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Abstract

Joint spectral and spatial information should be fully exploited in order to achieve accurate classification results

for hyperspectral images. In this paper, we propose an ensemble framework which combines spectral and spatial

information in different scales. The motivation of the proposed method derives from the basic idea: By integrating

many individual learners, ensemble learning can achieve better generalization ability than a single learner. In the

proposed work, the individual learners are obtained by joint spectral-spatial features generated from different scales.

Specially, we develop two techniques to construct the ensemble model, namely, hierarchical guidance filtering (HGF)

and matrix of spectral angle distance (mSAD). HGF and mSAD are combined via a weighted ensemble strategy.

HGF is a hierarchical edge-preserving filtering operation which could produce diverse sample sets. Meanwhile, in

each hierarchy, different spatial contextual information is extracted. With the increase of hierarchy, the pixels spectra

tend smooth, while the spatial features are enhanced. Based on the outputs of HGF, a series of classifiers can be

obtained. Subsequently, we define a low-rank matrix, mSAD, to measure the diversity among training samples in

each hierarchy. Finally, an ensemble strategy is proposed using the obtained individual classifiers and mSAD. We

term the proposed method as HiFi-We. Experiments are conducted on two popular data sets, Indian Pines and Pavia

University, as well as a challenging hyperspectral data set used in 2014 Data Fusion Contest (GRSS DFC 2014).

An effectiveness analysis about the ensemble strategy is also displayed.
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I. INTRODUCTION

Hyperspectral sensors can provide images with hundreds of continuous spectral bands as well as high spatial

resolution. During the past two decades, hyperspectral images (HSIs) processing techniques have been widely used

in many fields such as spectral unmixing [1], mineral identification [2] and environmental monitoring [3]. To better

utilize the HSI data, many HSI processing techniques are developed. One of the most important techniques is per-

pixel classification, i.e., assign a unique class label to each pixel. However, HSI classification is still challenging,

due to many reasons such as the Hughes phenomenon [4].

A popular strategy to improve the classification accuracy is designing multi-feature systems. Gu et al. proposed

a multiple-kernel learning method by extracting the variation from the different features space [5]. In [6], Gu et al.

improved the multi-kernel models using low-rank nonnegative matrix factorization. In [7] and [8], spatial information

was utilized to enhance the performance of multiple-kernel models. Vector stacking is also a typical approach to

address multi-feature problem, which refers to concatenating the multiple features and putting them into a single

classifier. In [9], Chen et al. combined the magnitude and shape feature spaces via a stacked generalization. In

[10], Huang et al. compared the performance of vector stacking with other multi-feature methods. However, vector

stacking approach does not necessarily lead to better results, because studies have shown that the classification

accuracy may vary as a function of the number of selected features [11].

Recently, ensemble learning based methods were developed for HSI classification. By integrating many individual

learners, ensemble learning can achieve better generalization performance [12]. In [13], Dietterich et al. considered

that the incorporation of individual learners could outperform single learner mainly because the following three

aspects: First, a single learner may fall into local minima; Second, the ensemble strategy could slightly expand the

hypothesis space; At last, because there may be several hypothesises that achieve the same performance in training

sets, combining many individual learners could reduce the risk of false hypothesis. For the task of HSI classification,

researchers have proposed many ensemble learning based methods. Random forest methods are typical ensemble

approaches, and the use of random forest was investigated in [14]–[17], etc. In [18], Xia et al. utilized rotation forest

[19] for HSI classification and achieved better results than random forest. Support vector machine (SVM) is also

sdudied in some ensemble based HSI classification methods [20]. In [21], Pal proposed two ensemble approaches

based on SVM using boosting and bagging. In [22], Huang et al. combined the spectral, structural and semantic

features to construct an SVM ensemble approach. Santos et al. performed a combination of six different classification

models based on SVM and multilayer perceptron neural network [23]. Xia et al. proposed a rotation-based SVM

ensemble strategy with limited training samples [24]. Diverse ensemble based HSI classification methods were

reported in [25]–[28], etc.

Many studies have also demonstrated that the use of spatial information could significantly improve the classifi-

cation accuracy [29]–[34]. A common strategy to express the spatial information is using a neighborhood system

[31], for example, Markov random field [35], [36] and attribute profile (AP) [37]–[39]. Wavelet-based and Gabor-

based methods are also reported in many works. Based on the properties of HSI data, three-dimensional wavelet
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are used to extract the texture feature [40]–[42]. In [43], Li et al. proposed a Gabor-filtering-based method using

nearest regularized subspace (NRS). More recently, edge-preserving filtering (EPF) has become an active research

topic in natural scene image processing [44]–[49]. The basic idea of EPF is to remove small details and noise

from the image while preserving large-scale edges automatically. In [50], EPF is used to address the task of HSI

classification for the first time. In [28], Xia et al. combined independent component analysis (ICA) and EPF via

an ensemble strategy. However, since EPF is still a kind of smoothing filtering method, it is difficult to determine

what level of filtering is the most appropriate. Stronger smoothing could result in better spatial representation, but

at the same time lead to more loss of spectral information.

In this paper, we present a novel ensemble learning based HSI classification method, which is composed of

joint spectral-spatial features of different scales. Firstly, in order to exploit the joint spectral-spatial information,

we propose a hierarchical feature extraction strategy, hierarchical guidance filtering (HGF). HGF is an extension

of guided filtering (GF) [44] and rolling guidance filtering (RGF) [46], which is able to generate a series of joint

spectral-spatial features. Spatial contextual information of different scales are obtained by the filtering in different

hierarchies. Secondly, instead of using complicated optimization techniques, we define a metric matrix, matrix of

spectral angle distance (mSAD), to evaluate the feature quality in each hierarchy. Based on the obtained hierarchical

features and the evaluation results, a popular ensemble strategy, the weighted voting, is employed to determine the

final classification results. We term the proposed method as HiFi-We.

The initial motivations of our study include two aspects: First, we want to combine the joint spectral-spatial

information in different scales. The classification model should be determined from a more representative feature

space. Second, spectral-spatial features extracted from different scales should have different contributions. More

reliable and qualified features should get higher confidence. The solution comes as no surprise: We propose the

HGF to obtain a series of spectral-spatial features from different scales; then, we design an ensemble model to

simultaneously utilize these features; a new weighting method, mSAD, is also developed.

