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Abstract

Deep learning-based methods have displayed promising performance for hyperspectral image (HSI) classification,

due to their capacity of extracting deep features from HSI. However, these methods usually require a large number

of training samples. It is quite difficult for deep learning model to provide representative feature expression for HSI

data when the number of samples are limited. In this paper, a novel simplified deep learning model, R-VCANet, is

proposed, which achieves higher accuracy when the number of training samples is not abundant. In R-VCANet, the

inherent properties of HSI data, spatial information and spectral characteristics, are utilized to construct the network.

And by this means the obtained model could generate more powerful feature expression with less samples. Firstly,

spectral and spatial information are combined via the rolling guidance filter (RGF), which could explore the contextual

structure features and remove small details from HSI. More importantly, we have designed a new network called

Vertex Component Analysis Network (VCANet) for deep features extraction from the smoothed HSI. Experiments

on three popular datasets indicate that the proposed R-VCANet based method reveals better performance than some

state-of-the-art methods, especially when the training samples available are not abundant.

Index Terms

Hyperspectral image classification, R-VCANet, limited samples, deep learning.

I. INTRODUCTION

Hyperspectral sensors could provide images containing hundreds of data bands with high spatial and spectral

resolution. Abundant spatial and spectral information turns hyperspectral image (HSI) into a powerful tool in many

fields such as geological prospecting [1], precision agriculture [2] and environment monitoring [3]. Hyperspectral

image classification is one of the key technologies in HSI processing. However, HSI classification is still challenging
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due to the complex characteristics of HSI data. The large number of spectral bands may bring noise to HSI, and the

high dimensionality of HSI may produce the Hughes phenomenon [4]. Therefore, using spectral signatures directly

may not be suitable for the task of HSI classification [5].

During the last decade, many feature extraction methods have been proposed to handle this problem. A popular

idea is reducing the dimension of HSI. In [6], principal component analysis (PCA) is discussed. Some non-linear

dimension reduction methods such as manifold learning [7], [8] are also utilized for HSI classification. In [9], Sun

et al. proposed a band selection method based on improved sparse subspace clustering. In [10], Persello et al.

presented a kernel-based feature selection method to obtain a subset of the original hyperspectral data. To further

improve the classification performance, many researchers have worked on spectral−spatial feature extraction. In

[11], the extended morphological profile was proposed to combine the spectral and spatial information. In [12],

spectral-spatial classification methods based on attribute profiles were surveyed. Li et al. developed a discontinuity

preserving relaxation strategy for HSI classification [13]. Khodadadzadeh et al. presented a spectral-spatial classifier

for HSI which specifically deals with the issue of mixed pixel [14]. A detailed overview of the spectral-spatial based

HSI classification is available in [15].

Recently, deep learning methods have achieved excellent performance in many fields such as data dimensionality

reduction [16] and image classification [17]. In 2014, deep learning method even achieved surpassing human-level

face recognition performance [18]. Deep learning methods aim at learning the representative and discriminative

features in a hierarchical-manner from the data. In [19], Zhang et al. provided a technical tutorial for the application

of deep learning in remote sensing. In [20], Chen et al. employed deep learning method to handle HSI classification

for the first time, where a stacked autoencoder (SAE) was adopted to extract the deep features in HSI. Based on

this work, some improved autoencoder-based methods were proposed, including stacked denoising autoencoder

[21], [22], stacked sparse autoencoder [23], convolutional autoencoder [24]. Research indicates that convolutional

neural network (CNN) could also provide effective deep features for HSI classification. Some promising works

were reported in [25], [26], [27], [28], [29]. However, deep learning-based methods usually need to train networks

with complex structure, leading to time-consuming training process. In [30], Chan et al. proposed a simplified

deep learning baseline called PCA network (PCANet). Compared with CNN, PCANet is a much simpler network.

PCA filters are chosen as the convolution filter bank in each layer, a binary quantization is used as the nonlinear

layer, and feature pooling layer is replaced by the block-wise histograms of the binary codes. Though simple,

experiments indicate that PCANet is already quite on par with, and often better than, state-of-the-art deep learning-

based features in many image classification task [30]. In [31], Pan et al. developed a simplified deep learning model

for HSI classification based on PCANet.

However, deep learning-based methods may perform poor when the number of training samples is small [29]. In

[31], the authors considered that one of the further works for deep learning-based HSI classification is reducing the

required number of training samples. Generally, tens of thousands to tens of millions training samples are necessary

to get a deep learning model with powerful feature representation capability [32], but this is nearly impossible

for the task of HSI classification. According to the authors’ knowledge, when training samples are limited, some
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state-of-the-art traditional methods still outperform deep learning-based ones in several popular datasets. Though

deep learning-based methods are promising, the problem of limited samples must be overcome.

