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An End-to-End Network for Remote Sensing
Imagery Semantic Segmentation via Joint

Pixel- and Representation-Level
Domain Adaptation

Lukui Shi , Ziyuan Wang, Bin Pan , Member, IEEE, and Zhenwei Shi , Member, IEEE

Abstract— It requires pixel-by-pixel annotations to obtain
sufficient training data in supervised remote sensing image
segmentation, which is a quite time-consuming process. In recent
years, a series of domain-adaptation methods was developed
for image semantic segmentation. In general, these methods are
trained on the source domain and then validated on the target
domain to avoid labeling new data repeatedly. However, most
domain-adaptation algorithms only tried to align the source
domain and the target domain in the pixel level or the rep-
resentation level, while ignored their cooperation. In this letter,
we propose an unsupervised domain-adaptation method by Joint
Pixel and Representation level Network (JPRNet) alignment. The
major novelty of the JPRNet is that it achieves joint domain adap-
tation in an end-to-end manner, so as to avoid the multisource
problem in the remote sensing images. JPRNet is composed
of two branches, each of which is a generative-adversarial
network (GAN). In one branch, pixel-level domain adaptation
is implemented by the style transfer with the Cycle GAN, which
could transfer the source domain to a target domain. In the other
branch, the representation-level domain adaptation is realized
by adversarial learning between the transferred source-domain
images and the target-domain images. The experimental results
on the public data sets have indicated the effectiveness of the
JPRNet.

Index Terms— Domain adaptation, generative-adversarial net-
work (GAN), remote sensing, semantic segmentation.

I. INTRODUCTION

SEMANTIC segmentation that aims at assigning a label to
each pixel in an image is a fundamental and challenging
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problem in the field of aerial and satellite images. In recent
years, researchers have proposed many semantic-segmentation
algorithms based on deep learning for the remote sensing
images [1]–[3]. However, most of them have to train the mod-
els on the large labeled data sets, while it is a time-consuming
process to collect such pixel-level annotated data sets.

An attractive alternative is to use domain adaptation that
aims to transfer the model learned on a labeled source domain
to a target domain. During the past decade, researchers have
proposed some domain-adaptation algorithms for the remote
sensing image semantic segmentation [4]–[7]. More recently,
the generative-adversarial networks (GANs) have achieved
promising performance in addressing the problem. In the
domain-adaptation methods for the semantic segmentation of
the remote sensing images, a GAN was used in [8]–[12].

However, the above methods only attempted to solve the
domain-shift problem by aligning either the pixel space
or the representation space. In this letter, inspired by the
idea of hierarchical domain adaptation, we propose an end-
to-end network, which can address the Joint Pixel and
Representation level Network (JPRNet) domain adaptation.
JPRNet is developed based on the Cycle GAN [13], which
is a popular pixel-level backbone. A representation-level
domain-adaptation approach is proposed to improve the Cycle
GAN.

To some extent, the JPRNet involves the similar idea as
fully convolutional adaptation networks for semantic segmen-
tation (FCAN) [14]. However, they are quite different in
the optimization manners. First and foremost, the JPRNet is
an end-to-end model, while an FCAN directly cascades two
domain-adaptation algorithms. Due to the multisource problem
of the remote sensing images, the images obtained by different
satellites are quite different.If not adapting the end-to-end
manner for the training domain-adaptation networks, users
may have to select manually different hyperparameters for
any two remote sensing data, which will significantly increase
the artificial interference. Therefore, the end-to-end structure
can reduce the human intervention that helps to improve the
robustness of the algorithm.

The JPRNet contains the pixel-level and representation-level
domain-adaptation branches, each of which is a GAN.
In the pixel-level branch, domain adaptation is conducted
by the Cycle GAN that could transfer the image style from
the source-domain images to the transferred source-domain
images. In another branch, the Representation level Adaptation
Network (RAN) is used to realize the domain-invariant repre-
sentation between the transferred source-domain images and
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Fig. 1. Overall architecture of the proposed method. It consists of two main components: the pixel-adaptation network (Cycle GAN) on the left and
the representation-adaptation network (RAN) on the right. The Cycle GAN could transfer the image style of the source domain. The RAN learns the
domain-invariant representations between the target-domain images and the transferred source-domain images in an adversarial manner.

the target-domain images. Our contributions are summarized
as follows.