The major contributions of HiFi-We can be summarized as follows:

• A new ensemble-based HSI classification method is proposed, where joint spectral-spatial information of

different scales are combined.

• We develop the hierarchical guidance filtering (HGF) to extract more various spectral-spatial features.

• The matrix of spectral angle distance (mSAD) is designed and used to generate the weight coefficients in the

ensemble model.

The remainder of this paper is organized as follows. In section II, we give detailed description of the proposed

HSI classification method. Experimental results and analysis are displayed in section III. We conclude this paper

in section IV.

II. THE PROPOSED METHOD

Ensemble learning can achieve better performance than the best single learner via combining many individual

learners [12]. Based on this idea, we propose an HSI classification method using ensemble learning. The proposed
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Fig. 1: The flowchart of HiFi-We.

ensemble method contains three component: HGF, mSAD and weighted voting based classification. To generate

various joint spectral-spatial features, hierarchical guidance filtering is developed. Based on HGF, an individual

learner can be obtained in each hierarchy. Then, the mSAD is designed to evaluate the contribution of each individual

learner. At last, weighted voting is conducted to get the final classification results. The flowchart of the proposed

method is exhibited in Fig. 1.

A. HGF

As a kind of EPF, HGF is able to remove noise and small details while preserve the overall structure of the

image. Therefore, it can be utilized as an implementation to extract the spatial contextual information for HSI

classification.
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(a) (b) (c) (d) (e)

Fig. 2: Examples of HGF and RGF for Indian Pines data set. HGF and RGF are both conducted on the band 2 of

the data set. (a) Guidance image, using the first principal component. (b) Original image in band 2. (c) Results of

RGF, rolling 5 times. (d) Results of HGF, 5 hierarchies. (e) Results of HGF, 50 hierarchies.

In the first hierarchy, we conduct a guided filtering (GF) [44], [45] for each the bands of the HSI. Let Qp denotes

the pth bands of the filtering output, then the output of GF can be expressed by

Qp
i = apkGi + bpk,∀i ∈ ωk, (1)

where ωk is a window around pixel k with size (2r+1)×(2r+1), r is the window radius, i is one of a pixel in ωk,

G is a guidance image, and apk and bpk are coefficients to be estimated. Eq. (1) indicates that the output of the

filtering is a linear transform of the guidance image. Conduct the gradient operation for Eq. (1), we can find that

∇Qp
i = ap∇Gi. (2)

According to Eq. (2), the filtering output Qp has an edge only if Gi also has an edge, and this is just the reason

for edge preserving. Then, we need to determine the linear coefficients apk and bpk based on the input HSI data I

and the guidance image G. The following cost function is minimized in the window ωk:

E(apk, b
p
k) =

∑
i∈ωk

((apkGi + bpk − Ipi )2 + εapk
2
), (3)

where ε is a parameter controlling the smooth degree. Larger ε corresponds to stronger penalization for apk, which

leads to smoother output. Eq. (3) guarantees the similarity between input and output of the filtering, meanwhile,

noise and small details are removed. Eq. (3) is a linear ridge regression [51], thus it can be solved by

apk =

1
|w|

∑
i∈ωk

IpiGi − µkI
p

k

σk2 + ε
,

bpk = Ipk − a
p
kµ

p
k,

(4)

where µk and σk are the mean value and standard variance of G in ωk, I
p

k is the mean value of I in ωk, and |ω|

is the number of pixels in ωk.

After obtaining (apk, b
p
k), the output Qp

i can be determined by Eq. (1). Then, we use Qp
i as the input of the

next hierarchy. In other words, the outputs of current hierarchy are considered as the inputs of the next hierarchy.

From Fig. 2(d)(e) we can find that the outputs in the 5th and the 50th have certain difference. These difference are
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generated because HGF could introduce some variations on both spectral and spatial characteristics for HSI data.

In this work, we consider these variations as the joint spectral-spatial information in different scales. To ensure

that the spectral information does not suffer severe loss after many hierarchies, here we give parameters r and ε as

small values as possible, for example, r = 1 and ε = 0.01.

Generally, the better spatial smoothness, the greater loss of spectral characteristics. It is quite difficult to determine

what degree of smooth is the best. In the proposed work, we try to address this problem via a hierarchy strategy, i.e.,

HGF. HGF is developed to enhance the diversity of samples, where we can get an individual learner based on the

output data in every hierarchy. That is to say, for each individual learner, both the number and the dimensionality of

the training samples keep the same. To some extent, HGF can be regarded as a linear transform of GF. Compared

with some traditional subset selection methods such as bootstrapping and bands selection, using HGF can not only

avoid the information loss in each individual learner, but also provide more abundant feature expression.

The idea of HGF is similar to that of RGF [46]. However, there are at least two characteristics of HGF seem to

challenge RGF. First, in HGF, we run a guided filtering in each hierarchy, while RGF usually adopts joint bilateral

filtering [52] in each iteration. Since guided filtering belongs to a linear transform whereas joint bilateral filtering

is based on nonlinear model, HGF is more efficient than RGF. Note that RGF can also use guided filtering in each

rolling. However, with the increase of rolling times, the results of RGF will get more blurry, as shown in [46].

In other words, guided filtering is not suitable for RGF. More importantly, the guidance images used in HGF and

RGF are different. Because RGF is originally designed for natural scene images where only one or three bands are

observed, the spectral diversity and correlation are not considered. In RGF, the guidance image is the original input.

In this case, with the increase of rolling times, the result image will be more similar to the original image. However,

if the original image is seriously polluted by noise, the RGF can hardly lead to satisfying results, as shown in Fig.

2(b)(c). In HGF, we use the first principal component (PC) of the HSI as the guidance image considering that it

could provide an ideal representation of the image. Therefore, in HGF, higher hierarchy could generate images more

similar to the guidance image, namely, 1st PC (Fig. 2). In Table II and IV, experimental results also demonstrate

the superiority of HGF when compared with RGF. Note that HGF is a global operation, which means that it should

be conducted on both the training and testing sets.

