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Abstract—Existing deep learning-based remote sensing im-
ages semantic segmentation methods require large-scale labeled
datasets. However, the annotation of segmentation datasets is often
too time-consuming and expensive. To ease the burden of data
annotation, self-supervised representation learning methods have
emerged recently. However, the semantic segmentation methods
need to learn both high-level and low-level features, but most of the
existing self-supervised representation learning methods usually
focus on one level, which affects the performance of semantic
segmentation for remote sensing images. In order to solve this
problem, we propose a self-supervised multitask representation
learning method to capture effective visual representations of re-
mote sensing images. We design three different pretext tasks and
a triplet Siamese network to learn the high-level and low-level
image features at the same time. The network can be trained
without any labeled data, and the trained model can be fine-tuned
with the annotated segmentation dataset. We conduct experiments
on Potsdam, Vaihingen dataset, and cloud/snow detection dataset
Levir_CS to verify the effectiveness of our methods. Experimental
results show that our proposed method can effectively reduce the
demand of labeled datasets and improve the performance of remote
sensing semantic segmentation. Compared with the recent state-
of-the-art self-supervised representation learning methods and the
mostly used initialization methods (such as random initialization
and ImageNet pretraining), our proposed method has achieved
the best results in most experiments, especially in the case of few
training data. With only 10% to 50% labeled data, our method
can achieve the comparable performance compared with random
initialization. Codes are available at https://github.com/flyakon/
SSLRemoteSensing.

Index Terms—Cloud detection, remote sensing images, self-
supervised representation learning, semantic segmentation.

I. INTRODUCTION

THE rapid development of remote sensing technology has
greatly widened the scope of exploring the earth. Satellite
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images have been widely used in resource exploration, land
census, natural disaster monitoring, etc. The semantic segmen-
tation [1]–[3] (also called pixel level classification) plays a key
role in the analysis of remote sensing images and the fully
convolutional neural networks (FCN) [4]–[6]-based methods
have brought a great breakthrough to the semantic segmenta-
tion [7]–[12] of remote sensing images.

Despite the great success, recent FCN-based semantic seg-
mentation methods for remote sensing images still rely on train-
ing with a large number of manually annotated data. Although
there are some annotated datasets available, most of remote
sensing data from the Internet are not labeled that adapts to
semantic segmentation task. These unlabeled data have no effect
on improving the semantic segmentation of remote sensing
images. The purpose of this article is to design an effective
pretraining method with unlabeled data to improve the effect
of remote sensing semantic segmentation.

The most commonly used pretraining paradigm is Ima-
geNet [13] pretraining. However, it is time-consuming and
laborious to construct such a large-scale remote sensing dataset
like ImageNet to pretrain networks as the annotation of remote
sensing data may rely heavily on professional domain knowl-
edge. In addition, considering that remote sensing images are
increasingly showing the characteristics of multisources and
multiresolutions, even if there is a large-scale remote sensing
dataset, it cannot meet the requirements of downstream tasks
for all remote sensing images obtained from various satellites.

Self-supervised representation learning is the other recently
emerged research topic that learns effective visual representa-
tions of images by taking advantage of self-supervised learning
ideas [14]–[16]. It is an elegant subset of unsupervised learning,
which can obtain supervision information from data itself during
training. Therefore, it does not need any labeled data for training
and can possibly learn from any scale of unlabeled data. In
self-supervised representation learning, a set of pretext tasks
are usually designed to explore the relationships between image
patches or image transformations. Through the pretext tasks, the
networks can be trained with unlabeled data and a pretraining
model can be obtained. Then the downstream tasks such as se-
mantic segmentation can be fine-tuned on this pretraining model
to obtain better results. According to the type of supervision
acquired, the pretext tasks in previous self-supervised represen-
tation learning methods can be divided into three categories:
1) Image level pretext tasks [17]–[35], 2) patch level pretext
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tasks [36]–[40], and 3) pixel level pretext tasks [41]–[47]. How-
ever, remote sensing images have random viewing angle and
no specific salient area but more complex hierarchical structure
and more abundant background information. The above self-
supervised methods designed for natural images do not consider
the characteristics of remote sensing images and may not work
properly.

Moreover, considering remote sensing images usually show
more high-frequency details and hierarchical structure com-
pared to natural images, the pretraining methods should ex-
tract the high-level and low-level features. Especially for the
semantic segmentation, it requires that the networks should take
these two aspects into account at the same time. However, the
current methods for natural images and remote sensing images
only consider one of them. In order to solve this problem, this
article proposes a novel self-supervised representation learning
method for remote sensing semantic segmentation. Our method
is designed to focus on both high-level and low-level features.
In our method, we design three different pretext tasks for pre-
training, including an image inpainting task, an augmentation
transform prediction (ATP) task and a contrastive learning task.
We design a triplet-Siamese network with three output branches.
The backbone network shares the same set of image features
and network parameters. Each output branch corresponds to a
different pretext task and is trained with its own loss function.
The total loss for training the whole network is a multitask loss
function which combines losses of the three pretext tasks.