1) We propose a domain-adaptation method (JPRNet) for
remote sensing imagery semantic segmentation, which
can be trained on a labeled data set and can apply its
model to another unlabeled data set.

2) We construct a JPRNet with two GANs, which could
simultaneously train the pixel- and representation-level
branches in an end-to-end manner.

II. METHODS

Our proposed adaptive semantic-segmentation network is
illustrated in Fig. 1. It consists of the pixel-adaptation network
(Cycle GAN) and the RAN. Given the images from the
source domain and the target domain, the Cycle GAN transfers
images from one domain to the other from the perspective
of the pixel level in an adversarial manner. The RAN learns
the representation-domain adaptation in an adversarial manner,
and a domain discriminator is designed to classify the image
regions corresponding to the receptive field of each spatial unit
in the feature map. The RAN is to guide the representation
learning in both domains and makes the discriminator difficult
to distinguish between the transferred source-domain represen-
tations and the target-domain representations. As a result, our
algorithm addresses the domain-adaptation problem from both
the pixel level and the representation level.

A. Pixel-Level-Adaptation Network (PAN)

A PAN is designed to transfer the images from one domain
to the other under as possible as preserving appearance sim-
ilarity and to segment the transferred source-domain images.
In the PAN, this goal is achieved by using the Cycle GAN and
the fully convolutional networks (FCN). The PAN network
consists of five components: G X , GY , DX , DY , and FCN,
where G X , GY , DX , and DY are parts of Cycle GAN, and
the FCN is a semantic-segmentation network. Suppose that
X represents the source-domain data set and Y represents
the target-domain data set, xi ∈ X and yi ∈ Y . The
PAN aims to learn two mappings GY (x) and G X (y), and
train the FCN. GY (x) maps data from X to Y , and G X (y)
maps data from Y to X . The FCN is trained by using the
transferred source-domain images and the source labels. Next,
we summarize the objective functions of the PAN.

The PAN is designed by adding an FCN on the basis
of Cycle GAN. Therefore, we first introduce the objective
function of Cycle GAN, which consists of four components.
The adversarial term of the loss function for training GY and
DX can be written as follows:
LX→Y = Ey∼py(y)[log DY (y)]

+ Ex∼px (x)[log(1− DY (GY (x)))]. (1)

The most significant difference between the Cycle GAN and
other GAN networks is that Cycle GAN introduces the cycle
consistency loss. The loss requires that the transferred image
can be mapped back to itself in the original domain, namely,
x → GY (x)→ G X (GY (x)) ≈ x . It is defined as follows:
Lcyc(G X , GY ) = Ex∼px (x)[�G X (GY (x))− x�1]

+ Ey∼py(y)[�GY (G X (y))− y�1]. (2)

According to the structure of the Cycle GAN, the objective
function of the Cycle GAN can be written as follows:
Lcyclegan(G̃, D̃) = LX→Y (GY , DY )+ LY→X (G X , DX )

+Lcyc(G X , GY ) (3)

where G̃ represents G X and GY , and D̃ represents DX
and DY .

Compared with the pixel-level domain-adaptation network
AAN in the FCAN, the Cycle GAN implements pixel-level
domain adaptation in a generative-adversarial manner, while
the AAN implements pixel-level domain adaptation in a recon-
structed manner. The AAN would use too many artificially set
hyperparameters during the reconstruction process, which may
lead to excessive human intervention. Therefore, we selected
the Cycle GAN with less human intervention as our pixel-level
domain-adaptation network.