In this paper, we propose a novel deep learning framework based on rolling guidance filter and vertex component

analysis network (R-VCANet for short), which is able to achieve high classification accuracy with much less

training samples than traditional deep learning-based methods. The key ideas of our work contain the following

two aspects: First, take full advantage of the spatial information of hyperspectral data; Second, construct a network

model considering the physical characteristics of HSIs. Based on the above two strategies, the R-VCANet could

achieve satisfying classification accuracy while significantly reduce the number of training samples required.

Different from some computer vision tasks, in HSI classification, the spatial relativity between neighboring pixels

could provide discriminative classification information. In this paper, we adopt an effective edge-preserving filter,

rolling guidance filter (RGF) [33], to make full use of the spatial structure information. RGF is usually used to

remove noise and small details in an image, while the overall structure of the image is preserved. Based on RGF,

the spatial context information could be successfully exploited. RGF has been used by some recent studies in

different ways. In [34], guidance filter is used to tackle the probabilistic map of SVM. In [35], Xia et al. combined

independent component analysis and RGF via an ensemble strategy (E-ICA-RGF). In this paper, we utilize RGF to

smooth the original HSI directly, and the result is considered as the input of the following steps. The RGF could

not only reduce the noise in HSI but also extract the spatial structure information. Therefore, the smoothed HSIs

by RGF could provide a powerful basis for extracting more representative features.

Moreover, we design a simplified deep learning model, VCANet, based on the work of vertex component analysis

(VCA) [36] and PCANet [30]. VCA is a popular endmember extraction method, which is usually used to find pure

materials in HSI. In VCANet, we first extract the pure materials signatures (such as alfalfa, wheat and bare soil)

by VCA. Then, instead of collecting patches around pixels, we directly use extracted endmembers by VCA to

generate the convolution filter bank and train a muti-layer network for HSI classification. The major motivation

of this strategy is that we want to construct a network utilizing some spectral characteristics of HSI. PCANet is

originally designed for single image classification, however, the target of HSI classification is giving a label for

each pixel. Therefore, we improve the PCANet via adding spectral characteristics of HSI.

Combining RGF and VCANet, the proposed R-VCANet could provide more representative features with limited

training samples. The major novelty of our work is summarized as follows.

• We propose a simplified deep learning-based framework, R-VCANet, which achieves promising performance

in HSI classification with limited training samples. The proposed R-VCANet could contribute to the application

of deep learning methods in HSI classification.

• We conduct a spectral-spatial strategy to take full use of the spatial structure information and improve the

quality of the input data.

• A spectral characteristics-based network, VCANet, is constructed to extract more representative features.

The reminder of this paper is organized as follows. In Section II, we describe the proposed R-VCANet in details.

Experimental results and the discussion are presented in Section III. We conclude this paper in Section IV.
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Fig. 1: Feature extraction by R-VCANet.

II. R-VCANET FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Recently, deep learning-based methods have achieved promising performance in HSI classification [20]. However,

a large number of training samples have to be used. Here, we develop the R-VCANet where only limited samples

are necessary. R-VCANet is a simplified deep learning model, because the network structure is much simpler than

some popular convolutional deep learning models such as CNN. In CNN, users have to utilize a large number of

training samples to learn the parameters in convolution kernels. However, in R-VCANet, the convolution kernels

are obtained by VCA. And this is also one of the most important reasons why only limited samples are necessary in

R-VCANet. The R-VCANet contains two parts: RGF-based HSI smoothing and VCANet-based feature extraction.

RGF is used for utilizing the joint spectral-spatial information, and VCANet is proposed to extract discriminative

features. The flowchart of R-VCANet-based HSI feature extraction is shown in Fig. 1. In this section, we first

describe the process of HSI smoothing by RGF, then, present the detailed structure of VCANet. At last, the HSI

classification process by R-VCANet is revealed.

A. RGF-based smoothing

RGF [33] is a recently proposed edge-preserving filter, which could smooth away small textures while retaining

spatial structure information. In HSIs, the neighboring pixels usually have strong relationship. Studies have shown

that edge-preserving filters are effective approaches to utilize the spatial information for the task of HSI classification

[34], [35]. In R-VCANet, we smooth each band of a HSI based on RGF so as to remove the spatial variability and
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(a) (b) (c) (d) (e)

Fig. 2: Some results of RGF. (a) Input image. Indian Pines dataset, band 10. (b) Guidance image. (c) T=1. (d)

T=4. (e) T=8.

image noise.

RGF is developed from guidance filter, which is based on a local linear model. The guidance filter assumes that

in a local window ωk with size (2r+ 1)× (2r+ 1), the output Q of a filter can be expressed by a linear transform

of a guidance image:

Qi = akGi + bk,∀i ∈ ωk (1)

where i is one of a pixel in the window ωk, G is a guidance image, and ak and bk are coefficients of the linear

transform. Theoretically, any image can serve as a guidance image. Here, to improve the computational efficiency,

we use the first principal component of the original HSI by PCA decomposition as the guidance image. ak and bk

can be obtained by minimize the following energy function:

E(ak, bk) =
∑

((akGi + bk − pi)2 + εa2k) (2)

where ε is a parameter controlling the degree of blurring, and p denotes the input image. Running the same filtering

on the output image Q (rolling), we can get the result of RGF. Some results of RGF are displayed in Fig. 2, where

T denotes the rolling times.