B. mSAD

Based on HGF, we can obtain many groups of features. The number of features groups is determined by the

number of hierarchies, i.e., each hierarchy’s outputs correspond to a certain group of features. However, the

contributions of different groups may be not equal. Generally, features with high quality have greater weights.

Here, we define the term matrix of spectral angle distance (mSAD) to represent the “quality” of samples. The

mSAD is based on the assumption that samples of the same class should present similar spectral characteristics.

For example, samples in Fig. 3(b) are closer between each other than those in Fig. 3(a), i.e., samples in Fig. 3(b)

have higher quality. In this case, the power of feature expression is enhanced, meanwhile, the number of training

samples required is declined.
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(a)

(b)

Fig. 3: Spectral characteristics (a) before and (b) after HGF (50 hierarchies). We take class Soybean-notill in Indian

Pines data set for example.

Let Xc = [x1,x2, · · · ,xi, · · · ,xn] denote a group of the training samples in class c, xi ∈ RL×1 is a pixel

spectrum with L bands, n is the number of training samples in class c. The spectral angle distance (SAD) between

two spectral vector xi and xj can be expressed by

SAD(xi,xj) = arccos(
xT
i xj

‖xi‖2 · ‖xj‖2
). (5)

SAD can be used to measure the difference degree between two pixels, where lower value corresponds to smaller

difference. Based on SAD, we first obtain a square matrix:

Ŝc =


SAD(x1,x1) · · · SAD(x1,xn)

...
...

SAD(xn,x1) · · · SAD(xn,xn)

 ∈ Rn×n. (6)
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Then, we define the mSAD for Xc by removing the diagonal elements from Ŝc

Sc =[sij ]

=


SAD(x1,x2) · · · SAD(x1,xn)

...
...

SAD(xn,x1) · · · SAD(xn,xn−1)

 ∈ Rn×(n−1).
(7)

Sc is the mSAD for class c. Ideally, Sc should be On×(n−1), i.e., all the samples in the training set are the same.

According to the hypothesis that the testing set shares the consistent distribution as the training set, samples in

testing set are also the same as those in the training set, or at least very similar. In this case, only limited samples

are necessary for training a powerful model. In real HSI data, this ideal situation is impossible. However, since

samples in the same class usually present close spectral characteristics, the Sc should be low rank. Fewer outliers

correspond to lower rank of Sc. Therefore, we use the rank of Sc to measure the quality of training samples.

Usually, the rank of Sc is relaxed by nuclear norm [53], i.e.,

Rc = rank(Sc)
.
= ‖Sc‖∗ =

∑
i

σi(Sc), (8)

where σi(Sc) denotes the singular values of Sc, and Rc is the nuclear norm of Sc. Higher Rc indicates that samples

in class c are more discrepant. In this case, we can consider that these samples have low “quality”, and vice versa.

Because there are many classes in HSI data, we use the mean value of all the Rc to calculate the weight. Based

on Eq. (5)-(8), the weight of the tth hierarchy can be obtained by

ωt = (
1

C

C∑
c=1

Rc)
−1, (9)

where C is the number of classes in an HSI. Note that the reciprocal is adopted in Eq. (9), because the weight

values are negatively related to the within-class diversity.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: Indian Pines data set. (a) False color composite image. R-G-B=bands 36-17-11. (b) Ground truth. Each

color corresponds to a specific class. Results by (c) GCK (d) NRS (e) EPF-G (f) IIDF (g) NSSNet (h) RGF-W (i)

HGF-V and (j) HiFi-We.

Algorithm 1 The proposed HiFi-We method
Input:I, T , r, ε, h(·)

Initialize: training set, testing set

1.HGF

Obtain G based on PCA for I

For t=1:T

Generate Qt by Eq. (1)-(4)

End for

2.mSAD

For t=1:T

Determine ωt by Eq. (5)-(9)

End for

3.Weighted voting

Classify by ht(·)

Combine ωt and the results of ht(·) by Eq. (10)

Output: Ensemble-based classification results for I
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5: Pavia University data set. (a) False color composite image. R-G-B=bands 10-27-46. (b) Ground truth. Each

color corresponds to a specific class. Results by (c) GCK (d) NRS (e) EPF-G (f) IIDF (g) NSSNet (h) RGF-W (i)

HGF-V and (j) HiFi-We.

C. Weighted Voting for Classification

Research has shown that although the class posterior probabilities estimated by individual classifiers are often

not very accurate, soft voting usually presents better performance than hard voting [12]. Therefore, in this paper,

we adopt a soft voting strategy to determine the labels of test samples. In each hierarchy, we use logistic regression

(softmax) classifier to obtain the class posterior probabilities for a test sample. Let ht denote the classifier in the

tth hierarchy, hct(x) ∈ [0, 1] denote the probability of classifying sample x to class c. Then the final classification

result for x is determined by

H(x) = arg max
c

T∑
t=1

ωth
c
t(x), (10)

where T is the number of hierarchies, and H(x) is the predicted label. In different hierarchies, the features “x”

are not the same. x is determined by the outputs of HGF. Note that logistic regression is an available classifier, but

not the only one. Algorithm 1 depicts the overall process of the proposed method.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6: GRSS DFC 2014 data set. (a) False color composite image. R-G-B=bands 30-45-66. (b) Ground truth. Each

color corresponds to a specific class. Results by (c) GCK (d) NRS (e) EPF-G (f) IIDF (g) NSSNet (h) RGF-W (i)

HGF-V and (j) HiFi-We.

(a) (b) (c)

Fig. 7: Influence of T and ω. Results on (a) Indian Pines, (b) Pavia University and (c) GRSS DFC 2014 data sets.

OA and κ correspond to the left coordinate axis, and ω corresponds to the right one.