By designing the image inpainting task, we aim to help net-
works to learn low-level representations. We propose a moderate
approach to construct occluded areas by randomly transforming
the in-box areas with image rotation, flip, color transformation,
etc. By designing ATP task and contrastive learning task, we aim
to help networks to learn high-level representations. For ATP
task, according to the problem that remote sensing image has no
obvious imaging perspective, we build the Siamese networks,
and take the image and its transformation as the input to predict
the type of transformation.

After the pretraining, the networks can be easily applied to
semantic segmentation by fine-tuning on their labeled datasets.
In the experimental part, we use the Potsdam dataset and Vai-
hingen dataset [48] to verify the effectiveness of our method. In
addition, the cloud/snow detection task can also be regarded as a
semantic segmentation task, so we select Levir_CS dataset [49]
to verify our method in cloud/snow detection task. The results
show that our method outperforms other recent self-supervised
representation learning methods [24], [32], [33] in the semantic
segmentation task. Our method achieves better results than
ImageNet pretrained models, and the best results with limited
training data. In addition, with only 10% to 50% labeled data,
our method can achieve the comparable performance compared
with random initialization, which shows that our method can
effectively reduce the demand on annotated data.

The contributions of this article are summarized as follows.
1) We propose a self-supervised representation learning

method for remote sensing semantic segmentation. A mul-
titask loss function is designed to guide the networks to
learn both high-level and low-level features at the same

time. A large number of unlabeled remote sensing images
can be effectively used to train the networks and improve
the performance of the semantic segmentation task.

2) In the remote sensing semantic segmentation task, we
achieve better results than models with ImageNet pretrain-
ing and other recent self-supervised pretraining methods.

3) Our method can achieve the comparable performance with
only 50% labeled data on Vaihingen dataset and 20%
labeled data on Potsdam dataset compared with random
initialization, while only 20% labeled data for cloud detec-
tion and 10% labeled data for snow detection are needed
to achieve the comparable performance.

The rest of this article is organized as follows. In Section III,
we give a detailed introduction of our proposed method, includ-
ing network configuration, multitask loss function, and imple-
mentation details. In Section IV, the experimental datasets and
experimental results are introduced. Discussion and conclusions
are drawn in Sections V and VI.

II. RELATED WORK

A. Self-Supervised Representation Learning

Self-supervised representation learning is a recently emerged
research topic that learns effective visual representations of im-
ages by taking advantage of self-supervised learning ideas [14]–
[16]. Self-supervised representation learning obtains supervi-
sion information from data itself and train the networks without
using manual annotations by designing a series of pretext tasks.
The trained models can be used to improve the performance
of downstream tasks. According to the type of supervision
acquired, the pretext tasks in previous self-supervised represen-
tation learning methods can be divided into three categories.
1) Image level pretext tasks [17]–[35], 2) patch level pretext
tasks [36]–[40], and 3) pixel level pretext tasks [41]–[47].

1) Image Level Pretext Task
The image level pretext tasks in self-supervised repre-
sentation learning explore the intrinsic properties or the
relationship of images. For example, data augmentation
can be used to generate transformed images and corre-
sponding labels from the original image [17], [18], [22],
[24], [26], [29], [35], and their correspondence can be thus
explored during training. Such a group of methods can also
benefit from the adversarial training [50] and the training
of networks can be guided at the image level by building
adversarial losses [19], [31]. In addition to augmentation
methods, we can also use clustering methods to divide the
images into different groups roughly. The inputs of cluster
methods are features extracted from neural networks and
clustering results are integrated into the loss function to
guide networks training [20], [21], [23], [27], [30], [34].
Another popular way to define image level pretext tasks
is to design contrastive loss functions. These methods
encourage the networks to learn similar representations
from similar images (typically the image and its random
transformations) and learn different representations from
different ones. The contrastive loss functions can also be
used to help networks obtain higher robustness to image
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rotation and scaling, and therefore improve the generaliza-
tion of their feature representations [25], [28], [32], [33].

