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CoinNet: Copy Initialization Network for

Multispectral Imagery Semantic Segmentation
Bin Pan, Zhenwei Shi, Xia Xu, Tianyang Shi, Ning Zhang and Xinzhong Zhu

Abstract

Remote sensing imagery semantic segmentation refers to assigning label to every pixel. Recently, deep convolu-

tional neural networks (CNNs) based methods have presented impressive performance in this task. Due to the lack of

sufficient labeled remote sensing images, researchers usually utilized transfer learning strategies to fine tune networks

which were pre-trained in huge RGB-scene data sets. Unfortunately, this manner may not work if the target images are

multi/hyper-spectral. The basic assumption of transfer learning is that the low-level features extracted by the former

layers are similar in most data sets, hence users only require to train the parameters in the last layers that are specific

to different tasks. However, if one should use a pre-trained deep model in RGB data for multi/hyper-spectral imagery

semantic segmentation, the structure of the input layer has to be adjusted. In this case, the first convolutional layer has

to be trained using the multi/hyper-spectral data sets which are much smaller. Apparently, the feature representation

ability of the first convolutional layer will decrease and it may further harm the following layers. In this paper, we

propose a new deep learning model, COpy INitialization Network (CoinNet), for multispectral imagery semantic

segmentation. The major advantage of CoinNet is that it can make full use of the initial parameters in the pre-trained

network’s first convolutional layer. Comparison experiments on a challenging multispectral data set have demonstrated

the effectiveness of the proposed improvement. The demo and a trained network will be published in our homepage.
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I. INTRODUCTION

Semantic segmentation is a hot topic in computer version, especially after the breakthrough in deep convolutional

networks (CNNs) [1]. In 2015 the CNN model is extended to a fully convolutional form (FCN) [2] which has further
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improved the performance. In the field of remote sensing imagery processing, semantic segmentation (also known as

pixel-based classification in the past) has presented great significance not only in academic research but also in many

applications [3]–[5]. For example, semantic segmentation is the basis forest-cover estimation, land-use investigation

and urban planning. Traditional manual labeling manner is quite time-consuming, therefore it is necessary to develop

automatic semantic segmentation methods.

Compared with common RGB natural scene images, some remote sensing sensors can provide images with

many continuous bands, called multi/hyper-spectral imagery (to avoid ambiguity we assume multispectral imagery

has more than 3 channels). The extra spectral information will definitely contribute to the semantic segmentation

problem. Thanks to the excellent performance of FCN methods [2], [6], researchers have begun to study the

semantic segmentation of multi-/hyperspectral remote sensing imagery based on FCN [7]–[10]. Generally, these

methods adopted the same idea: transfer learning [11]. They used networks that were pre-trained in a huge RGB

data set (ImageNet) for initialization, and used much smaller remote sensing data set for fine-tuning. Literatures [7],

[8] used the VGG-based FCN [2], [12] as the pre-trained model, and literatures [9], [10] were ResNet-based [13].

Since there is no ImageNet-level data set for remote sensing images, this transfer learning strategy is reasonable and

can avoid the overfitting problem to some extent. However, there is another critical issue that must be considered:

• Images in ImageNet only contains R-G-B bands, while multi/hyper-spectral images includes much more bands.

Then how to transfer the pre-trained networks in ImageNet to the multi/hyper-spectral task in an appropriate

way?

This is not a simple inputs-changing problem. According to the transfer learning theory, the former layers of a

network tend to learn the low-level and general features such as angles and edges, while the latter layers may learn

the high-level and specific features for different task [11]. Therefore transfer learning methods usually freeze or

fine-tune the former layers and retrain the last ones [14]. However, in the multi/hyper-spectral task the condition is

just opposite, which makes the usage of transfer learning not very reasonable. Although this problem looks small,

it has not been widely studied.

In this paper, we propose a new end-to-end deep learning model, COpy INitialization Network (CoinNet), for

multispectral imagery semantic segmentation. Our basic idea is to still initialize the first convolutional layer using

pre-trained parameters while keeping the input data structure unchanged. Firstly, generate a pre-trained semantic

segmentation network by ImageNet. Secondly, we redesign the structures of the input and the first convolutional

layers so as to adapt to the multispectral data. Then, the added layers’ parameters are initialized by the pre-trained

network using a copy based strategy. Finally, the whole network is fine-tuned in a multispectral data set.

The major advantage of the CoinNet is that it can make better use of the ideal parameters in the pre-trained

network, and thus the representation ability of the low-level features is significantly improved. The whole framework

is still based on the idea of transfer learning, whereas we can avoid the retrain process for the low-level features.

