here, we use LEVIR IR5 and
WHU IR5 as our synthesized CD training datasets. To further
compare the performance of each method under conditions of

different data amounts, we set a variety of data conditions: 5%,
20%, and 100%. These percentages represent the proportion
of training data used in each data regime.

The overall quantitative results of all the compared methods
on the two test sets are listed in Table II. The results show
that the proposed method outperforms other CD approaches
with respect to the F1-score in every data regimes on the two
datasets. It is worthwhile to mention that our method using
only 20% of the training data could achieve comparable results
as the state-of-the-art methods using 100% of the training data.

Table II also shows that our CDNet (w.o. IAug) delivers
comparable or even better performance than other methods on
the two datasets. It may attribute to the effectiveness of our
designed network structure (e.g., symmetric structure, ResNet
backbone, high-resolution and high-level feature differencing,
and shallow change classification networks). Additionally,
we can observe that our IAug introduces more significant
improvements to the F1 score against CDNet under a small
data regime (5% and 20%) than under a big data regime
(100%). It indicates that our IAug can effectively alleviate
the small labeled data problem.

To fairly compare the model efficiency, we test all the
methods on a computing server equipped with an Intel Xeon
Silver 4214 CPU and an NVIDIA Tesla V100 GPU. Table III
lists the number of model parameters (Params.), floating-point
operations per second (FLOPs), and GPU inference time of
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the compared methods. The input to the model has a size of
256×256×3. The reported time is the average of the inference
time of the model for 100 random inputs. The results show that
the proposed method outperforms the recent DTCDSCN and
STANet with smaller model parameters and less computational
cost.

2) Comparison with other class-sensitive algorithms
The proposed IAug can be viewed as a data-level solution

to amuse the class imbalance that occurs when conventional
learning on an imbalanced CD dataset. To verify the effec-
tiveness of the proposed IAug, we make a comparison with
four class-sensitive algorithms for solving the class imbalance
on the CD task. These methods employ different types of
weighted losses so that the learner can pay more attention
to the examples of the change class in the training phase.
Different from these algorithmic solutions, the proposed IAug
belongs to a data solution. We have not compared with other
data solutions, such as a naive over-sampling method, because
it is not easy to implement in a pixel-level prediction task, and
also it is somehow equivalent to using a weighted loss.

The comparison results are shown in Table IV. It can be
seen that compared with other methods, the proposed approach
has achieved the best performance in the two building CD
datasets. Compared to the baseline, our IAug could con-
sistently improve the CD performance on the two datasets.
It indicates that our data-level solution is more effective in
reducing class imbalance and could introduce more stable
improvement to the performance of the CD model compared
with other algorithmic solutions.

It is not a surprising result because our IAug can not only al-
leviate class imbalance but also introduces additional instance-
level supervision information to the CD model. We cannot
emphasize the importance of data too much. As Goodfellow
et al. have stated that: “it is often much better to gather more
data than to improve the learning algorithm” [67].

3) Generalizability of IAug
To further verify the effectiveness of the proposed IAug,

we train several state-of-the-art CD networks on the original
and synthetic datasets respectively. Table V reports the results
of these methods on the LEVIR-CD and WHU-CD test sets.
Quantitative results have shown that our proposed IAug can
consistently improve the performance of these CD networks
on the two test sets.

F. Ablation Studies

Here, we conduct ablation experiments of the four compo-
nents of our IAug: semantic object generator (GAN), object
color transfer (CT), context-aware blending (CB), multiple
composition modes (MCM). The baseline is trained on the
original CD dataset. We incrementally add the above four com-
ponents to synthesize corresponding training sets to evaluate
their respective gains to the performance of the model. All
these experiments are performed on the LEVIR-CD dataset
using CDNet. We also set three data regimes: 5%, 20%, and
100% to evaluate the performance of CDNet trained using
different proportions of the training set. Note that we blend
no more than 120 GAN-generated building targets on each

sample from the LEVIR-CD dataset to synthesize new training
sets.