2) Patch Level Pretext Task
The key to patch level pretext tasks is that if we divide
an image into several patches, then we can construct
self-supervised loss functions by simply exploring the
location or semantic relationship between them. The net-
works thus can be trained to learn from the patches and
their surroundings. Doersch et al. [36] propose to evenly
divide an image into nine patches and train the networks
to predict the position of a certain patch relative to the
center patch. However, this method can only learn the
relationship between adjacent patches, and is hard to learn
the overall arrangement of the content in an image. The
pretext task based on the “jigsaw” solves this problem [39],
[40]. The jigsaw-based methods divide an image into
patches and shuffle them. Then networks are trained to
predict orders of the patches to recover the input image.
During this process, the networks need to fully understand
the content and relationship between each patch, and show
better performance in downstream tasks [37], [38].

3) Pixel Level Pretext Task
The goal of pixel level pretext tasks is to make networks
understand semantic information. Compared with image
level tasks, pixel level pretext tasks focus more on the
learning of semantic level information. However, they may
also force the networks to learn too many details or short-
cuts between the input and output, which is sometimes
meaningless for downstream tasks [43]. Therefore, pixel
level pretext tasks usually need some skills to prevent
overfitting during training. Autoencoder is a group of com-
monly used unsupervised/self-supervised representation
learning methods [41], [42], [47]. However, if autoencoder
is directly used to reconstruct the input images, it will
easily overfit to raw pixels rather than fully “understand”
the image. Pathak et al. [42] propose to combine au-
toencoder with the image inpainting task to alleviate this
problem. In their method, they train an autoencoder to
recover the input image, but at the same time a region
in the input image will be randomly discarded. Then
they train a discriminator with the recovered images and
some real ones to further improve the features. Zhang et
al. [41] combine the ideas of autoencoder and contrastive
learning. They switch the input of autoencoder to the trans-
formed images. The split-brain autoencoder [47] modifies
the one-way calculation of an autoencoder and proposes
a two-way reversible autoencoder structure. Through a
group of reversible operations, the self-supervised model
can be trained with pair-wise losses. Besides, the tasks of
image colorization [43]–[45] and image inpainting [46]
are also widely used in self-supervised representation
learning where a network has to learn to recognize objects
and make a full understanding of the details of the images
(e.g., sky is blue and trees are green) before achieving such
goals.

Although self-supervised representation learning has made
great progress in recent years, it still falls behind ImageNet

pretraining in most downstream tasks. Self-supervised represen-
tation learning outperforms ImageNet pretrained models only
on a few tasks such as object detection [51]–[53]. In addition,
most of the above methods are designed for natural image
tasks without considering the characteristics of remote sensing
images.

B. Self-Supervised Representation Learning for Remote
Sensing Images

Although researches of self-supervised representation learn-
ing for natural images are developing rapidly, methods for
remote sensing images are relatively less. Compared with natural
images, remote sensing images usually consists of more than
three bands. Vincenzi et al. [54] propose to use high-dimensional
data to reconstruct image color for pretraining, which can help
networks learn image representations. But for hyperspectral
image processing task [55]–[58], this method may not work well.
Some self-supervised learning methods [59]–[61] are proposed
for hyperspectral images, and have achieved good results.

In addition, the longitude and latitude information of remote
sense images and multitemporal data [62] can also be used for
self supervised learning. The SauMoCo [63] method utilize the
spatial information of remote sensing images, and achieved good
results. Researches [64], [65] combine images with spatial in-
formation and multitemporal images to the contrastive learning,
and improve the performance of downstream tasks.

However, the above methods still follow ideas for natural
images, trying to extract the supervised information from re-
mote sensing images by designing pretext tasks just like natural
images, but it does not take advantage of the characteristics
of remote sensing images. In addition to the self-supervised
learning methods, some early researches usually focus on the
representation learning for specific tasks. In [66] and [67], a
feature learning method for the scene classification task of re-
mote sensing images is designed, which can effectively improve
the effect of scene classification. In order to solve the problem of
multiple remote sensing image data sources, Neumann et al. [68]
proposes a feature learning method between different datasets.
However, these methods are designed for an only single task and
lack of generality.

III. METHODS

Given a backbone convolutional network (e.g., VGG16 [69],
ResNet50 [70]), we start by designing a triplet Siamese network
on top of the backbone. The triplet Siamese network consists of
three input branches, three output branches, and the backbone
as a feature extraction network. In this section, we introduce the
detailed configuration of our network architecture and pretext
tasks.

A. Overview of the Proposed Method

Fig. 1 shows an overall architecture of our method. For
different tasks, weights are shared among input branches and the
backbone networks. Different pretext tasks are implemented by
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Fig. 1. Overview of the proposed method. Given a backbone convolutional neural network, we build three branches on its output: An inpainting branch, an ATP
branch, and a contrastive learning branch (from top to bottom in this figure). The inpainting branch takes in a randomly occluded image and is trained to repair
the occluded area. The ATP branch and the contrastive learning branch share a same pair of input images, where the former is trained to predict the transformation
type and the latter ensures that the backbone produces similar features for similar input and vice versa.

adding different heads and loss functions on top of the backbone
networks.