In R-VCANet, we carry out the RGF 30 times for each band of the HSI data, and the results are considered as

the input of the following VCANet. The parameter analysis is presented in the experimental section. By this means

the spatial information of HSI is extracted, and the quality of input data could be improved.

B. VCANet-based feature extraction

VCANet is the key point of the proposed R-VCANet. Based on VCANet, we could extract more representative

features from the smoothed HSI data. VCANet, which is also a simplified deep learning model, is developed from

PCANet [30]. However, the PCANet is originally designed for single image classification (2-D data), rather than

spectral vector classification (1-D vectors). Furthermore, in PCANet, the convolutional kernels are obtained from

the principal components of sliding patches, which may not reflect the spectral characteristics of HSI. In the task

of HSI classification, a basic assumption is that most of the pixels are not mixed. In other words, there are pure
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materials (also called endmembers) could be observed in the image. Therefore, we attempt to utilize the materials

spectra extracted from the HSI data to construct a new network. VCA is a popular endmember extraction method

[36]. In VCANet, we replace the convolutional kernels in PCANet with the spectra extracted from the HSI by

VCA, thus the obtained network could better embody the particularity of HSI classification. Here, we first give a

brief description about PCANet and VCA, and then introduce how VCANet works.

Algorithm 1 R-VCANet for HSI feature extraction
Input Layer

RGF-based smoothing

Input: HSI data

1. Guidance filter on HSI data by Eq.(1)

2. Rolling T times

3. Data imaging by Eq.(4)

Output: Single images as samples

Convolution Layer

VCANet-based feature extraction

Input: Smoothed HSI data and imaged samples

1. Extract endmembers by VCA

2. Generate convolution kernels by Eq.(4)

3. Construct the structure of the network

Output: Convolution network

Output Layer

Feature expression

Input: Samples and the convolution network

1. Binary hashing based on Eq. (7)

2. Histogram features based on Eq. (8)

Output: Deep feature expression for each sample

1) PCANet: PCANet is a cascaded linear network, where four layers could be observed: The input, two

convolution and output layers. The input layer contains training or testing samples. Note that all the samples

are single images. Let I denote an input 2-D image, W1
l be the lth filter which is obtained by PCA decomposition,

then the output of the first convolution layer can be expressed by

Il1
.
= I ∗W1

l , l = 1, 2, . . . , L1, (3)

where ∗ denotes 2-D convolution, and L1 is the number of filters in the first convolution layer. Using similar

strategy we can get the output of the second convolution layer. If there are L2 filters in the second convolution

layer, then for each input image I, totally L1 × L2 output images can be generated by the network. Though more
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convolution layers are also available, in [30] the authors suggested that two layers were enough to achieve satisfying

performance.

The output layer is composed of binary hashing for all the outputs in the second convolution layer, followed by a

histogram feature extraction operation. The histogram feature is the final feature representation for an input image.

At last, a linear SVM [37] is used for classification.

2) VCA: VCA has been widely used in endmember extraction and hyperspectral unmixing [36], [38]. Endmem-

bers refer to the pure materials’ spectra in HSIs, and endmember extraction is a process of finding the spectra of

all the endmembers. The VCA algorithm begins with a randomly selected endmembers set, and then iteratively

projects the HSI data onto a direction which is orthogonal to the subspace spanned by the selected endmembers.

The extreme of the projection corresponds to a new endmember. The algorithm iterates for each endmember until

all of them are determined.

3) VCANet: VCANet is developed from PCANet, which also contains four layers: The input, two convolution

and output layers. Here, we improve it by redesigning the input and the two convolution layers. In PCANet, the input

samples must be single images, and the convolution kernels are obtained by PCA decomposition for many sliding

patches. However, compared with natural image classification, there are two special properties for HSI classification:

First, the samples are 1-D spectral signatures, rather than 2-D images; Second, the spectral characteristics in HSI

could contribute to the classification results. In VCANet, two strategies are proposed to tackle the above two

problems respectively: data imaging and VCA-based kernels construction.

Data imaging refers to transform a spectral vector to an image. For a pixel spectrum x, the data imaging operation

can be expressed by

X = matm×m(x) ∈ Rm×m, (4)

where matm×m(x) is a function that maps x to a matrix X, and m×m denotes the size of X. We set the height

and width the same only for convenience. Data imaging would not destroy the physical characteristics of spectra.

Instead, the spectral differences between pixels could be represented by different texture of each image.