Then, we introduce the objective function of the FCN.
Suppose that c ∈ {0, 1} represents the pixelwise binary label
of the image x, and the loss function for the segmentation task
can be written as

Lseg(FCN, GY )

= −E(x,c)∼p(x,c)[c log(FCN(GY (x)))

+ (1− c) log(1− FCN(GY (x)))]. (4)

Therefore, the objective function of the PAN can be defined
as follows:
LPAN(G̃, D̃, FCN) = Lcyclegan(G̃, D̃)+ Lseg(FCN, GY ). (5)
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B. Representation level Adaptation Network (RAN)

The purpose of the RAN is to learn domain-invariant
representations in an adversarial manner. In the RAN, the fea-
ture representations of two domains are learned by fooling
a domain discriminator. It consists of FCN, atrous spatial
pyramid pooling (ASPP) semantic classifier Seg, and ASPP
discriminators D. The FCN is part of the segmentation
network as well as the generator of The GAN to generate
domain-invariant representations.

ASPP [15] uses multirate dilated convolution to extract
multiscale features in the form of spatial pyramid, which has
proven to be effective in extracting multiscale information.
The ASPP semantic classifier Seg could promote segmentation
results by fusing multiscale features from different convolu-
tional layers. In the semantic classifier, the settings of ASPP
are the same as those of DeepLab V3.

The ASPP discriminator D attempts to distinguish the
representation of the source domain and the target domain.
It outputs the domain prediction of each image region that
corresponds to the spatial unit in the final feature map. In the
discriminator, specifically, k dilated convolutions with different
sampling rates are exploited in parallel to produce k feature
representations after the outputs of the FCN are input into the
discriminator. Here, each feature map has c feature channels.
Then, all feature channels are combined into c*k channels.
These channels pass a 1×1 convolutional layer plus a sigmoid
layer to generate the final score map. Each spatial unit in the
final score map represents the probability of belonging to the
target domain.

Because the buildings in the remote sensing images have
different sizes, we attempt to use multiscale representations to
enhance adversarial learning and building segmentation. It is
the traditional way for solving multiscale problems to adjust
the resolution of the input image and use the parallel weight
sharing network, which will consume a lot of memory and
training time. In our network, ASPP is used not only to solve
the multiscale problem of segmentation but also to solve the
multiscale discrimination of the adversarial network.

C. Joint Pixel and Representation level Network (JPRNet)

The JPRNet adds a representation-level domain adaptation
based on The Cycle GAN. As shown in Fig. 1, the Cycle
GAN can achieve pixel-level domain adaptation. Its generator
can output the target-like images, which have the common
labels with images in the source domain. Then, it is to learn
the domain-invariant representations between the transferred
source-domain images and the Massachusetts Buildings data
set (the target domain). The RAN is used to produce rep-
resentations across the domains and segment the transferred
source-domain images. Suppose that Yfake represents the trans-
ferred source-domain data set, Y represents the target domain
data set, yfake ∈ Yfake, and y ∈ Y , the adversarial objective
function and the objective function of the RAN can be,
respectively, written as

Ladv(FCN, D)

= Ey∼Y

[
1

Z

Z∑
i=1

log(Di (FCN(y)))

]

+ Eyfake∼Yfake

[
1

Z

Z∑
i=1

log(1− Di (FCN(yfake)))

]
(6)

LRAN(FCN, D, Seg)

= Lseg(FCN, Seg)+ μLadv(FCN, D) (7)

where Z is the number of the spatial units in the output of D
and μ is the tradeoff parameter, and the loss Lseg is the same
as (4).

In addition, similar to the literature [16], we also add the
loss of semantic consistency as follows:
Lsem(G X , F) = λEx∼px (x)[�F(x)− F(GY (x))�1]

+ λEx∼px (x)[�F(G X (GY (x)))− F(x)�1]
(8)

where F is a pretrained segmentation network in the source
domain and F is frozen during the training process.

Through fooling the domain discriminator with the trans-
ferred source and target representations, the RAN is able to
produce domain-invariant representations. Therefore, the JPR-
Net first performs the pixel-level domain transfer from the
source domain to the target domain, and the transferred images
are then input into the RAN for the representation-level
domain adaption.