For the inpainting branch, the input is a randomly occluded
image. The branch repairs the occluded area by adding several
transposed convolution layers on top of the backbone networks.
To increase the details of texture and edge, we also fuse the global
and local information by introducing skip connections between
different convolution layers and transposed convolution layers.
For the ATP branch and the contrastive learning branch, their
inputs are the images before and after random transformation.
Their features produced by the backbone networks are concate-
nated along their channel dimension. We then construct two
fully connected networks: One takes in the features and predicts
the transformation type as the output of ATP branch, and the
other one maps the features to the latent space to calculate the
contrastive loss function.

B. Pretext Tasks and Loss Functions

We define three pretext tasks for self-supervised training: An
inpainting task that helps the backbone networks learn low-level
features, and an ATP task + a contrastive task that are responsible
for learning high-level features.

1) Inpainting Task
The inpainting branch helps networks to learn useful features

by repairing occluded areas of the input image. Suppose I
represents an original input image. We randomly occlude I with
an S × S pixels square box Bp and suppose I ′ represents the
occluded image.

In conventional image inpainting tasks, the pixel values of
the occluded area are set to 0 or 255. However, the strategy of
filling with 0 or 255 will cause the loss of information in the
occluded area, thereby increasing the difficulty and instability
of network training. Current researches [43], [46] usually utilize
generative adversarial networks to improve this problem. But
the use of generative adversarial networks will increase the
difficulty of network design and training too. Therefore, we

use a more moderate approach to construct occluded areas by
randomly transform the in-box areas with image rotation, flip,
color transformation, etc. In this way, the backbone can use
the information both inside and outside occluded area for the
restoration. To further improve the generalization ability of the
pretrained model, we also perform random clipping and color
jittering on the input image I ′.

We define the following loss function to train the backbone
and the inpainting branch:

Lp = ‖β(I − Î)‖1 (1)

where Î is outputs of the networks. β = |I − I ′| is a predefined
weighting map, which guides the networks to pay more attention
to the areas with bigger changes. ‖ · ‖1 is the pixel-wise l-1
function.

2) Augmentation Transform Prediction (ATP) Task
Given I as an original input image, in the ATP branch, we

define a series of image transformation operations (image rota-
tion, flip, etc.) T = {t1, t2, . . ., tM} and transform I by using a
randomly selected one operation t fromT . Suppose I ′ represents
the transformed image in the ATP branch. We feed I ′ to the
networks and train it to recognize which type of transformation
is applied. The ATP thus can be essentially formulated as a
standard classification problem. The loss function of the ATP
branch is defined as follows:

La = −
M∑

m=1

Â(m) logP(m) (2)

where Â(m) = {0, 1} represents the one-hot encoding of the
ground truth class label. P represents the predicted class-
probability of M different transformations. The number of cat-
egories is six. The used data augmentations include, rotating 90
degrees, rotating 180 degrees, rotating 270 degrees, horizontal
flip, vertical flip, and no augmentation.

3) Contrastive Learning Task
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We follow the paper [28] to build a contrastive loss function
to guide networks to learn high-level features of remote sensing
images. The contrastive branch and ATP branch share the same
group of input images.

Given a pair of input image I and its transformation I ′, we
suppose φ(I) and φ(I ′) represent their image features produced
by the backbone networks respectively. We calculate the simi-
larity between φ(I) and φ(I ′) as follows:

S(I, I ′) =
φT (I)φ(I ′)

‖φ(I)‖2‖φ(I ′)‖2 (3)

where ‖ · ‖2 represents the l-2 norm.
We further assume that a mini-batch during the training con-

sists of N image pairs, and (Ii, I
′
i) represents the ith image pair.

We define the contrastive loss function l(Ii, I
′
i) of the ith input

pair as follows:

L(Ii, I
′
i) = l(Ii, I

′
i) + l(I ′i, Ii)

= − log
exp(S(Ii, I

′
i))∑

k �=i exp(S(Ii, Ik))

− log
exp(S(Ii, I

′
i))∑

k �=i exp(S(I
′
i, Ik))

(4)

where (Ii, I
′
i) is a positive pair and (Ii, Ik) is a negative pair.

Minimizing the above contrastive loss function can ensure that
the feature similarity of a positive image pair is larger than any
other negative combinations.