Readers may doubt the effectiveness of the above ensemble strategy. According to [12], the generalization error
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(a) (b) (c)

Fig. 8: Influence of training samples on (a) Indian Pines, (b) Pavia University and (c) GRSS DFC 2014 data sets.

of an ensemble model is determined by

E = Ē − Ā, (11)

where Ē is the average error of individual learners, Ā denotes the average ensemble “ambiguity”, and E is the

generalization error. For a given test sample x, A(x) is obtained by

A(x) =

T∑
t=1

ωt(ht(x)−H(x))2. (12)

Eq. (11) is called error-ambiguity decomposition, which demonstrates that an ensemble model is effective as long

as Ē is reduced and Ā is enhanced. Unfortunately, Eq. (11) cannot be optimized directly because Ā is obtained

only after the ensemble model is determined [12]. Moreover, it is hard to expand Eq. (11)(12) from regression to

classification task. In this paper, the statistical significance analysis and experimental discussion are conducted to

verify the effectiveness of the proposed ensemble approach. Details are shown in section III(D)

III. EXPERIMENTS AND DISCUSSION

A. Experimental Setup

In this section, we conduct three types of experiments. We have published the Matlab demo in our homepage1.

First, we compare the proposed HiFi-We with some state-of-the-art HSI classification algorithms, including

GCK [7], NRS [43], EPF-G [50], IIDF [54] and NSSNet [34]. GCK is a multiply kernel learning based method.

NRS is developed by Gabor filtering. EPF-G and IIDF are based on edge-preserving filtering (we use GF in this

experiment) and intrinsic image decomposition, respectively. NSSNet is a recently proposed deep learning based

HSI classification approach. Overall accuracy (OA), average accuracy (AA) and Kappa coefficient (κ) are used

to evaluate the performances of all the methods. In order to verify the effectiveness of the “HGF” and “mSAD”,

we replace HGF by RGF (RGF-W), as well as use simple majority voting (HGF-V). HGF-V and RGF-W can be

regarded as extensions of the HiFi-We. The performance of RGF-W and HGF-V are also reported.

1Available online: http://levir.buaa.edu.cn/Code.htm
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Second, the influence of important parameters is discussed. The parameters used in HiFi-We are listed in Table

I.

TABLE I: PARAMETERS USED IN HIFI-WE.

Symbol Value Name

T 80/20 Number of hierarchies

r 1 Local window radius in HGF

ε 1 Regularization parameter in HGF

At last, we give statistical evaluation about the effectiveness of the proposed ensemble strategy. Furthermore, we

also verify that the improvement achieved by the proposed method is significant.

Three data sets are used in our experiments, namely Indian Pines, Pavia University2 and GRSS DFC 2014 [55].

• Indian Pines is a widely used data set for HSI classification. It was acquired by airborne visible/infrared

imaging spectrometer (AVIRIS) in Northwestern Indiana, with the wavelengths ranges from 0.4 to 2.5 µm.

The spatial resolution is 20m, and the size is 145 × 145 pixels. After removing the water absorption bands,

there are 200 spectral bands remain. Totally 10249 pixels are labeled, and they are classified into 16 classes.

Figure 4(a)(b) are false color composite image and the corresponding ground truth for this data.

• Pavia University data set was collected over the city of Pavia, Italy, by reflective optics system imaging

spectrometer (ROSIS-3) sensor. This data set contains 42776 labeled pixels which are composed of 9 different

classes. It has 1.3m spatial resolution and 610×340 pixels size. After removing the noise bands totally 103

channels are preserved. A false color composite image and the corresponding ground truth image are shown

in Fig. 5(a)(b).

• GRSS DFC 2014 is the long-wave infrared (LWIR, thermal infrared) hyperspectral data set used in the 2014

IEEE GRSS Data Fusion Contest. It was acquired by an 84-channel airborne LWIR hyperspectral imager

covering an urban area near Thetford Mines in Québec, Canada, with the wavelengths between 7.8 to 11.5 µm

and approximately 1m spatial resolution. The size of this data set is 795 × 564 pixels. 22532 labeled pixels

and a ground truth with 7 land cover classes are provided. Since this data set is collected from LWIR bands,

its quality is much lower than that of Indian Pines. Therefore, this data set is more challenging. A false color

composite image and the corresponding ground truth are shown in Fig. 6(a)(b).

B. Classification Results

We validate the superiority of the proposed HiFi-We method in the three data sets. All the methods are conducted

50 times and the average results are reported. The standard deviations of HiFi-We are also revealed. The number of

hierarchies in Indian Pines, Pavia University and GRSS DFC 2014 data sets are set as 80, 20 and 20, respectively.

2Available online: http://www.ehu.eus/ccwintco/index.php?title=

Hyperspectral Remote Sensing Scenes
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TABLE II: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON INDIAN PINES DATA SET (%).

Class Samples Methods

Train Test GCK NRS EPF-G IIDF NSSNet RGF-W HGF-V HiFi-We

Alfalfa 20 26 96.94 99.42 62.07 87.22 95.92 98.38 99.31 99.46±1.35

Corn-notill 20 1408 75.67 70.45 74.83 80.45 56.58 77.66 80.59 81.91±5.58

Corn-mintill 20 810 81.59 74.25 74.68 75.89 66.56 86.10 90.03 91.49±4.52

Corn 20 217 93.17 95.10 42.07 66.03 91.32 95.51 96.36 96.78±3.84

Grass-pasture 20 463 89.70 87.51 94.83 93.49 89.13 90.38 89.75 90.06±3.88

Grass-trees 20 710 97.57 92.35 94.39 97.67 95.25 96.97 96.59 97.92±1.80

Grass-pasture-mowed 14 14 97.54 100.0 91.01 54.09 99.50 100.0 97.00 96.75±5.54

Hay-windrowed 20 458 99.42 98.56 99.85 99.92 96.45 98.66 99.10 99.39±0.92

Oats 10 10 100.0 99.59 78.18 44.83 99.60 99.60 100.0 100.0±0.00

Soybean-notill 20 952 80.98 73.53 69.21 73.58 76.64 81.57 87.94 88.16±6.63

Soybean-mintill 20 2435 79.87 69.93 84.44 92.37 56.37 74.29 76.64 79.82±5.86

Soybean-clean 20 573 84.07 81.23 59.43 79.13 78.20 80.56 91.94 93.31±3.18

Wheat 20 185 99.56 98.76 99.50 99.54 99.45 98.41 99.45 99.41±0.29

Woods 20 1245 93.74 87.16 97.27 99.07 91.57 94.26 95.62 96.96±2.79

Buildings-Grass-Trees-Drives 20 366 93.16 90.80 71.08 84.73 72.87 96.36 94.01 95.23±2.72

Stone-Steel-Towers 20 73 95.71 98.65 81.16 94.63 99.12 97.26 99.01 99.07±0.65

OA 85.54 79.38 78.45 85.90 73.72 84.79 87.46 89.06±1.70

AA 91.17 88.58 79.63 82.67 85.28 91.62 93.33 94.11±0.77

κ 83.61 76.60 75.64 84.03 70.42 82.78 85.79 87.51±1.90

TABLE III: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON PAVIA UNIVERSITY DATA SET (%).