More importantly, we replace the convolution kernels in PCANet by the endmembers spectra. VCA algorithm is

conducted on the smoothed HSI data, and the extracted endmembers are used to construct the convolution kernels

in the convolution layer. Let Xi denotes the ith imaged spectrum in a hyperspectral image. We define

A1 = [a1,a2, · · · ,aL1
] ∈ Rp×L1 , (5)

where A1 denotes the endmembers matrix obtained by VCA in the first convolution layer, al ∈ Rp×1 is the lth

endmember, p is the number of bands, then the lth convolution kernel can be expressed by

W1
l
.
= matk×k(ml) ∈ Rk×k, (6)

where k×k is the kernel size. Using the imaged endmembers as the convolution kernel directly is not appropriated,

because in this case the size of convolution kernel is the same as the input data. Therefore, a dimension reduction

strategy is necessary. In [39], the authors have shown that averaging method performed well in removing redundant
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Fig. 3: The convolution kernels learned by VCANet from Indian Pines dataset.

spectral information. Motivated by this, we reduce the spectral dimension by averaging fusion. After the dimension

reduction, we also conduct data imaging based on Eq. (4) so as to generate convolution kernels. Then, the obtained

kernels are used to convolve the smoothed as well as imaged HSI data. The same strategy is conducted in the next

convolution layer.

Similar to PCANet [30], in the output layer, the binary hashing and histogram feature are also used in VCANet

to obtain the final feature representation for each pixel. In the second convolution layer, there are totally L1 input

images, each of which generates L2 outputs. That is to say, there are L1 groups output images. We define Oj

(j = 1, 2, · · · , L1) as the jth group. For each pixel, viewing the vector of L2 binary bits as a decimal number, we

can convert each Oj to a single image:

Tj .
=

L2∑
`=1

2`−1H(Oj), (7)

where H(·) is a Heaviside step function whose value is 1 for positive inputs and 0 otherwise, Tj is an integer-valued

image with pixel value in the range [0, 2L2 -1]. Partitioning each Tj into B blocks, then we extract the histogram

feature in each block and combine all the B histograms into a single vector, denoted by Bhist(Tj). At last, the

final feature can be expressed by:

f
.
= [Bhist(T1),Bhist(T2), · · · ,Bhist(TL1)]. (8)

After the feature extraction process by VCANet, each pixel x in a hyperspectral image is transformed it into a new

feature space, and represented by f .

C. R-VCANet for classification

The overall structure of the R-VCANet is shown in Fig. 1. The spectral and spatial information are combined in

the input layer. The convolution layers, where convolution kernels are extracted from the smoothed HSI by based

on VCA, are used for deep feature extraction. And the final feature representation is obtained in the output layer.

At last, a linear SVM with regularization parameter set as 1 is conducted to get the classification results. Note that

the linear SVM is also adopted in [30]. We also give a pseudocode to describe the structure and working process

of the proposed R-VCANet, as shown in Algorithm 1.

III. EXPERIMENTAL RESULTS

Experimental results are shown in this section. We first give an introduction about the datasets used in experiments.

Then, the influence of parameters in R-VCANet is analyzed. Finally, the experimental results are shown and

discussed, by comparing with some related state-of-the-art methods. Three widely used metrics, namely, overall
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Three test datasets and corresponding groundtruths. (a) False color composite image (R-G-B=band 50-27-17)

for Indian Pines dataset. (b) The groundtruth image with 16 land-cover classes. (c) False color composite image

(R-G-B=band 10-27-46) for Pavia University dataset. (d) The groundtruth image with 9 land-cover classes. (e)

False color composite image (R-G-B=band 28-9-10) for KSC dataset. (f) The groundtruth image with 13 land-cover

classes.

accuracy (OA), average accuracy (AA) and Kappa coefficient (κ) are adopted as the evaluation criteria. Three

popular HSI datasets are used to evaluate the performance of R-VCANet and some state-of-the-art methods: Indian

Pines, Pavia University and Kennedy Space Center (KSC)1. Specially, because we try to handle the problem that

1All of them are available online: http://www.ehu.eus/ccwintco/index.php

?title=Hyperspectral Remote Sensing Scenes
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(a) (b) (c) (d) (e) (f)

Fig. 5: Classification results by different methods on Indian Pines dataset. (a) IFRF (b) EPF-G (c) E-ICA-RGF (d)

NSSNet (e) R-PCANet and (f) R-VCANet.

(a) (b) (c) (d) (e) (f)

Fig. 6: Classification results by different methods on Pavia University dataset. (a) IFRF (b) EPF-G (c) E-ICA-RGF

(d) NSSNet (e) R-PCANet and (f) R-VCANet.

lots of training samples are essential in deep learning-based methods, here we only randomly selected 10% (Indian

Pines), 1% (Pavia University) and 3% (KSC) of all labeled pixels in each class for training, and the others are

used for testing. The detailed information about the number of samples is shown in Table I-III. Although this ratios

may be still large for some traditional methods [40], it has been reduced significantly, compared with some deep

learning-based methods such as SAE-LR [20], DBN-LR [41] and NSSNet [31], where half of all labeled pixels are

used for training. We also implement statistical evaluation to verify that the improvements in results are significant.

In addition, some important parameters, rolling times T , kernels number K and kernels size n, are set as 30, 8 and

7, respectively.