For all image pairs in a training batch, the total contrastive
loss function of this branch is written as follows:

Lc =
N∑
i=1

L(Ii, I
′
i). (5)

The final loss function of the three pretext tasks is defined as
the linear combination of their losses

L = γpLp + γaLa + γcLc (6)

where γp, γa, and γc are positive coefficients to balance the
losses of the above three tasks.

C. Implementation Details

We experiment on two widely used convolutional neural
networks architechtures - VGG16 [69] and Resnet50 [70], and
use them as our backbone networks. To improve the training
stability, we add batch normalization (BN) [71] layers to the
three prediction branches after each convolution and transposed
convolution layer. We also use data augmentation on input im-
ages to avoid overfitting. We augment the input images by using
random image rotation ([0, 90, 180, 270] degrees), horizontal
flip, and vertical flip. We add color jittering and random clipping
to the transformed image, which makes the pretext tasks more
difficult. The input image is converted into a gray image with a
certain probability to avoid learning too much color information.

To balance the loss functions of the three tasks numerically, es-
pecially at the beginning of training, We setγp = 20.0,γa = 1.0,
and γc = 1.0. For self-supervised training stage, we set batch
size as 8. The network training lasts 13 epochs in total, and

TABLE I
DETAILED CONFIGURATION OF OUR NETWORKS (VGG16-BACKBONE AS AN

EXAMPLE)

242 300 steps are carried out. The input image size is 256× 256.
The training of the network takes approximately 27 h. We use
pytorch-1.5 to build our codes. The learning rate is set to 5e-4
and is reduced to its 95% after every two training epochs. Codes
are available at https://github.com/flyakon/SSLRemoteSensing.

In Table I, we take VGG16 [69] as an example to show the de-
tailed structure of our prediction branches. The columns “Ker,”
“S,” and “#Ker” denote the size, stride, and channel number
of the convolution layers, respectively. “conv” and “deconv”
denote convolution and transposed convolution operations, re-
spectively. The pseudocode of training process is shown in
Algorithm 1.

IV. RESULTS

A. Dataset for Experiments

1) Dataset for Pretraining
Since there are still few researches in remote sensing fo-

cusing on self-supervised pretraining, no such benchmark data
are publicly available. Therefore, we construct a large unla-
beled dataset by combining several well-known remote sensing
datasets, including DIOR [72], DOTA [73], and Levir [74]. To
increase the versatility of the dataset, the images are selected
with different resolutions. We use the method in [75] remove
some low contrast images, and the final number of images for
pretraining is 186 486.

2) Datasets for Semantic Segmentation
We use three datasets: Levir_CS [49], Potsdam, and Vaihin-

gen [48] to verify the effectiveness of our method for semantic
segmentation of remote sensing images. The Potsdam and Vai-
higen datasets are commonly used datasets for remote sensing
semantic segmentation. Levir_CS dataset is a large-scale dataset
for cloud / snow detection task that is in essence a pixel classi-
fication task. The detailed information of all the above datasets
are shown in Table II. The Potsdam and Vaihingen [48] datasets

https://github.com/flyakon/SSLRemoteSensing
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Algorithm 1 Training process of our method
1: Input: Training data X , backbone f , different pretext

tasks heads gp, ga, gc. Transforms for tasks: tp, ta, tc.
2: function TrainLoop X
3: for all I ∈ X do
4: Lp=INPAINTING(I)
5: La=ATP(I)
6: Lc=CONSTRASTIVE(I)
7: L = γpLp + γaLa + γcLc

8: update networks to minimize L
9: end for

10: end Function
11: function Inpainting (I)
12: I ′ ← tp(I)
13: h← f(I ′)
14: Î ← gp(h)

15: Lp = ‖β(I − Î)‖1
16: return Lp

17: end Function
18: function ATP (I)
19: I ′, Â← ta(I)
20: h′ ← f(I ′)
21: h← f(I)
22: P ← gp(h

′, h)
23: La = −E{Â logP}
24: return La

25: end Function
26: function Constrastive (I)
27: I ′ ← tc(I)
28: h′ ← f(I ′)
29: h← f(I)
30: z′ ← gc(h

′, h)
31: z ← gc(h, h)
32: compute constrastive losss with z, z′

33: return Lc

34: end Function

TABLE II
DATASETS FOR DOWNSTREAM TASKS AND THEIR STATISTICS

both have six categories in each dataset. We crop the images
into patches with size of 256× 256, and randomly divide them
into a training set (60%), a validation set (20%), and a testing
set (20%). The Levir_CS dataset consists of two categories with
cloud and snow. We also crop the images into patches with size of
256× 256, and randomly divide them into a training set (60%),
a validation set (20%), and a testing set (20%).