Class Samples Methods

Train Test GCK NRS EPF-G IIDF NSSNet RGF-W HGF-V HiFi-We

Asphalt 20 6611 80.91 84.16 96.54 94.66 82.17 83.96 88.44 89.48±2.26

Meadows 20 18629 97.78 84.08 94.66 99.32 79.43 90.12 95.24 95.94±1.42

Gravel 20 2079 74.59 83.69 80.74 96.07 81.25 87.18 91.15 91.61±1.66

Trees 20 3044 80.00 91.68 73.77 86.11 91.94 89.55 92.03 92.79±1.12

Painted metal sheets 20 1325 99.73 99.99 94.61 99.09 99.87 96.54 98.68 99.14±0.48

Bare 20 5009 87.68 86.45 60.07 94.69 75.13 93.78 98.06 98.62±1.53

Bitumen 20 1310 79.03 86.29 76.99 92.59 92.89 91.41 98.53 99.15±0.36

Self-Blocking Bricks 20 3662 70.02 77.74 84.95 84.95 78.43 84.85 91.27 91.72±1.68

Shadows 20 927 62.35 92.91 98.39 91.61 98.15 97.58 93.28 94.14±1.53

OA(%) 86.35 85.11 83.54 94.62 81.66 89.49 93.91 94.93±0.63

AA(%) 81.34 87.44 84.53 93.23 86.58 91.00 94.07 95.26±0.34

κ×100 82.29 80.85 79.11 92.97 76.57 86.31 91.97 93.29±0.82
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TABLE IV: CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON GRSS DFC 2014 DATA SET (%).

Class Samples Methods

Train Test GCK NRS EPF-G IIDF NSSNet RGF-W HGF-V HiFi-We

Road 50 4393 95.75 94.64 97.21 98.49 98.37 98.24 98.79 98.95±0.82

Trees 50 1043 63.67 76.76 17.09 48.31 27.89 76.83 80.62 81.09±6.25

Red roof 50 1804 64.15 73.90 52.93 67.14 60.90 77.21 80.87 83.33±3.71

Grey roof 50 2076 68.78 85.40 56.89 74.54 66.24 75.29 80.83 83.89±4.30

Concrete roof 50 3838 78.70 72.19 92.89 82.30 79.07 83.98 86.74 87.88±3.91

Vegetation 50 7307 66.97 83.93 87.65 96.17 84.47 76.23 82.43 85.57±3.75

Bare soil 50 1721 81.62 89.49 77.03 89.66 68.45 92.43 93.42 93.98±3.19

OA 75.65 83.37 68.53 84.83 78.62 83.21 86.91 88.72±1.51

AA 74.24 82.30 68.81 79.51 69.81 82.89 86.24 87.81±1.49

κ 70.33 79.46 62.50 81.32 73.10 79.45 83.88 86.06±1.82

TABLE V: MCNEMAR’S TEST FOR INDIAN PINES DATA SET.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

h1 0.00 14.84 20.48 22.40 22.97 24.30 24.92 25.35 25.82 26.56 27.44 27.97 28.74 28.95 29.48 29.77 30.13 30.21 30.39 30.69

h2 14.84 0.00 13.12 15.39 15.79 17.02 17.63 18.04 18.63 19.42 20.45 20.99 21.80 21.98 22.51 22.76 23.17 23.29 23.42 23.82

h3 20.48 13.12 0.00 7.91 8.89 10.77 11.62 12.25 12.82 13.68 14.90 15.47 16.38 16.55 17.14 17.44 17.91 18.06 18.21 18.61

h4 22.40 15.39 7.91 0.00 4.26 7.21 8.37 9.17 9.83 10.85 12.24 12.85 13.86 14.06 14.66 14.94 15.45 15.61 15.74 16.12

h5 22.97 15.79 8.89 4.26 0.00 6.04 7.36 8.23 8.85 9.95 11.43 12.03 13.11 13.29 13.91 14.19 14.75 14.89 15.02 15.40

h6 24.30 17.02 10.77 7.21 6.04 0.00 4.16 5.57 6.47 7.88 9.66 10.38 11.54 11.73 12.43 12.70 13.32 13.46 13.60 13.98

h7 24.92 17.63 11.62 8.37 7.36 4.16 0.00 3.71 4.88 6.62 8.68 9.42 10.68 10.87 11.64 11.88 12.52 12.64 12.79 13.20

h8 25.35 18.04 12.25 9.17 8.23 5.57 3.71 0.00 3.15 5.35 7.76 8.59 9.94 10.14 10.99 11.21 11.90 12.03 12.16 12.54

h9 25.82 18.63 12.82 9.83 8.85 6.47 4.88 3.15 0.00 4.48 7.30 8.14 9.61 9.77 10.58 10.80 11.46 11.58 11.69 12.09

h10 26.56 19.42 13.68 10.85 9.95 7.88 6.62 5.35 4.48 0.00 5.74 6.76 8.48 8.65 9.56 9.80 10.52 10.65 10.77 11.21

h11 27.44 20.45 14.90 12.24 11.43 9.66 8.68 7.76 7.30 5.74 0.00 3.68 6.19 6.48 7.64 7.96 8.77 8.94 9.09 9.60

h12 27.97 20.99 15.47 12.85 12.03 10.38 9.42 8.59 8.14 6.76 3.68 0.00 5.08 5.35 6.71 7.02 7.94 8.13 8.29 8.84

h13 28.74 21.80 16.38 13.86 13.11 11.54 10.68 9.94 9.61 8.48 6.19 5.08 0.00 2.29 4.50 5.03 6.19 6.40 6.58 7.25