To validate the effectiveness of our network, we will publish the demo and the trained model in our homepage1.

1http://levir.buaa.edu.cn/Code.htm
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Fig. 1: The architecture of CoinNet. CoinNet is transferred from SegNet, which is also an encoder-decoder form.

The two boxes indicate our modifications.

II. COINNET

A. Problem Description

To transfer the ImageNet pre-trained networks to multi/hyper-spectral imagery semantic segmentation, there are

mainly two strategies: 1) Reducing the dimension to 3 by PCA (or similar) and then directly using the pre-trained

models [8]; 2) Using random initialization for the first layers and then training on the remote sensing data sets [10].

Both of these strategies may have some shortcomings. The former will result in spectral information loss. The latter

is actually trying to learn low-level features from the remote sensing data sets. However, because the remote sensing

data sets are generally too small, networks are difficult to learn good parameters and powerful features. Meanwhile,

the poor representation ability of the low-level features may harm the following high-level representation. Overall,

The learning of the first-layer parameters is a problem worthy of study for transfer learning.

B. Data

In this paper, we use RIT-18 [10], [15] multispectral data set for validation. Compared with other more popular

multi/hyper-spectral data sets, the main advantage of RIT-18 is that the training and testing sets are separated. This

is an excellent characteristic. Current hyperspectral data sets usually consist of a single image that is randomly

sampled for training and testing sets. Classification networks usually involve extracting spatial information from

neighboring pixels [8], [16], which is called “spatial information”. However, if the training/testing sets are randomly

sampled, the training data could contaminate the test data, which would artificially inflate classification performance
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[10], [15].

RIT-18 is a 6-band multispectral data set covering visible and near-infrared regions. Because the groundtruth

for testing set is not published, here we use the original validating set for testing. The size of training data is

9394×5642, and that of testing data is 8833×6918. Since 2 materials are not included in the testing set, there are

16 classes remaining for classification. More details about this data can be found from literature [15].

(a) (b) (c)

(d) (e) (f)

Fig. 2: A patch of the training set in different channels. (a) 490nm (b) 550nm (c) 680nm (d) 720nm (e) 800nm (f) 900nm. Although the

reflectivity presents some differences, their overall textures are similar.

C. Copy Initialization

Copy initialization is a strategy specially designed for the parameters (weights and bias) of the first convolutional

layer. Assume that Wpre = [w1,w2, · · · ,wi, · · · ,wn] is the weight of the first convolutional layer in a pre-

trained model. In CoinNet wi ∈ R3×3×3 and n = 64 (see Fig. 1 and Table I). Since the pre-trained network is

learnt from ImageNet which is a RGB data set, the kernel wi only includes 3 channels. However, multispectral

semantic segmentation task requires p-channel inputs, where p denotes the number of bands and {p ∈ N | p > 3}.

Let Wc
coin = [wc

1,w
c
2, · · · ,wc

i , · · · ,wc
n] denotes the weights of the first convolutional layer in CoinNet with

wc
i ∈ R3×3×6 and n = 64. Then we initialize wc

i by

wc
i = [

p/3︷ ︸︸ ︷
wi;wi; · · ·wi], (1)

where all the wi are stacked. If p is not divisible by 3, the remaining channels of wc
i can be initialized by the first

one or two channels of wi. In CoinNet, the inputs are 6 channels. Please note that the proposed copy initialization

strategy works well when the bands number is relatively large. In some multispectral data sets with p = 3, the copy

initialization strategy is unnecessary. We can stack two wi to construct the wc
i with size 3 × 3 × 6, as shown in

Fig. 1, box 1. Besides, another parameter, bias, is also transferred from the pre-trained model.
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TABLE I: The network configurations. The encoder layers are listed from top to bottom, and the decoder ones are adverse. The convolutional

layer parameters are denoted as “conv-〈receptive field〉-〈number of filters〉-〈number of convolutions〉”. The batch normalisation and ReLU

activation layers are not shown for brevity

Encoder ↓ Decoder ↑

softmax

Input (6-band image) conv3-16-1

conv3-64-2 conv3-64-1

maxpool upsample

conv3-128-2 conv3-128-2

maxpool upsample

conv3-256-3 conv3-256-3

maxpool upsample

conv3-512-3 conv3-512-3

maxpool upsample

conv3-512-3 conv3-512-3

maxpool upsample

The motivations of the copy initialization mainly include two aspects: 1) We think that the networks trained

in a large-scale data set (ImageNet) are much more powerful, and thus the corresponding parameters are more

optimal; 2) Moreover, although the reflectivity in different channels presents some differences, their overall textures

are similar, as shown in Fig. 2. CoinNet may ignore the color information represented by the pre-trained model,

but the texture and spatial information can be utilized. The copy initialization strategy could make full use of the

representative low-level features obtained by the pre-trained model, which is beneficial for the transfer learning

tasks.