As shown in Table VI, quantitative results illustrate that
the four components of IAug bring considerable performance
improvements across the different data settings. In a small
data regime, the improvement inducing by each component
is much significant. When using 5% of the training data,
the contributions of these four components to the model
performance increment are 6%, 3%, 4%, and 1%, respectively.
GAN improves the performance the most because it largely
increases the number of effective buildings of change so as to
improve the model discrimination ability to the rare class. The
ablation on CT indicates that blending building instance with
a similar appearance as the target domain can achieve better
performance in the target dataset. The experimental results
with regard to CB imply that the context surrounding the
building may be a critical cue for object recognition. MCM
further boosts the model performance because the diverse
samples via composition modes can improve the generalization
ability of the CD model and avoid the network from overfitting
a single composition mode.

G. Class Imbalance Analysis

The real-world RS building CD task exhibits imbalanced
class distributions. As shown in Table I, the imbalanced ratios
of the original LEVIR-CD and WHU-CD datasets are both
higher than 20. In this work, we have constructed several
synthesized training sets with different imbalance ratios (near
15, 10, and 5 respectively) by superimposing different numbers
of building instances on each CD sample. Here, we analyze the
impact of the number (i.e., N) of augmented instances on the
performance of the change detection model. The same CDNet
is applied to each synthesized training set to evaluate the CD
performance. The trained models are evaluated on the corre-
sponding LEVIR-CD and WHU-CD test sets, respectively.

The performance of the model trained on different training
sets is shown in Table VII. The results on the training sets
with different imbalanced ratios indicate that the smaller the
imbalanced ratio of the training data set, the better the model
performance. Fig. 12 depicts the change of the F1-score
associated with the number (N) of building instances blended
on each CD sample. It can be seen that the performance of the
model improves when N increases. We also observe that the
marginal benefit on the model performance is declining with
the number of instances increasing. For example, there is only
a 0.2% improvement in model performance when doubling the
instance amount to 120 (from LEVIR IR10 to LEVIR IR5).
Moreover, there is an upper limit for N when the image does
not have more space to superimpose more building instances.
Therefore, we set the maximum number N=120 for LEVIR-
CD and N=10434 for WHU-CD. In this case, the imbalance
ratio of the corresponding synthetic dataset is close to 5.

VI. CONCLUSION

In this paper, instance-level change augmentation is pro-
posed to efficiently synthesize effective building CD sam-
ples by leveraging generative adversarial training and image



13

TABLE II
PRECISION (PREC), RECALL (REC), AND F1 OF DIFFERENT METHODS ON LEVIR-CD AND WHU-CD TEST SETS. THE HIGHEST CLASSIFICATION

ACCURACY IN EACH DATA REGIME IS MARKED IN BOLD.

LEVIR-CD WHU-CD
5% 20% 100% 5% 20% 100%

Prec / Rec / F1 Prec / Rec / F1 Prec / Rec / F1 Prec / Rec / F1 Prec / Rec / F1 Prec / Rec / F1

FC-EF [33] 0.785 / 0.417 / 0.545 0.764 / 0.739 / 0.751 0.869 / 0.802 / 0.834 0.269 / 0 / 0.001 0.714 / 0.604 / 0.654 0.716 / 0.673 / 0.694
FC-Siam-conc [33] 0.676 / 0.021 / 0.041 0.815 / 0.797 / 0.806 0.895 / 0.833 / 0.863 0.499 / 0.639 / 0.56 0.417 / 0.676 / 0.516 0.473 / 0.777 / 0.588
FC-Siam-diff [33] 0.916 / 0.2 / 0.329 0.886 / 0.7 / 0.782 0.92 / 0.768 / 0.837 0.488 / 0.496 / 0.492 0.487 / 0.462 / 0.548 0.609 / 0.736 / 0.666