A. Datasets

• Indian Pines dataset was acquired by airborne visible/infrared imaging spectrometer (AVIRIS) in Northwestern

Indiana, with 145×145 pixels size and 20m spatial resolution. The wavelength ranges from 0.4 to 2.5 µm. The

bands covering the region of water absorption are removed from this image, and 200 spectral bands remain. The

groundtruth data are composed of 10249 labeled pixels which classified into 16 classes. Fig. 4(a)(b) provide
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(a) (b) (c)

(d) (e) (f)

Fig. 7: Classification results by different methods on KSC dataset. (a) IFRF (b) EPF-G (c) E-ICA-RGF (d) NSSNet

(e) R-PCANet and (f) R-VCANet.

a false color composite image and the groundtruth for this data.

• Pavia University image was collected by reflective optics system imaging spectrometer (ROSIS-3) sensor over

the city of Pavia, Italy. The size of this image is 610×340 with 1.3m spatial resolution, and 103 bands are

preserved after removing the noise bands. There are totally 42776 labeled pixels available in the ground

truth, containing 9 different classes. A false color composite image and the groundtruth image are shown in

Fig. 4(c)(d). Compared with Indian Pines dataset, this dataset have more labeled samples and higher spatial

resolution.

• Kennedy Space Center (KSC) image was collected by AVIRIS in 1996. It contains 176 bands after removing

water absorption and low SNR bands, ranging from 0.4 to 2.5 µm wavelength. The KSC data have 18m spatial

resolution and 512×614 pixels size. Totally 5211 labeled pixels belonging to 13 land-cover classes are observed

in the groundtruth image. Fig. 4(e)(f) give a false color composite image and the groundtruth for this data.

B. Parameter Analysis

In R-VCANet, the number of training samples is an important concern. We present some experiments about

the effect of training samples. Furthermore, since our method is developed from PCANet, all the parameters in
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PCANet are also observed in R-VCANet. However, in [30], the authors have provided a detailed analysis about

the parameters in PCANet, and demonstrated that the influence of different parameters is limited. Therefore, we

mainly focus on the discussion about the particular parameters in R-VCANet: the rolling times T , the number of

convolution kernels K and the kernels size n. In this section, OA or κ is selected as the metric. All of the results

here are obtained by the average value of running 30 times.

1) Training samples: Deep learning-based methods could achieve excellent performance when training samples

are abundant. However, in HSI classification, the training samples are limited. In [31] and [41], 50% of all labeled

pixels are selected as training samples.

Fig. 8 shows the influence of training samples on Indian Pines dataset. We use Indian Pines dataset here because

the number of training samples used in this dataset is larger than the other, so it is more easy to depict the

tendency. R-VCANet, IFRF and E-ICA-RGF present the best performance among all the compared methods, so

they are displayed in Fig. 8. This results are obtained by the average value of 30 times running. We note that all

of them have achieved above 92% κ with only 4% labeled pixels for training. When the ratio of training samples

is below 10%, the R-VCANet slightly outperforms the others. Continue increasing the number of training samples

could further improve the accuracies, but it is not obvious. Therefore, we may conclude that 10% is enough to

learning a powerful classification model for Indian Pines dataset. Fig. 8 indicates that compared with traditional

deep learning models the R-VCANet could achieve good results with less samples.

2) Rolling times: RGF is the first step of R-VCANet. More rolling times could generate smoothed data, as

depicted in Fig. 2. However, too many rolling times may lead to information loss, as well as the increasing

of computing cost. Therefore, selecting an appropriate rolling times T is necessary. Fig. 9 shows the influence

of rolling times on AA in the three datasets. We can see that there is a significant increase after using RGF

(T = 1 − 10). When T is above 10, the AA in all the three datasets tend to keep stable. However, there is still

1% around improvement can be observed when T is set as 30. Though more rolling times may contribute to better

results, the improvement is slight. Therefore, we may draw the conclusion that T = 30 is an available setting, since

continuing increasing T contributes little to the accuracies.

3) Kernels number: The number of convolution kernels could also affect the final results. According to the

structure of the R-VCANet, more convolution kernels could generate higher dimensional features and higher

computing complexity. Different from other parameters, there is not a sharp increase at first in Fig. 10. Instead,

it is observed that the accuracies keep slow growth until the kernels number is up to 6. Subsequently, the three

metrics seem stable, and only 0.5% around variation could be observed. Continuing adding convolution kernels

could slightly contribute to the results, but the computing cost, especially for RAM, will be unacceptable. Therefore,

in R-VCANet, we set the number of convolution kernels as 8.

4) Kernels size: After extracting the endmembers by VCA, we should implement dimension reduction so as to

obtain the convolution kernels. Here, we set the kernels size from 3×3 to 9×9 to analyse the difference, as shown

in Fig. 11. We note that after a sharp increase at from 3×3 to 4×4, the values of κ present steady tendency. Even

when the kernel size is set as 3×3, the κ are still above 94%. Since there are only 103 bands available in Pavia
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Fig. 8: The influence of training samples number on the Indian Pines dataset.
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Fig. 9: The influence of rolling times on the three datasets.