D. Architecture and Transfer Learning

The architecture and configurations of CoinNet are shown in Table I. CoinNet is transferred from SegNet [6]

whose basis is VGG16 [12]. However, the proposed approach is applicable to many networks besides SegNet. Other

FCN models such as FCN-8s [2] and DeepLab [17] can also be improved by the proposed strategy. Here we take

SegNet for example.

According to Table I, CoinNet is composed of encoder-decoder pairs. An encoder includes several convolutional,

batch normalisation, ReLU layers as well as a maxpooling operation. The corresponding decoder has similar

components, where the maxpooling is replaced by an unsampling. The indices of maxpooling locations were stored

and passed to the decoder. The left column of Table I presents the encoding process, where totally 13 convolutional

layers are observed. Different from the original SegNet, the last convolutional layer of the decoders contains 16

filters, and correspondingly they will generate 16 label maps for the test images. Additionally, pro-processing

strategies such as Conditional Random Fields (CRFs) can also be used to improve CoinNet, but this is not our
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TABLE II: Hyper-parameters in CoinNet.

Hyper-parameters Values

Max-epochs 15

Batch size 12

Regularization coefficient (L2) 0.0001

Learning rate 0.01

focus.

In the training process, we first separate the input multispectral data into many patches. The size of the biggest

receptive field can provide guidance for the patch size. The filter size of CoinNet is 3×3 and the pooling window

is 2×2. Based on these configurations, the biggest receptive field is calculated as 285×285. In CoinNet we set the

patch size the same as the biggest receptive.

We conduct transfer learning on SegNet, and the multispectral data set is used for fine-tuning. The first and the last

convolutional layers are two focuses of our transfer learning based model. As discussed above, copy initialization

approach is used to improve the connection between input and the first convolutional layers. Furthermore, because

SegNet and CoinNet aim at different tasks, the last convolutional layer in the decoding process must be re-trained.

Therefore the weights and bias in this layer is randomly initialized. Stochastic gradient descent (SGD) and cross-

entropy loss are adopted for optimization.

CoinNet is a completely end-to-end model. Since the multispectral data set used here is not as small as hyper-

spectral ones, it is not necessary to freeze parameters in the earlier layers.

III. EXPERIMENTS AND DISCUSSION

A. Setups

In this section, we design comparison experiments to validate the following conclusions:

• Transfer learning is effective

• Our copy initialization approach is meaningful

• The proposed deep learning network outperforms traditional classifiers

The hyper-parameters in CoinNet are listed in Table II. This table may help readers reproduce our results. To

further verify the effectiveness of the proposed method, we will publish the demo and a trained network in our

homepage if this paper has the honor to be accepted.

B. Comparison Methods

We design three variations of SegNet for comparison:
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1) SegNet-RI: This is our self-built network which has the same architecture as SegNet. However, all the

parameters are randomly initialized (RI). In other words, SegNet-RI is completely trained in RIT-18 data set without

transfer learning.

Possible drawback: The network is trained in a small data set which may lead to overfitting.

2) SegNet-TL: This network shares the initialized parameters from SegNet which was trained in ImageNet.

Therefore, SegNet-TL is a standard transfer learning (TL) framework. However, because of the different image

forms between ImageNet and RIT-18, the filter size of the first convolutional layer in SegNet-TL is 3×3×6. In

SegNet-TL the weights and bias in this layer is randomly initialized.

Possible drawback: The low-level features may lack representation ability.

3) SegNet-TL-PCA: The difference between this network and SegNet-TL is that SegNet-TL-PCA firstly conduct

dimension reduction (from 6 to 3) on training and testing sets so as to adapt the inputs of SegNet. In this case the

parameters in the pre-trained SegNet can be directly transferred to SegNet-TL-PCA.

Possible drawback: Spectral information loss.

Besides, some classical methods are compared, i.e., support vector machine (SVM), K-nearest neighbor (k-NN)

and stacked convolutional autoencoders (SCAE). Note that SCAE is also a deep learning model.

(a) (b) (c)

(d) (e)

Fig. 3: Semantic segmentation maps by different networks. (a) The ground truth, (b) SegNet-RI, (c) SegNet-TL, (d) SegNet-TL-PCA, and (e)

CoinNet.