JPRNet is an end-to-end network that combines the pixel-
level domain adaptation with the representation-level domain
adaptation. The loss function of the JPRNet can be written as
follows:

LJPRNet(G̃, D̃, FCN, D, Seg)

= Lcyclegan(G̃, D̃)+ LRAN(F, D, Seg)

+Lsem(G X , F)+ Lsem(GY , F). (9)

The major difference between the JPRNet and the FCAN is
that the JPRNet proposes an end-to-end training method for
remote sensing image domain adaptation. Due to the “mul-
tisource” problem of the remote sensing images, the images
captured by different sensors can be considered to come from
different domains. In the natural scenes, there is basically no
influence of different cameras on the domain. It is impossible
to set a specific domain-adaptation network for any two
remote sensing data sets. Therefore, we propose an end-
to-end domain-adaptive semantic-segmentation network that
can reduce human intervention.

The pseudocode of our algorithm is shown in Algorithm 1.

III. EXPERIMENTS

A. Data Set and Evaluation Metrics

To verify the performance of the JPRNet, it is tested on the
downsampled Inria data set and the Massachusetts Buildings
data set.

The Massachusetts Buildings data set and the Inria data
set contain only two categories: buildings and background.
The Inria data set contains 180 images of size 5000× 5000.
The resolution is 0.3 m. The Massachusetts Buildings data set
contains 151 images from The aerial images of Massachusetts.
The size of the images is 1500 × 1500, and the resolution
is 1 m. Since the Inria data set has a higher resolution than the
Massachusetts Buildings data set, we downsample the images
and labels in the Inria data set from 0.3- to 1-m resolution with
the way of average downsampling. Considering the capacity
of the GPU, we cut each training sample to several 500×500
subimages and totally obtain 1000 pieces for training. The
code of the JPRNet was published in our homepage.1

1http://levir.buaa.edu.cn/Code.htm
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TABLE I

RESULTS OF BASELINES AND OUR DOMAIN ADAPTATION (%)

Algorithm 1 JPRNet Training Details and Process
Input:

Data: source domain downsampling Inria images X, target
domain Massachusetts Buildings images Y , source domain
labels C , suppose x ∈ X, y ∈ Y, c ∈ C .

Output:
Predicted labels of the target domain: Cy

1: while iteration is effective do
2: y f ake ← GY (x) {forward pass}
3: DY map ← DY ({y f ake, y}) {forward pass}
4: x f ake ← Gx(y f ake) {forward pass}
5: Compare(x, x f ake) {Consistency comparison}

The above process is a cycle from the source domain to
the target domain. The process from the target domain to
the source domain is similar to this.

6: {R f akey, Ry} ← F({y f ake, y}) {forward pass}
7: Segmap ← Seg({R f akey, c}) {forward pass}

Dmap ← D({R f akey, Ry}) {forward pass}
8: GY , DY , G X , DX can be optimized according to equation

(3).
FCN, Classifier, and Discriminator can be optimized
according to equation (7).

9: end while

In the experiments, intersection over union (IoU) is used as
the evaluation metrics. It is defined as follows:

IoU = NTP/(NFP + NTP + NFN) (10)

where NTP, NFP, and NFN, respectively, represent the num-
ber of the true-positive pixels, false-positive pixels, and
false-negative pixels in the segmentation results.

B. Implementation Details

In the pixel-level domain-adaptation part, the generator G̃
and the discriminator D̃ use the same configuration as [13].
In the representation-level domain-adaptation part, we take
FCN as the segmentation network and the generator of repre-
sentations. The FCN is built based on ResNet-50 by removing
its fully connected layers and adding a 1 × 1 convolution
layer. Moreover, to increase the output resolution, we change
the stride from 2 to 1 at Conv_3 and Conv_4 to enlarge
its output size from 1/32 to 1/8 of its input size. ASPP,
which is the classifier of DeepLab V3, is also used as the
classifier of the RAN. In the adversarial branch, we use k
dilated convolutions in parallel to produce multiple feature
maps, each with c channels. The sampling rate of different
dilated convolution kernels is, respectively, 1, 2, 3, and 4.