University dataset, the convolution operation does not work if the kernels size were too large. This experiment

indicates that kernels size is not an important impact factor in R-VCANet. Actually, from these experiments we

may come to a conclusion that the network parameters have little influence to the final classification results.

C. Compared Methods

We compare the R-VCANet with some related and state-of-the-art HSI classification methods: IFRF [39], EPF-

G [34], E-ICA-RGF [35], SAE-LR [20] and NSSNet [31]. All the compared methods were designed for HSI

classification, and were proposed in recent years. IFRF is a classical method where spatial and spectral information

is combined via image fusion and recursive filtering. EPF-G is a joint spectral-spatial HSI classification method,

where edge-preserving filters (guidance filter) are used to extract the spatial structure information. E-ICA-RGF

is a recently developed HSI classification algorithm where RGF is introduced for the first time. SAE-LR is a

representative deep learning-based HSI classification method. Note that because deep learning-based methods may
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Fig. 11: The influence of kernels size on the three datasets.

perform poor when training samples are not enough, in the comparison experiments the number of training samples

in SAE-LR is set as 60% of all labeled pixels for indian pines dataset. SAE-LR are not compared in the other

datasets, because the training samples are too small. NSSNet is also a simplified deep learning model which has

presented promising performance. Furthermore, since the major contribution of the proposed method is the VCANet

which is developed from PCANet, to verify its effectiveness, we supplement another experiment: using the results of

RGF and the original PCANet [30] (R-PCANet for short). We adopt the default parameters of the compared methods

which were presented in the corresponding references. The number of training sample of the above methods (except

SAE-LR) is set as 10%, 1% and 3% of all labeled pixels for Indian Pines, Pavia University and KSC datasets,

respectively.
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TABLE I: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON INDIAN PINES DATASET.

Class Samples Methods

Train Test IFRF EPF-G E-ICA-RGF SAE-LR NSSNet R-PCANet R-VCANet

Alfalfa 5 41 96.00±2.63 95.85±11.2 98.66±2.07 94.79±2.55 48.94±12.6 93.00±5.11 98.94±1.65

Corn-notill 143 1285 95.29±2.13 93.95±3.08 95.78±1.97 90.41±0.94 83.58±1.87 90.32±1.92 95.34±1.68

Corn-mintill 83 747 96.03±2.64 96.25±2.95 95.93±1.98 87.08±1.14 79.88±3.51 91.63±2.72 96.17±1.52

Corn 24 213 94.82±3.75 67.00±9.15 99.27±1.32 89.32±3.60 76.80±6.18 89.82±4.85 97.38±2.87

Grass-pasture 48 435 97.77±2.90 98.17±1.25 97.67±1.62 97.31±1.63 92.68±2.46 93.54±2.43 97.80±1.65

Grass-trees 73 657 98.78±0.58 97.97±1.12 98.74±0.68 96.85±0.96 99.15±0.55 99.11±0.61 99.83±0.17

Grass-pasture

-mowed
3 25 96.18±12.2 100.0±0.00 99.28±2.17 78.57±0.01 62.80±17.7 90.80±8.92 96.00±5.35

Hay-windrowed 48 430 100.0±0.00 99.99±0.04 99.93±0.13 99.82±0.42 99.95±0.11 99.28±0.73 99.98±0.05

Oats 2 18 90.52±13.5 99.14±3.41 97.62±6.31 72.21±9.29 59.25±16.0 89.07±13.2 96.29±6.41

Soybean-notill 97 975 94.97±1.85 80.85±4.36 96.25±2.17 92.79±1.14 82.86±2.18 89.53±2.05 96.13±1.49

Soybean-mintill 246 2209 98.11±1.27 95.32±2.08 95.80±1.51 93.95±0.65 88.87±1.21 94.18±1.16 98.71±0.76

Soybean-clean 59 534 96.79±2.02 87.23±6.66 95.61±1.60 84.92±3.65 84.76±2.89 92.13±2.72 96.90±1.74

Wheat 21 184 96.90±2.42 100.0±0.00 99.73±0.44 98.75±0.00 99.34±0.48 98.85±0.72 99.58±0.42

Woods 127 1138 99.90±0.32 99.25±0.92 98.99±0.75 97.31±0.16 98.07±0.81 98.99±0.57 99.83±0.14

Buildings-Grass

-Trees-Drives
39 347 94.90±3.27 78.80±6.70 99.35±0.45 69.39±2.63 71.38±3.78 89.70±3.58 98.58±1.20

Stone-Steel-

Towers
9 84 95.82±5.74 87.36±5.49 99.42±3.14 97.46±1.24 93.13±4.49 96.34±2.23 99.08±1.11

OA(%) 97.21±0.44 92.43±1.18 97.00±0.43 92.42±0.27 88.22±0.50 93.86±0.47 97.90±0.32

AA(%) 96.42±1.29 92.32±1.27 98.01±0.54 90.06±0.52 82.59±1.68 93.52±1.06 97.91±0.58

κ×100 96.78±0.51 91.33±1.35 96.54±0.50 91.34±0.30 86.54±0.57 93.01±0.53 97.60±0.37

D. Results and Discussion

Fig. 5-7 present the visual results of all the compared methods. Though some mistakes are still observed, the

overall performance of R-VCANet is good. Table I-III display the objective evaluation of the proposed and compared

methods in the three datasets. Three popular metrics, OA, AA and κ, are used to give quantitative evaluation for

different methods.