C. Results and Analysis

Fig. 3 displays the semantic segmentation maps of different networks. Due to the limited paper length the maps by

traditional methods are not shown. Generally, all these networks present acceptable results. These methods perform
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TABLE III: Semantic segmentation accuracies for RIT-18 data set (%).

Class Methods

SVM k-NN SCAE SegNet-RI SegNet-TL SegNet-TL-PCA CoinNet

Road Markings 51.0 65.1 37.0 71.0 63.1 21.7 85.1

Tree 43.5 71.0 62.0 79.2 77.7 71.7 77.6

Building 1.5 0.3 11.1 42.0 60.1 52.8 52.3

Vehicle 0.2 15.8 11.8 0.0 4.7 59.1 59.8

Person 19.9 0.1 0.0 0.0 0.0 0.0 0.0

Lifeguard Chair 22.9 1.0 29.4 0.0 0.0 0.0 0.0

Picnic Table 0.8 0.6 0.0 0.0 0.0 0.0 0.0

Orange Pad 15.2 14.6 82.6 0.0 0.0 0.0 0.0

Buoy 0.7 3.6 7.2 0.0 0.0 0.0 0.0

Rocks 20.8 34.0 36.0 76.3 96.9 89.3 84.8

Low Vegetation 0.4 2.3 1.1 1.0 12.5 1.3 4.1

Grass/Lawn 71.0 79.2 84.7 98.0 93.0 96.1 96.7

Sand/Beach 89.5 56.1 85.3 6.4 73.9 77.6 92.1

Water (Lake) 94.3 83.6 97.5 90.4 93.9 98.4 98.4

Water (Pond) 0.0 0.0 0.0 1.7 0.5 87.6 92.7

Asphalt 82.7 80.0 59.8 73.1 42.4 61.2 90.4

OA 61.3 66.1 67.4 67.5 77.0 81.8 88.8

AA 30.3 31.2 36.1 33.7 38.7 44.8 52.1

well when materials are conjoint to large areas. However, the results in some small-scale classes are unwarranted.

For example, class “Person” and “Buoy” are seldom correctly classified. This drawback is not difficult to explain:

After 5 times pooling the small patches can hardly be observed before upsampling. Since the spatial resolution of

RIT-18 is 4.7cm, a single “Person” may account for only dozens of pixels. The unsmooth edges are also found,

but they can be significantly improved by CRF or multi-scale operations. Overall, CoinNet is superior according to

the visible maps. SegNet-RI and SegNet-TL performs poor even in some large-scale classes such as “Pond”. This

comparison indicates that the initialization parameters in the earlier layers are important.

Table III shows the objective evaluation for different methods. Overall accuracy (OA) and average accuracy (AA)

are used for evaluation. The results of SVM, k-NN and SCAE are originally reported by literature [10]. Compared

with deep learning methods, traditional classifiers perform poor, especially in AA. SCAE and SegNet-RI slightly

outperform SVM and k-NN, but the gaps are not significant. Because SegNet-RI is randomly initialized, it may

suffer overfitting. By comparison, transfer learning based semantic segmentation networks (SegNet-TL, SegNet-TL-

PCA and CoinNet) have achieved 10-20% improvements. Such an apparent advantage has demonstrated that transfer

learning is a powerful strategy for small-scale classification problems such as multispectral semantic segmentation.

Although there is spectral information loss, SegNet-TL-PCA still presents about 5% advantages over SegNet-TL.
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This result also indicates the effectiveness of the initial parameters learnt from a large data set.

CoinNet achieves higher accuracies, especially in OA. This is because the “Sand” and “Asphalt” are better

classified, which account for a large area of the whole scene. However, several classes with very limited samples

are still missing. This is the common drawback of all the reported deep networks. Overall, CoinNet has apparent

advantage with sufficient training samples, but performs poor if the samples are limited.

IV. CONCLUSION

Transfer learning has become a popular approach in utilizing the powerful deep networks to various applications.

The basic assumption of transfer learning is that images in different tasks usually present similar low-level features,

and thus users only require to retrain the parameters in the last layers. However, in the multispectral imagery

semantic segmentation task, this assumption may not meet, since the first layer has to be randomly initialized and

completely retrained. In this paper, we propose a copy initialization strategy which could take full advantage of the

initial parameters pre-trained in a much larger data set. Based on this strategy we develop a new deep learning model,

CoinNet. From the experiments we can draw three conclusions about multispectral imagery semantic segmentation:

1) Deep learning is superior; 2) Transfer learning is promising; 3) The proposed copy initialization approach works

in some conditions. In our future work, we will further consider how to represent the color information in the

initialization process.
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