B. Experimental Setup

In the pretraining stage, we do not use the validation set, but
used all the data for network training. Because even if we set the
validation set, we cannot reasonably infer the performance of
the pretrained model on the semantic segmentation task through
the validation set. We infer whether the pretraining process is
completed according to the loss function during the training
process.

We compare four different network initialization methods:
1) From scratch (random initialization), 2) from ImageNet pre-
training, 3) from our self-supervised pretraining, and 4) from
ImageNet pretraining + self-supervised pretraining (by contin-
uing to pretrain the networks with self-supervised losses on top
of the ImageNet pretraining).

We compare our method with three state of the art methods for
self-supervised representation learning, which are NPID [24],
MoCo [32], and MoCo v2 [33]. All methods are trained and
evaluated using the datasets described above.

For the semantic segmentation task, we add five transposed
convolution layers on top of the backbone model with each layer
followed by a BN layer (the same architecture as our inpainting
branch). We compute the accuracy on validation set every 20
epoch and save the model with the highest accuracy. We stop
training after 200 epochs. The learning rate is set to 0.005. We
adjust the learning rate to its 90% every 10 epochs. For the
cloud/snow detection task, we adopt the same network structure
and training strategy with those for semantic segmentation,
except that the learning rate is 0.001.

We use the intersection-over-union (IoU) as the evaluation
accuracy. The IoU can be computed as follows:

IoU =
TP

TP + FP + FN
(7)

where TP is the number of true positive pixels, and FP and
FN are the number of false positive and false negative pixels.
All of these values are calculated from the confusion matrix of
categories. Finally, after getting the IoU of each category, we
compute mIoU—the averaged accuracy of all categories as the
final evaluation accuracy.

C. Semantic Segmentation Results

We verify the performance of our method on remote sensing
image semantic segmentation task on Potsdam and Vaihingen
datasets [48]. The results are shown in Tables III, IV, and Fig. 2.
Considering humans are able to recognize novel instances with
very few training examples, we also show the performance of
our method with very limited training data. The columns in the
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TABLE III
SEMANTIC SEGMENTATION RESULTS ON VAIHINGEN DATASET

IoU is used as the metric. The highest scores are marked in bold. Ours� represents ImageNet pretraining + self-supervised pretraining of our method.

TABLE IV
SEMANTIC SEGMENTATION RESULTS ON POTSDAM DATASET

IoU is used as the metric. The highest scores are marked in bold. Ours� represents ImageNet pretraining + self-supervised pretraining of our method.

(a)

Fig. 2. Semantic segmentation results. (a) Results on Vaihingen dataset. (b) Results on Potsdam dataset. The dotted line shows the result of our method. Ours�

represents ImageNet pretraining + self-supervised pretraining of our method. (a) Segmentation IoU of Vaihingen. (b) Segmentation IoU of Potsdam.
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Fig. 3. (Better viewed in color) Some examples of the semantic segmentation results of comparison methods on the Potsdam (the first three rows) and Vaihingen
dataset [48] (the last two rows). The first column shows the input images, and the second column shows the label image. The third to seventh columns are the
results of the comparison methods. The last column is the result of our method (VGG16�). (a) Image. (b) Label. (c) Random. (d) ImageNet. (e) NPID. (f) Moco.
(g) Moco v2. (h) Ours.

tables and the abscissa in the figure represent the proportion
of training data in the total training set. “100%” means that
all training data are used to train the segmentation network,
while “0.25%” means that only 0.25% of training data are
used to train the segmentation network. The number of training
images represented by different proportions can be calculated as
follows: Nr = floor(N ∗ r), where r represents the proportion
listed in the tables and N means the total number of train-
ing data. floor represents rounding operation and Nr means
the number of training data under proportion r. In addition,
we have counted the number of training data for each class
under different proportions to ensure that even at the ratio of
0.25% and 0.33%, each category has corresponding training
data. It can be seen that our method achieves the best results
in above two datasets and obtain the best segmentation results
in almost every scale of training set. As semantic segmentation
usually requires a large number of effective low-level features
to supplement the details of outputs, the results suggest that our
method can extract better low-level features than other methods.
Therefore, we can use a sufficiently large unlabeled dataset
which can be obtained easily to pretrain any segmentation model
before fine-tuning on target datasets even with every limited
labels. The results show that our method is qualified to be
an alternative or even a better replacement for the ImageNet

pretraining on standard remote sensing image segmentation
tasks.

In addition, it can been seen from Fig. 2 that the segmentation
performance has a positive correlation with the scale of training
data for every method. With the increase of training data, the
segmentation performance has been improved. The performance
improvement of our method is more obvious when the amount
of training data is limited. When the training data increases to
100%, the advantages of our method that that of other methods
begin to decrease. We can reasonably speculate that if the
training data are large enough, the advantages of our method
will eventually be wiped out. However, due to the difficulty
of segmentation data annotation in reality, we can hardly get
enough training data, and we can not know what scale of labeled
data is enough for network training. Therefore, our method can
effectively improve the accuracy of segmentation, and reduce
the workload of data annotation.