DTCDSCN [8] 0.829 / 0.653 / 0.73 0.833 / 0.851 / 0.842 0.885 / 0.868 / 0.877 0.463 / 0.559 / 0.507 0.604 / 0.707 / 0.652 0.639 / 0.823 / 0.72
STANet [6] 0.755 / 0.726 / 0.74 0.802 / 0.864 / 0.832 0.838 / 0.91 / 0.873 0.709 / 0.672 / 0.69 0.764 / 0.756 / 0.76 0.794 / 0.855 / 0.823

Ours (CDNet) 0.89 / 0.525 / 0.661 0.917 / 0.741 / 0.82 0.905 / 0.846 / 0.875 0.71 / 0.663 / 0.686 0.829 / 0.76 / 0.793 0.898 / 0.833 / 0.864
Ours (CDNet+IAug) 0.804 / 0.721 / 0.76 0.901 / 0.851 / 0.875 0.916 / 0.865 / 0.89 0.777 / 0.695 / 0.734 0.868 / 0.781 / 0.822 0.914 / 0.869 / 0.891

TABLE III
COMPARISON ON MODEL EFFICIENCY. WE REPORT THE NUMBER OF

MODEL PARAMETERS (PARAMS.), FLOATING-POINT OPERATIONS PER
SECOND (FLOPS) AND GPU INFERENCE TIME. THE INPUT IMAGE TO THE

MODEL HAS A SIZE OF 256× 256× 3.

Model Params.(M) FLOPs (G) Time (ms)

FC-EF [33] 1.35 1.78 7.17
FC-Siam-conc [33] 1.55 2.66 9.61
FC-Siam-diff [33] 1.35 2.36 10.10

DTCDSCN [8] 40.70 7.21 25.65
STANet [6] 16.93 6.58 23.15

Ours 14.33 5.50 13.81

TABLE IV
QUANTITATIVE RESULTS OF OUR METHOD AND SEVERAL

CLASS-SENSITIVE ALGORITHMS ON LEVIR-CD AND WHU-CD TEST
SETS. THE HIGHEST CLASSIFICATION ACCURACY IS MARKED IN BOLD.

LEVIR-CD WHU-CD
Precision / Recall / F1 Precision / Recall / F1

CDNet 0.905 / 0.846 / 0.875 0.898 / 0.833 / 0.864

CDNet (W) 0.886 / 0.873 / 0.879 0.872 / 0.853 / 0.862
CDNet (F) 0.921 / 0.799 / 0.856 0.907 / 0.801 / 0.851

CDNet (WF) 0.898 / 0.857 / 0.877 0.888 / 0.846 / 0.866
CDNet (D) 0.908 / 0.855 / 0.881 0.818 / 0.83 / 0.824

CDNet+ IAug 0.916 / 0.865 / 0.890 0.914 / 0.869 / 0.891

TABLE V
RESULTS OF SEVERAL CD NETWORKS ON THE LEVIR-CD AND

WHU-CD TEST SETS. ”+ IAUG” DENOTES THE CD NETWORK IS TRAINED
ON THE CORRESPONDING SYNTHESIZED TRAINING SET (LEVIR IR5 OR

WHU IR5), OTHERWISE THE CD NETWORK IS TRAINED ON THE
ORIGINAL TRAINING SET.

LEVIR-CD WHU-CD
Precision / Recall / F1 Precision / Recall / F1

FC-EF [33] 0.869 / 0.802 / 0.834 0.716 / 0.673 / 0.694
+ IAug 0.892 / 0.855 / 0.873 0.834 / 0.714 / 0.769

FC-Siam-conc [33] 0.895 / 0.833 / 0.863 0.473 / 0.777 / 0.588
+ IAug 0.913 / 0.858 / 0.885 0.841 / 0.777 / 0.807

FC-Siam-diff [33] 0.92 / 0.768 / 0.837 0.609 / 0.736 / 0.666
+ IAug 0.922 / 0.849 / 0.884 0.85 / 0.796 / 0.822