h14 28.95 21.98 16.55 14.06 13.29 11.73 10.87 10.14 9.77 8.65 6.48 5.35 2.29 0.00 4.01 4.45 5.77 5.98 6.16 6.80

h15 29.48 22.51 17.14 14.66 13.91 12.43 11.64 10.99 10.58 9.56 7.64 6.71 4.50 4.01 0.00 2.29 4.19 4.51 4.77 5.55

h16 29.77 22.76 17.44 14.94 14.19 12.70 11.88 11.21 10.80 9.80 7.96 7.02 5.03 4.45 2.29 0.00 3.96 4.04 4.28 5.16

h17 30.13 23.17 17.91 15.45 14.75 13.32 12.52 11.90 11.46 10.52 8.77 7.94 6.19 5.77 4.19 3.96 0.00 1.80 2.41 3.68

h18 30.21 23.29 18.06 15.61 14.89 13.46 12.64 12.03 11.58 10.65 8.94 8.13 6.40 5.98 4.51 4.04 1.80 0.00 1.61 3.24

h19 30.39 23.42 18.21 15.74 15.02 13.60 12.79 12.16 11.69 10.77 9.09 8.29 6.58 6.16 4.77 4.28 2.41 1.61 0.00 2.89

h20 30.69 23.82 18.61 16.12 15.40 13.98 13.20 12.54 12.09 11.21 9.60 8.84 7.25 6.80 5.55 5.16 3.68 3.24 2.89 0.00

1) Results on Indian Pines data set: Indian Pines data set is widely used in many works. Here, we only use 20

samples in each class for training, and the rests for testing. Fig. 4(c)-(j) display the overall classification maps of all

the compared methods. We can see that strong spatial correlation is observed. In Table II, the quantitative results of

different methods are reported. Compared with GCK, EPF, IIDF and NSSNet, the proposed method achieves about

4% advantage in OA, AA and κ. Among all the 16 classes, HiFi-We performs best in 8 classes. Specially, 13 of all
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TABLE VI: MCNEMAR’S TEST FOR PAVIA UNIVERSITY DATA SET.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

h1 0.00 6.82 6.75 8.55 10.06 10.32 11.26 12.59 13.82 14.93 15.78 17.25 18.15 18.40 18.70 18.50 18.36 18.37 18.37 18.27

h2 6.82 0.00 1.89 4.67 6.60 6.90 7.94 9.43 10.79 11.97 12.85 14.41 15.34 15.57 15.85 15.66 15.51 15.49 15.49 15.36

h3 6.75 1.89 0.00 4.88 7.00 7.04 8.13 9.68 11.09 12.29 13.14 14.73 15.65 15.80 16.03 15.75 15.52 15.46 15.40 15.21

h4 8.55 4.67 4.88 0.00 4.89 4.92 6.26 7.98 9.53 10.82 11.72 13.39 14.32 14.44 14.65 14.34 14.10 14.03 13.98 13.77

h5 10.06 6.60 7.00 4.89 0.00 1.83 3.87 6.09 7.87 9.32 10.29 12.06 13.06 13.17 13.38 13.02 12.73 12.65 12.58 12.35

h6 10.32 6.90 7.04 4.92 1.83 0.00 3.70 6.19 8.02 9.49 10.40 12.18 13.20 13.26 13.47 13.04 12.67 12.54 12.46 12.16

h7 11.26 7.94 8.13 6.26 3.87 3.70 0.00 5.01 7.11 8.64 9.63 11.52 12.60 12.62 12.82 12.33 11.91 11.73 11.61 11.30

h8 12.59 9.43 9.68 7.98 6.09 6.19 5.01 0.00 4.91 6.84 7.97 10.12 11.28 11.28 11.47 10.93 10.45 10.24 10.09 9.78

h9 13.82 10.79 11.09 9.53 7.87 8.02 7.11 4.91 0.00 4.70 6.20 8.76 10.06 10.02 10.18 9.57 9.08 8.86 8.68 8.36

h10 14.93 11.97 12.29 10.82 9.32 9.49 8.64 6.84 4.70 0.00 4.02 7.38 8.86 8.78 8.92 8.24 7.70 7.47 7.28 6.98

h11 15.78 12.85 13.14 11.72 10.29 10.40 9.63 7.97 6.20 4.02 0.00 6.39 8.02 7.77 7.85 7.10 6.53 6.31 6.14 5.85

h12 17.25 14.41 14.73 13.39 12.06 12.18 11.52 10.12 8.76 7.38 6.39 0.00 4.80 4.72 5.08 4.43 3.98 3.88 3.81 3.60

h13 18.15 15.34 15.65 14.32 13.06 13.20 12.60 11.28 10.06 8.86 8.02 4.80 0.00 1.88 2.81 2.38 2.09 2.13 2.15 2.01

h14 18.40 15.57 15.80 14.44 13.17 13.26 12.62 11.28 10.02 8.78 7.77 4.72 1.88 0.00 2.09 1.59 1.34 1.45 1.50 1.39

h15 18.70 15.85 16.03 14.65 13.38 13.47 12.82 11.47 10.18 8.92 7.85 5.08 2.81 2.09 0.00 0.23 0.22 0.50 0.64 0.59

h16 18.50 15.66 15.75 14.34 13.02 13.04 12.33 10.93 9.57 8.24 7.10 4.43 2.38 1.59 0.23 0.00 0.08 0.45 0.61 0.54

h17 18.36 15.51 15.52 14.10 12.73 12.67 11.91 10.45 9.08 7.70 6.53 3.98 2.09 1.34 0.22 0.08 0.00 0.56 0.70 0.59

h18 18.37 15.49 15.46 14.03 12.65 12.54 11.73 10.24 8.86 7.47 6.31 3.88 2.13 1.45 0.50 0.45 0.56 0.00 0.43 0.31

h19 18.37 15.49 15.40 13.98 12.58 12.46 11.61 10.09 8.68 7.28 6.14 3.81 2.15 1.50 0.64 0.61 0.70 0.43 0.00 0.00

h20 18.27 15.36 15.21 13.77 12.35 12.16 11.30 9.78 8.36 6.98 5.85 3.60 2.01 1.39 0.59 0.54 0.59 0.31 0.00 0.00