Finally, after the discrimination of ASPP, a sigmoid layer is
used to output the prediction, which is in the range of [0, 1].
In the Cycle GAN part, we train Cycle GAN from a pretrained
model. After JPRNet was trained for 100 epochs, the Cycle
GAN was fixed, the batch size was set to 8, and another three
epochs were trained to converge the network. We set μ = 0.01,
k = 4, c = 128, and λ = 10.

C. Comparison and Ablation Study

To validate the performance, JPRNet is compared with
the existing methods. These methods include FCN, PSPNet,
DeepLab V3, and FCAN. FCN, PSPNet, and DeepLab V3 do
not adapt the domain-adaptation algorithms. The FCAN real-
izes domain adaptation. These methods and JPRNet are,
respectively, trained on the downsampled Inria data set (the
source domain) and then tested on the Massachusetts Buildings
data set (the target domain). The experimental results are
shown in Table I. From the table, we observe that the results
from JPRNet are prior to those from these methods.

To evaluate further the effectiveness of the PAN and JPRNet,
we use ablation experiments to guide the analysis of the
importance of each component. These components include
three baselines, Cycle GAN, and RAN. The results are shown
in Table I. The FCN, PSPNet, and DeepLab V3 are first evalu-
ated as baselines. According to the evaluated results, DeepLab
V3 is chosen as the baseline in the next experiments. Then,
we gradually integrate Cycle GAN and RAN. In addition, they
are compared with the FCAN.

1) DeepLab V3: It is first trained on the source domain,
and then the model is evaluated on the target domain.

2) AAN: It is the pixel-level domain-adaptation algorithm
in FCAN.

3) Cycle GAN: Cycle GAN is used to realize the pixel-level
domain adaptation in this letter.

4) RAN: We perform the representation-level adaptation
on the transferred source-domain images and the
target-domain images.

The evaluation results are given in Table I. From the results,
we could observe that the integration of the pixel-level domain
adaptation and the representation-level domain adaptation
effectively improves the segmentation accuracy. Some pixel-
level domain-adaptation results and building-segmentation
results of JPRNet are shown in Fig. 2.

D. Semisupervised Adaptation

JPRNet can also be extended to a semisupervised version
by using these labeled images. In experiments, we add a
small number of labeled target-domain images during train-
ing of the JPRNet. Results are given in Table II. Here,
four cases are compared. They are, respectively, JPRNet,
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Fig. 2. Images from the left column to the right column are the source-domain images (downsampled Inria data set), the transferred source-domain images,
the target-domain images (Massachusetts Buildings testing data set), the predicted labels, and the ground truth.

TABLE II

RESULTS OF SEMISUPERVISED ADAPTATION (%)

JPRNet with 100 target-domain labeled images, JPRNet with
200 target-domain labeled images, and three baselines on the
whole target-domain data set. Experimental results show that
the accuracy can be improved by adding a small amount of
target-domain images during training. The accuracy is near to
that of training and testing on the whole target-domain data
set.

IV. CONCLUSION

In this letter, we propose an end-to-end adaptive semantic-
segmentation architecture called JPRNet, which simultane-
ously conducts the pixel-level and representation-level domain
adaptations. Pixel-level and representation-level domain adap-
tations could work together and complement each other in the
JPRNet. To this end, Cycle GAN is used to transfer an image
style from the source domain to the target domain, and RAN
is integrated to learn the domain-invariant representation in an
adversarial manner. Experimental results on the downsampled
Inria data set and the Massachusetts Buildings data set have
demonstrated the effectiveness of JPRNet. Furthermore, the
semisupervised experiments indicate that the JPRNet can
obtain similar accuracy to the baselines, which are trained and
tested on the target domain.
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