DTCDSCN [8] 0.885 / 0.868 / 0.877 0.639 / 0.823 / 0.72
+ IAug 0.896 / 0.882 / 0.889 0.819 / 0.865 / 0.842

STANet [6] 0.838 / 0.91 / 0.873 0.794 / 0.855 / 0.823
+ IAug 0.845 / 0.919 / 0.880 0.903 / 0.863 / 0.882

Ours (CDNet) 0.905 / 0.846 / 0.875 0.898 / 0.833 / 0.864
+IAug 0.916 / 0.865 / 0.890 0.914 / 0.869 / 0.891

TABLE VI
ABLATION STUDIES OF OUR IAUG ON LEVIR-CD TEST SET. ABLATIONS

ARE PERFORMED ON 1) BUILDING GENERATOR (GAN), 2) COLOR
TRANSFER (CT), 3) CONTEXT-AWARE BLENDING (CB) AND 4) MULTIPLE

COMPOSITION MODES (MCM).

GAN CT CB MCM 5% 20% 100%

baseline × × × × 0.661 0.820 0.875
IAug X × × × 0.703 0.858 0.88
IAug X X × × 0.723 0.86 0.881
IAug X X X × 0.750 0.862 0.884
IAug X X X X 0.760 0.875 0.890

TABLE VII
RESULTS OF THE PERFORMANCE OF THE MODEL TRAINED ON DIFFERENT

DATASETS.

Training data Precision Recall F1

LEVIR-CD 0.905 0.846 0.875
LEVIR IR15 0.909 0.863 0.885
LEVIR IR10 0.913 0.864 0.888
LEVIR IR5 0.916 0.865 0.89

WHU-CD 0.898 0.833 0.864
WHU IR15 0.912 0.852 0.881
WHU IR10 0.911 0.862 0.886
WHU IR5 0.914 0.869 0.891

blending. We introduce a GAN-based approach to generate
realistic building images with controllable shape and appear-
ance according to the specified input semantic label map and
reference style. In this way, we can obtain various building
images that are well aligned with the semantic layouts. Fur-
thermore, we propose context-aware blending to synthesize
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Fig. 12. The effect of the number of instances on model performance. The
F1-score of each model is reported.
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realistic CD samples. We also design a simple yet effective
CD neural network (CDNet), which constructs high-resolution
and high-level feature difference images for change analysis.
Our method (CDNet + IAug) outperforms several state-of-the-
art CD methods on two building CD datasets (LEVIR-CD and
WHU-CD). Notably, we achieve comparable results with only
20% of the training data as the current SOTA methods using
100% data. Extensive experiments have validated the effec-
tiveness of our proposed method. Our synthesized dataset can
also reduce the risk of class imbalance. Conventional learning
on the synthesized dataset outperforms several popular cost-
sensitive algorithms on the original dataset.

Our paper may have some limitations. First, only the RGB
channels of RS images are used in this work due to the con-
straint of the existing building CD datasets. Our method can be
extended to multispectral images (more than RGB bands) upon
the availability of the public building CD dataset that contains
large-scale high-resolution bitemporal multispectral images.
Second, the generated building image may not be faithful as
that in the target domain. Due to the lack of explicit shadow
masks (or the sun direction) to train the building generator,
we can not control the shape and orientation of the generated
shadow. Therefore the shadow that is implicitly learned by the
generator may not be cast in the same direction as that in the
target image. Moreover, there may remain style discrepancy
between the generated building and the target one because
only a simple color transfer approach is employed. Third, our
rule-based shadow extraction method may falsely detect the
dark land covers (e.g., dense vegetation) that are very close to
and surround the building on multiple sides.

It deserves note that although this paper focuses on the
building CD task, the proposed IAug can be extended to
other semantic target change detection (e.g., roads, vegetation,
rivers). The future work includes the modification of IAug for
an extension to other semantic target CD, and an online in-
stance change augmentation method, which is storage-friendly
and can greatly increase the diversity of augmented instances
and further enhances the generalization of the model. Also,
more sophisticated techniques of domain adaptation (how
to generate an image more suitable for the target domain)
and image blending (how to make a more realistic image
composition) can be explored in the future.
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