TABLE VII: MCNEMAR’S TEST FOR GRSS DFC 2014 DATA SET.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

h1 0.00 28.10 36.97 42.68 46.97 49.85 51.96 53.48 54.64 55.62 56.36 56.87 57.29 57.65 57.82 57.93 57.89 57.80 57.67 57.44

h2 28.10 0.00 21.74 28.97 33.88 36.97 39.17 40.72 41.87 42.92 43.67 44.17 44.59 44.91 45.03 45.06 44.93 44.75 44.54 44.22

h3 36.97 21.74 0.00 18.03 24.40 27.94 30.35 31.96 33.16 34.25 35.02 35.52 35.92 36.22 36.31 36.31 36.13 35.88 35.61 35.24

h4 42.68 28.97 18.03 0.00 15.48 20.10 23.03 24.87 26.23 27.44 28.26 28.78 29.21 29.50 29.56 29.53 29.31 29.03 28.72 28.30

h5 46.97 33.88 24.40 15.48 0.00 12.04 16.10 18.37 20.00 21.40 22.32 22.88 23.34 23.65 23.71 23.69 23.45 23.15 22.81 22.37

h6 49.85 36.97 27.94 20.10 12.04 0.00 9.99 13.08 15.10 16.74 17.81 18.43 18.94 19.26 19.34 19.33 19.08 18.76 18.40 17.94

h7 51.96 39.17 30.35 23.03 16.10 9.99 0.00 8.02 10.80 12.78 14.02 14.72 15.30 15.66 15.76 15.75 15.50 15.18 14.80 14.33

h8 53.48 40.72 31.96 24.87 18.37 13.08 8.02 0.00 6.85 9.47 10.98 11.81 12.49 12.90 13.02 13.02 12.76 12.43 12.04 11.55

h9 54.64 41.87 33.16 26.23 20.00 15.10 10.80 6.85 0.00 6.34 8.35 9.36 10.15 10.61 10.75 10.78 10.51 10.17 9.78 9.28

h10 55.62 42.92 34.25 27.44 21.40 16.74 12.78 9.47 6.34 0.00 5.28 6.70 7.72 8.27 8.47 8.54 8.29 7.95 7.56 7.07

h11 56.36 43.67 35.02 28.26 22.32 17.81 14.02 10.98 8.35 5.28 0.00 4.08 5.51 6.23 6.52 6.66 6.44 6.12 5.74 5.25

h12 56.87 44.17 35.52 28.78 22.88 18.43 14.72 11.81 9.36 6.70 4.08 0.00 3.56 4.56 4.95 5.17 4.98 4.67 4.31 3.82

h13 57.29 44.59 35.92 29.21 23.34 18.94 15.30 12.49 10.15 7.72 5.51 3.56 0.00 2.75 3.38 3.70 3.55 3.28 2.93 2.46

h14 57.65 44.91 36.22 29.50 23.65 19.26 15.66 12.90 10.61 8.27 6.23 4.56 2.75 0.00 1.86 2.34 2.25 2.02 1.70 1.23

h15 57.82 45.03 36.31 29.56 23.71 19.34 15.76 13.02 10.75 8.47 6.52 4.95 3.38 1.86 0.00 1.49 1.41 1.18 0.89 0.42

h16 57.93 45.06 36.31 29.53 23.69 19.33 15.75 13.02 10.78 8.54 6.66 5.17 3.70 2.34 1.49 0.00 0.45 0.36 0.12 0.34

h17 57.89 44.93 36.13 29.31 23.45 19.08 15.50 12.76 10.51 8.29 6.44 4.98 3.55 2.25 1.41 0.45 0.00 0.05 0.18 0.67

h18 57.80 44.75 35.88 29.03 23.15 18.76 15.18 12.43 10.17 7.95 6.12 4.67 3.28 2.02 1.18 0.36 0.05 0.00 0.30 0.86

h19 57.67 44.54 35.61 28.72 22.81 18.40 14.80 12.04 9.78 7.56 5.74 4.31 2.93 1.70 0.89 0.12 0.18 0.30 0.00 0.94

h20 57.44 44.22 35.24 28.30 22.37 17.94 14.33 11.55 9.28 7.07 5.25 3.82 2.46 1.23 0.42 0.34 0.67 0.86 0.94 0.00
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(a) (b) (c)

Fig. 9: McNermar’s test for (a) Indian Pines data set, (b) Pavia University data set and (c) GRSS DFC 2014 data

set.

classes present over 90% accuracies. RGF-W and HGF-V also perform well, however, slightly gaps could still be

observed. This results indicate that the improvements in HGF and mSAD are valid. It seems that HGF contributes

more to the final results.

Fig. 8(a) presents the influence of training samples size on this data set. All the compared methods achieve

similar accuracies, especially when the training samples number is large. The advantage of HiFi-We mainly reflects

in the case of limited samples, such as 10-20 per class. Performing well with limited samples is meaningful, since

a very simple method may also work well with abundant samples.

2) Results on Pavia University data set: Fig. 5(c)-(j) and Table III show the classification results on Pavia

University data set. Compared with Indian Pines, all the methods perform better on Pavia University data set. This

maybe because the latter has higher spatial resolution. HiFi-We method still outperforms others, and the superiority

on AA is more obvious. When training samples are limited, the AA becomes a more important measure. Since

several methods have achieved above 93% accuracies, in this case 1.5-2% advantages are also significant. Among

all the 9 classes, HiFi-We performs best in 4 ones, and exceeds 90% in 8 ones. The influence of training samples

size on this data set is shown in Fig. 8(b). Increasing training samples will lead to better performance. When the

training samples number is up to 50 per class, HiFi-We presents nearly 98% κ.