Fig. 3 shows some examples of the semantic segmentation
results of comparison methods on the Potsdam (the first three
rows) and Vaihingen dataset [48] (the last three rows). The first
column shows the input images, and the second column shows
the label image. The third to seventh columns are the results
of the comparison methods. The last column shows the results
of our method. All the models are trained with 100% training
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TABLE V
CLOUD DETECTION RESULTS

IoU is used as the metric. The highest scores are marked in bold. Ours� represents ImageNet pretraining + self-supervised pretraining of our
method

TABLE VI
SNOW DETECTION RESULTS

IoU is used as the metric. The highest scores are marked in bold. Ours� represents ImageNet pretraining + self-supervised pretraining of our
method

data. It can be seen that our method can effectively improve the
performance of semantic segmentation, and can reduce the false
alarms.

D. Cloud/Snow Detection

The cloud/snow detection is in essence a pixel classification
task, so it can be regarded as a special semantic segmenta-
tion problem. Cloud/snow detection task consists of two sub
tasks: Cloud detection and snow detection. The difficulty of
cloud/snow detection lies in the high similarity between cloud
and snow. In addition, the cloud samples are widely distributed
and easy to obtain, but the snow samples are limited by terrain
and season so that they are relative rare. The cloud/snow detec-
tion results are shown in Tables V, VI, and Fig. 4. Considering
that the snow samples are relatively rare, we start from 0.5% of
the training data to verify the effect of our method on different
scale of training data, rather than from 0.25% as in the semantic
segmentation experiment. It can be seen that our methods have
achieved the best results both on cloud and snow detection.

When the scale of training data is limited, almost all the
methods can achieve a good cloud detection performance, but

under the same scale of training data, the performance of snow
detection is pretty low. This is because even if some clouds are
difficult to distinguish, cloud detection is still a relatively easy
task. Most clouds have similar texture information, and a small
amount of annotation data is enough for relatively simple cloud
detection. But for snow detection, most of snow samples are
similar with cloud ones and the scale of snow samples is usually
small, which leads to the networks tends to label snow as cloud,
resulting in the performance degradation of snow detection. As
can be seen from the Tables V, VI, and Fig. 4, our method is
superior to other methods in cloud detection results, but the
advantage is not particularly great. For snow detection, our
method is significantly better than other methods, especially in
the case of less labeled data.

Fig. 5 shows some examples of the cloud detection results
of comparison methods on the Levir_CS [49] dataset. The first
column shows the input cloud images, and the second column
shows the label image. The third to seventh columns are the re-
sults of the comparison methods. The last column is the predicted
cloud result of our method. The parts marked in gray correspond
to the cloud in the input image, and the parts marked in black
and white correspond background and snow separately. For the
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Fig. 4. Cloud/snow detection results. (a) Cloud detection results. (b) Snow detection results. The dotted line shows the result of our method. Ours� represents
ImageNet pretraining + self-supervised pretraining of our method.

Fig. 5. (Better viewed in color) Some examples of the cloud / snow detection results of comparison methods on the Levir_CS [49] dataset. The first column
shows the input cloud images, and the second column shows the label image. The third to seventh columns are the results of the comparison methods. The last
column is the predicted cloud result of our method (VGG16�). The parts marked in gray correspond to the cloud in the input image, and the parts marked in black
and white correspond background and snow separately. (a) Image. (b) Label. (c) Random. (d) ImageNet. (e) NPID. (f) Moco. (g) Moco v2. (h) Ours.
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TABLE VII
ABLATION STUDIES OF MULTITASK SELF-SUPERVISED REPRESENTATION

LEARNING. ABLATIONS ARE PERFORMED ON 1) ATP, 2) CONTRASTIVE, AND 3)
INPAINTING

cloud detection, the performance of our method is comparable
with other methods, but for the snow detection, we can obviously
see that our method has achieved better snow detection results.