1) Results on Indian Pines dataset: In this dataset, all the compared methods have shown close results, and

the R-VCANet outperforms other methods slightly. Because the number of training samples in this dataset is

relatively large, this results indicate that though R-VCANet is a simplified deep learning model, it still possesses the

most important characteristics of traditional deep learning methods: Abundant training samples will lead to better

performance. Moreover, our method has shown better performance than SAE-LR, while the number of training

samples used in R-VCANet is just 1/6 of that used in SAE-LR. Experiments on this dataset demonstrate that the

R-VCANet could reduce the required samples effectively, compared with other deep learning-based methods.
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TABLE II: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON PAVIA UNIVERSITY DATASET.

Class Samples Methods

Train Test IFRF EPF-G E-ICA-RGF NSSNet R-PCANet R-VCANet

Asphalt 66 6565 91.47±3.27 97.35±1.94 92.59±3.22 95.22±1.03 90.28±2.05 94.73±1.78

Meadows 186 18463 98.98±0.45 98.54±0.77 97.03±2.32 98.62±0.47 98.58±0.76 99.71±0.19

Gravel 21 2078 87.18±4.81 93.19±6.24 93.12±2.75 73.82±4.51 84.68±5.04 89.33±5.25

Trees 31 3033 88.81±8.17 87.48±10.1 91.77±1.60 90.41±1.77 89.88±2.28 90.38±3.04

Painted metal sheets 13 1332 99.73±0.43 96.77±3.27 99.04±0.60 99.85±0.13 99.75±0.32 99.89±0.15

Bare 50 4979 94.68±4.09 83.85±8.33 97.38±2.11 74.63±4.21 88.04±3.64 96.81±2.21

Bitumen 13 1317 90.19±3.67 88.23±9.07 97.68±1.30 86.09±3.42 89.25±6.64 93.68±3.41

Self-Blocking Bricks 37 3645 85.19±4.82 91.01±3.53 94.96±2.02 88.83±3.48 86.79±4.44 95.09±1.79

Shadows 9 938 77.24±10.5 99.06±0.86 91.14±2.43 97.10±1.99 95.13±3.15 97.06±2.47

OA(%) 93.73±1.46 93.86±1.76 95.59±1.10 92.19±0.83 93.37±0.87 96.77±0.91

AA(%) 90.38±2.35 92.83±1.95 94.97±0.58 89.40±1.19 91.38±1.34 95.19±1.29

κ×100 91.74±1.89 91.96±2.25 94.17±1.43 89.56±1.13 91.21±1.16 95.71±1.21

TABLE III: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON KSC DATASET.

Class Samples Methods

Train Test IFRF EPF-G E-ICA-RGF NSSNet R-PCANet R-VCANet

Scrub 20 741 97.71±4.19 99.23±1.47 98.17±1.96 98.07±1.29 97.74±1.56 99.36±0.74

Willow swamp 6 237 98.59±5.10 99.29±1.65 96.67±3.60 92.03±6.96 80.24±9.58 94.08±8.70

CP hammock 10 246 97.05±7.43 97.33±4.52 96.15±4.56 85.48±8.99 89.28±5.63 96.35±2.73

Slash pine 5 247 97.67±3.78 85.67±10.9 82.61±10.6 54.30±14.4 78.04±6.98 87.84±9.64

Oak/Broadleaf 3 158 92.41±8.55 88.46±14.8 89.99±7.56 58.93±11.2 77.00±6.50 90.51±9.66

Hardwood 7 222 85.95±11.2 92.79±10.6 96.47±3.57 47.71±14.0 71.44±9.19 93.42±4.89

Swamp 4 101 83.70±6.02 77.05±13.8 97.82±2.90 66.76±20.6 86.79±18.3 99.57±1.66

Graminoid marsh 13 418 93.49±8.21 87.77±10.8 93.45±6.82 85.86±6.15 94.73±5.21 98.96±1.55

Spartina marsh 19 501 99.49±2.74 95.63±5.28 97.34±4.18 97.62±3.31 98.55±2.10 97.97±4.81

Cattail marsh 16 388 100.0±0.00 95.16±7.29 99.36±1.17 98.87±1.07 95.11±2.84 99.97±0.10

Salt marsh 19 400 94.85±5.94 96.52±4.21 98.38±1.81 91.70±4.70 97.38±3.08 99.62±0.80