3) Results on GRSS DFC 2014 data set: This data set is collected from LWIR bands, and the imaging quality

is relatively low. Thus, this data set is more challenging. For all the compared methods, 50 samples in each class

are used for training. The visual classification maps of the all the methods are revealed in Fig. 6(c)-(j). In Table IV,

we reveal the objective evaluation about the classification accuracies. About 5% advantage is observed in OA, AA

and κ. HiFi-We presents the best performance in 4 classes, and above 80% accuracy in all the classes. Compared

with RGF-W and HGF-V, HiFi-We outperforms them by 2%-5%. Both the HGF and mSAD work, and HGF still

contributes more to the accuracies. Similar conclusion could be reached from the experiments in Indian Pines and

Pavia University data sets.

April 27, 2017 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 18

(a) (b)

(c) (d)

(e) (f)

Fig. 10: Statistical evaluation. (a) AA and (b) κ for Indian Pines, (c) AA and (d) κ for Pavia University, (e) AA

and (f) κ for GRSS DFC 2014 data sets.

The influence of training samples size is shown in Fig. 8(c). In this data set, the gaps are more apparent. When

the training samples number is below 50 per class, the proposed method presents 5%-10% advantage. This mainly

because the quality of this data is relatively lower than the other two, while the HGF operation has actually removed

some noise and improved the image quality.

C. Parameters Analysis

As we mentioned above, to avoid the spectral information loss, the parameters r and ε should be as small as

possible. In this case, the different scales’ spatial information is mainly extracted by different hierarchies. Therefore,

the number of hierarchies T is the most important parameter in HiFi-We. In addition, in section II(B), we claim

that the weighting strategy by Eq. (5)-(9) are meaningful. Here, we design a uniform experiment to evaluate the

influence of T and the weights ω, as shown in Fig. 7. Fig. 7 is also an illustration about the influence of different

scales’ spatial information. We can see the classification accuracies keep increasing at the original hierarchies, and

after that they tend stable. This result indicates that the different scales’ spatial information is not the same, i.e.,

it really has some influence on the final classification results. Note that the OA and κ in this figure correspond
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to the results of each individual learner. Sharp increases in OA and κ are observed at the first several hierarchies.

For Indian Pines data set, the OA and κ keep stable after the 20th hierarchy. Similar phenomena appear at Pavia

University and GRSS DFC 2014 data sets after the 15th and 10th hierarchies, respectively. Further increasing the

number hierarchies contribute little to the individual learners. Moreover, we find that the curves of ω present similar

tendency as OA and κ. In general, the hierarchical strategy could really lead to diverse classification results, at the

same time, the accuracies and the weights have consistent trend.

D. Statistical Evaluation

In this part, we give statistical evaluation about the effectiveness of the ensemble strategy. According to Eq.

(11), the classification error can be reduced by ensemble, as long as Ā is enhanced and Ē is reduced, with the

increase of individual learners. For Ā, we use McNemar’s test [56] to evaluate the difference of individual learners.

McNemar’s test has been widely used in many ensemble based works [22], [24], [28], which is defined by

Z =
f12 − f21√
f12 + f21

, (13)

where f12 denotes the number of samples correctly classified by learner 1 while incorrectly by learner 2. The

difference between learner 1 and 2 is statistically significant if |Z| is above 1.96. The evaluation matrix for the

two data sets are displayed in Table V, VI, VII and Fig. 9. Note that absolute values have been adopted, and

only the first 20 learners are reported. In Fig. 9(a)-(c), we can clearly find that the values around the diagonal are

relatively lower, and this is in line with our expectation. Most blocks in Fig. 9(a) are close to deep color (red), which

demonstrates that the diversity of the first 20 learners in Indian Pines data set is strong. However, we notice that the

diversity in Pavia University and GRSS DFC 2014 presents significant decline after around 10th hierarchy. Thus,

further increase hierarchies would not improve the performance of the ensemble model. Quantitative results are

shown in Table V, VI and VII. In Table V, only two pairs of learners score lower than 1.96. However, an obvious

tendency is shown that with the increase of hierarchy number, |Z| tends to decrease. The results indicate that the

diversity of individual learners is enhanced by HGF, at least in the first 20 hierarchies. In Table VI, about 90% of

all values are above 1.96 (after removing the diagonal), which indicates that the diversity in Pavia University data

set is relatively high. For GRSS DFC 2014 data set, descent rate of |Z| is much faster. The diversity of individual

learners increases little after the 14 hierarchy. This results can be also implied from Fig. 7(b). Overall, we can safely

infer that hierarchical strategy is generally effective, but it is not necessary to set a very high hierarchy number.

Furthermore, Fig. 7 demonstrates that the classification accuracies keep growing with the increase of hierarchy.

This results guarantee that Ē could be reduced after adding new individual learners. However, it is not to say

more individual learners will lead to better accuracies. When the accuracies curves present steady shapes, further

increasing individual learners may not reduce Ē, instead, it will harm the diversity of the ensemble system.

To verify that the improvement achieved by HiFi-We is significant, we use box plot to describe the detailed

statistics, as shown in Fig. 10. We compare HiFi-We with HGF-V, RGF-W and IIDF, because they present the best
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performance among all the compared methods. Moreover, paired t-test results also show that the improvements on

OA, AA and κ are statistically significant (at the level of 95%) in most cases.

IV. CONCLUSION

The initial motivation of this work is to develop a simply but effective HSI classification model which could

combine spectral and spatial information in different scales. The most immediate idea is using ensemble learning.

However, to ensure that the ensemble model really work, we must design diversity enhancing as well as valid

ensemble strategies. In this paper, we propose a novel ensemble based method for HSI classification. The major

contributions of our work include two folds: HGF and mSAD. HGF is an edge-preserving filtering operation which

is able to generate diverse sample sets. Joint spectral-spatial information in different scales are extracted and utilized

by HGF. Considering that the samples generated in each hierarchy may have different quality and confidence, we

propose a measurement strategy called mSAD. Finally, the HGF and mSAD are unified via weighted voting.

To evaluate the performance of the proposed method, we conduct contrast experiments with some state-of-the-art

methods on two popular data sets and a challenging data set. The results indicate that the proposed method works

well, and the effectiveness is verified via statistical evaluation.

There are several future works associated with the proposed method. 1) It would be interesting to extend the

proposed HGF and mSAD to other application, such as hyperspectral quality evaluation. 2) In this paper, we only

study the influence of samples to the ensemble system. More attention could be paid to the design of classifiers.
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