E. Ablation Studies

We design the following ablation analysis to analyze the
importance of each pretext task in our method, including 1) the
inpainting task, 2) the ATP task, and 3) the contrastive learning
task. We first start from a baseline approach where we directly
train the networks on downstream tasks from scratch. Then the
above pretext tasks are added one by one to pretrain the networks
with self-supervised losses. Finally we fine-tune the pretrained
networks on the Vaihingen dataset and their mIoUs are recorded.
Results are shown in Table VII. The results show that each task
achieves a noticeable improvement on the semantic segmenta-
tion task, where the “ATP” and “Contrasitive” tasks improve
the segmentation accuracy by about 2%, while the “Inpainting”
task further improves the segmentation accuracy by 4%. As the
inpainting task pays more attention to the low-level features, it
improves the semantic segmentation more significantly. In ad-
dition, although ATP and contrastive tasks are both for learning
high-level features, they can continue to improve the accuracy
of segmentation from the results. The features they focus on
and the effects they produce are not exactly the same. The ATP
task may make the network pay more attention to the changes in
the texture and position of objects, while the contrastive learning
task may help networks pay attention to the semantic information
of images.

F. Experimental Results Analysis

In this part, we analysis the performance of our method in
the face of different task with various difficulty and training
data scale. In terms of the scale of training data, our method
can significantly reduce the demand for training data, which
is manifested in two aspects. On the one hand, it can be seen
from Tables III and IV that the performance of our method
is limited when the training data is extremely small (0.25%,
0.33%). But with the increase of training data, our method
first shows a leap in performance. Compared with our method
with the most commonly used ImageNet pretraining method,
our method can save almost half of the training data, i.e., our
method with only half of the training data can achieve the
performance that ImageNet pretraining method can achieve with
all data. compared with random initialization, our method can
achieve the comparable performance with only 50% labeled

data on Vaihingen dataset and 20% labeled data on Potsdam
dataset. On the other hand, when using all the training data,
our method can still improve the segmentation mIoU by 4%.
Without changing the network structure, the most effective way
to improve the performance is to increase the training data. But
the segmentation data annotation is very time-consuming and
laborious, our method provides a new way to continue to improve
the performance.

In addition, the experiment results of cloud/snow detection
shows performance of different methods for segmentation tasks
with various difficulty. From Fig. 4, we can see that the curve
of cloud detection performance is relatively flat. Although our
method is still better than other methods in most cases, the
improvement of cloud detection is not particularly great. But
for the snow detection task, our method has brought great
performance improvement to the snow detection. The reason
for the difference between cloud detection and snow detection
is that cloud detection is a relatively simple task. In most cases,
cloud and ground objects are easy to distinguish. However, snow
and cloud have similar characteristics, and usually the cloud
samples are more than twice as large as the snow samples, which
leads to the network tends to label snow as cloud and makes
it difficult to improve the performance of snow detection. The
experimental results on snow detection shows that our method
is more effective in the face of complex tasks. Compared with
random initialization, only 20% labeled data for cloud detection
and 10% labeled data for snow detection are needed to achieve
the comparable performance.

V. DISCUSSION AND FUTURE WORK

The self-supervised representation learning method provides
an effective way to utilize large amount of unlabeled data. Up
to now, most deep learning methods rely on a large number of
labeled data, but for remote sensing images, the vast majority of
available data are not labeled. How to use these remote sensing
images effectively is a great challenge to be solved. In order
to improve the utilization efficiency of large-scale unlabeled
remote sensing data via self-supervised representation learning
method, the following three issues need to be considered in the
future.

1) Since self-supervised representation learning needs to co-
operate with large-scale datasets to give full play to its
advantages, future work will consider building a large-
scale remote sensing representation learning dataset. The
dataset needs to fully consider the characteristics of mul-
tisource and multiresolution of remote sensing images,
and try to cover the main data sources of remote sensing
images.

2) As the great difference between remote sensing images
and natural images, the method which performs well for
natural images may not be effective for remote sensing im-
ages. Therefore, we will systematically study and compare
the differences of different methods in these two images
in the future, so as to provide reference that help self
supervised representation learning to play a greater role
in the field of remote sensing.
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3) In addition to the image itself, remote sensing images
also contains a lot of geographic information. We will
consider how to apply this geographic information into the
self-supervised representation learning method of remote
sensing images, so as to greatly improve the performance
of networks for remote sensing images.

VI. CONCLUSION

This article proposes a self-supervised representation learning
method for remote sensing semantic segmentation. Considering
the characteristics of remote sensing images, we design multiple
pretext tasks (inpainting, augmentation transform prediction,
and contrastive learning) to guide networks to learn both low-
level and high-level features at the same time. The pretrained
models can be applied to various downstream tasks as an al-
ternative of the ImageNet pretrained models. The experimental
results show that our method outperforms random initialization,
ImageNet pretraining, and other self-supervised methods in
remote sensing the semantic segmentation task. Our method has
achieved better results especially with limited training data. This
proves that the model trained by our methods can be considered
as an effective initialization for various remote sensing image
semantic segmentation tasks and can be also used to improve
the performance of semantic segmentation for remote sensing
images.
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