Mud flats 13 490 90.19±13.5 97.24±5.14 96.01±3.10 90.83±5.02 94.78±3.86 99.44±0.73

Water 21 906 100.0±0.00 99.98±0.08 100.0±0.00 100.0±0.00 99.76±0.44 100.0±0.00

OA(%) 95.70±2.34 94.96±2.22 96.69±0.99 89.14±2.60 93.21±0.81 97.90±0.66

AA(%) 95.40±1.54 93.24±3.08 95.57±1.15 82.17±4.32 89.30±1.79 96.70±1.10

κ×100 95.21±2.60 94.38±2.48 96.32±1.10 87.87±2.92 92.44±0.91 97.66±0.74

January 19, 2017 DRAFT



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 17

R-VCANet IFRF E-ICA-RGF

K
ap

pa
 (

%
)

96

97

98

(a)

R-VCANet IFRF E-ICA-RGF

K
ap

pa
 (

%
)

88

90

92

94

96

(b)

R-VCANet IFRF E-ICA-RGF

K
ap

pa
 (

%
)

92

94

96

98

100

(c)

Fig. 12: Box plot of κ of different methods on (a) Indian Pines, (b) Pavia University and (c) KSC datasets. The

center line is the median value, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the

most extreme points, and the abnormal outliers are plotted by “+”.

2) Results on Pavia University dataset: 1% of all labeled pixels are used for training in this dataset. Samples

imbalance still exists, which lead to the situation that OA is higher than AA in all the methods. R-VCANet surpasses

NSSNet by 4%-5% percentage in all the three metrics. SAE-LR method is removed in this experiment, because it

works poor with such few training samples. Compared with three traditional methods (IFRF, EPF-G and E-ICA-

RGF), R-VCANet achieves about 1% advantage in OA, and more in AA and κ. This results may indicate that

compared with some state-of-the-art methods the proposed model is also predominant.

3) Results on KSC dataset: Only 156 samples are used for training in this dataset, which is the least among all

of the three. However, the R-VCANet works well. IFRF and E-ICA-RGF present close performance to R-VCANet,

but more than 1.5% gap could be still observed. In addition, the accuracy for each class is important as well to

judge on the performance of the proposed method, and we can see that there are only several training samples in

some classes (e.g., Swamp and Oak). Except R-VCANet, all the other compared methods have shown lower than

85% accuracy in one or several classes. By comparison, the lowest accuracy of R-VCANet is 87.84% in Slash pine,

and all the other classes achieve higher than 90% accuracy. Furthermore, comparison with R-PCANet could verify

the effectiveness of the proposed feature extraction strategy, VCANet. And similar results could also be observed

in the other two experiments.

4) Statistical evaluation about the results: To further validate whether the observed increase in κ is statistically

significant, we use paired t-test to show the statistical evaluation about the results. T-test is popular in many related

works [20], [41], [31]. We accept the hypothesis that the mean κ of R-VCANet is larger than a compared method

only if Eq. (9) is valid:
(a1 − a2)

√
n1 + n2 − 2√

( 1
n1

+ 1
n2

)(n1s21 + n2s22)
> t1−α[n1 + n2 − 2], (9)

where ā1 and ā2 are the means of κ of R-VCANet and a compared method, s1 and s2 are the corresponding

standard deviations, n1 and n2 are the number of realizations of experiments reported which is set as 30 in this
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paper. E-ICA-RGF and IFRF are selected for evaluation, because they present the closest results to R-VCANet.

Paired t-test shows that the increases on κ are statistically significant in all the three datasets (at the level of 95%),

and it can be also observed in Fig. 12.

Overall, the experiments on the three popular datasets could imply that the proposed method is an effective deep

learning-based HSI classification method, while only limited training samples are required.

IV. CONCLUSION

Deep learning models have been discussed in recent research for the task of HSI classification. These methods

can extract the deep feature from original HSI data, and have presented promising performance. However, to achieve

satisfying results, a large number of training samples are necessary. In this paper, a simplified deep learning model,

R-VCANet, is proposed to overcome this problem. We utilize the inherent properties of HSI data, namely spatial

contextual information and spectral characteristics, to improve the feature expression capacity of the network.

The R-VCANet contains four layers: The input layer, two convolution layers and the output layer. In the input

layer, RGF is used to combine the spectral and spatial information of the original HSI data. Based on the result of

RGF, we design the convolution layers to explore the deep information in the HSI data. At last, an output layer is

used to determine the feature expression for each pixel.

We have conducted some experiments on three popular datasets for parameters analysis and comparison with

other methods. We may conclude based on the experimental results that the R-VCANet is a promising approach to

handle the HSI classification task with limited training samples. Moreover, the parameters analysis and discussion

indicate that the R-VCANet is not very sensitive to parameters variation.

Although the R-VCANet has much simpler structure than classical convolutional deep learning model, it is still

a time-consuming model, compared with some traditional methods. In the future work, we will focus on further

simplifying the network structure, at the same time, improving the classification accuracies.
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