
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

A Novel Spectral-Unmixing-Based Green

Algae Area Estimation Method for GOCI Data
Bin Pan, Zhenwei Shi, Zhenyu An, Zhiguo Jiang and Yi Ma

Abstract

Geostationary Ocean Color Imager (GOCI) data have been widely used in the detection and area estimation

of green algae blooms. However, due to the low spatial resolution of GOCI data, pixels in an image are usually

“mixed”, which means that the region a pixel covers may include many different materials. Traditional index-based

methods can detect whether there are green algal blooms in each pixel, whereas it is still challenging to determine the

proportion that green algae blooms occupy in a pixel. In this paper, we propose a novel sub-pixel-level area estimation

method for green algae blooms based on spectral unmixing, which can not only detect the existence of green algae

but also determine their proportion in each pixel. A fast endmember extraction method is proposed to automatically

calculate the endmember spectral matrix, and the abundance map of green algae which could be regarded as the area

estimation is obtained by nonnegatively constrained least squares. This new fast endmembers extraction technique

outperforms the classical N-FINDR method by applying two models: candidates location and distance-based vertices

determination. In the first model, we propose a medium-distance-based candidates location strategy, which could

reduce the searching space during vertices selection. In the second model, we replace the simplex volume measure

with a more simple distance measure, thus complex matrix determinant calculation is avoided. We have theoretically

proven the equivalency of volume and distance measure. Experiments on GOCI data and synthetic data demonstrate

the superiority of the proposed method compared with some state-of-art approaches.
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I. INTRODUCTION

Over the last decade, the green algae blooms (mainly Ulva prolifera) were frequently observed during April

to August in the Yellow Sea and East Sea (China) [1]. Massive Ulva prolifera blooms (called green tides) may

cause severe harm to tourism, coastal fishery and marine ecosystem. For example, in the summer of 2008, serious

green tides disaster occurred around the coastal oceans in Qingdao, China, which have posed direct influence to

the Olympic Sailing Games. Consequently, it is of great significance to accurately detect green algae blooms and

estimate their area. In 2010, Korea launched the world’s first ocean color satellite. It carried Geostationary Ocean

Color Imager (GOCI) sensor which could provide multispectral images with 8 bands and 500m spatial resolution

[2]. Nowadays GOCI data have been widely used in the detection and monitoring of green algae blooms [3]–[5].

Traditional green algae detection methods are mainly based on certain indexes obtained by bands ratio [1], [3], [6]–

[9]. Normalized Difference Vegetation Index (NDVI) [10] and Enhanced Vegetation Index (EVI) [11] are classical

vegetation detection algorithms. Based on NDVI and EVI, some modified methods were developed [1], [7], [8]. Hu

observed that approaches based on modified NDVI were sensitive to environment and conditions variation [12]. To

reduce the potential error, Hu proposed the Floating Algae Index (FAI) to detect floating algae [12]. The Rayleigh-

corrected reflectance of Short-Wave Infrared (SWIR) band using Moderate Resolution Imaging Spectroradiometer

(MODIS) was utilized by FAI to enhance the detection results. Based on the work of FAI, Zhang et.al. proposed

the algae pixel-growing algorithm (APA) [13], to estimate the algal bloom coverage in Lake Taihu. In [3], a novel

index called index of floating green algae for GOCI (IGAG) was developed, which could discriminate green algae

from complex water conditions. To further classify different growth stages of algal blooms, ocean surface algal

bloom technique (OSABT) was proposed in [9] (also denoted as OSABI).

The idea of the methods described above is to calculate a certain index for each pixel in the images, and a

hard-threshold-based labelling process is followed to determine whether the algae blooms exist. However, the area

estimation and the detection of green algae are similar problems, but not identical. The former must estimate the

accurate covering area of green algae blooms, whereas the latter only need to confirm whether green algae exists in

a pixel. Because of the low resolution of GOCI data, a single pixel would represent as much as ∼0.25km2 area of

ocean. Under this circumstances, only a small proportion of all pixels could completely be covered by green algae

blooms. Thus the green algae spectra obtained directly from the images are usually “mixed”. Traditional index-

based algorithms, which provide binary images as output results, are faced with difficulties in accurately calculating

the green algae proportion in a single pixel. In [9] this problem was termed as “sub-pixel problem”. Although

some detection and classification methods can give a confidence coefficient or probability, the physical meaning

is ambiguous. In summary, area estimation of green algae blooms should not be considered as a “detection” or

“classification” problem, because detection or classification methods could only determine whether the green algae

exist in a pixel, whereas the accurate area is hard to obtain.
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To solve this problem, in this paper we proposed a novel green algae area estimation algorithm based on spectral

unmixing and fast endmember extraction. Spectral unmixing is a process that decomposes the pixel spectra matrix

into two parts: spectral signatures (called endmembers) and corresponding fractional abundances [14]. Endmembers

are generally denoted by the spectra of pure materials in an image and the abundances, usually determined by

the endmembers, denote the percentages of different endmembers in a pixel. Spectral-unmixing-based methods

are able to give an estimation for the abundance of green algae which can be approximately considered as the

proportion it covers in each pixel. This intrinsic property makes it possible for spectral unmixing to contribute to

the problem of green algae area estimation. Compared with traditional methods, spectral unmixing requires less

about the radiometric calibration and atmosphere correction. As is analyzed above, spectral unmixing contains two

stages: endmember extraction and abundance calculation. In this paper, when estimating the area of green algae

blooms, we first extract the pure materials spectra, such as green algae and clear water, and then the abundance of

each endmember is calculated via inversion. Deferent from detection-based methods, our method does not demand

a threshold. We use the green algae abundance as the area estimation so as to achieve more precise results in

sub-pixel level.

How to extract the endmembers spectra and how to calculate abundance maps are two key problems in spectral

unmixing. Here, we mainly focus on endmember extraction. Researchers have proposed many unsupervised or

semisupervised algorithms to solve this problem. Bioucas-Dias et al. divided these algorithms into three classes:

geometric-based, statistic-based and sparse-regression-based approaches [14]. Statistical approaches formulate spec-

tral unmixing as a parameter estimation problem [15], [16]. Though perform well when the spectral signatures

are highly mixed, statistic-based methods encounter high computational complexity [14]. Sparse-regression-based

methods usually assume that a mixed spectrum can be approximated by a linear mixture of endmembers spectra.

Then the endmember extraction problem is equal to how to select appropriate spectra from a complete library

under certain constraints [17], [18]. However, for GOCI data, there is no spectral library available. Geometric-based

methods mainly utilize the property that hyperspectral/multispectral data can constitute a high-dimensional convex

set. Because of the clear physical meaning and relatively lower computational complexity, geometric-based methods

have been widely used in spectral unmixing. Typical methods include N-FINDR [19], pixel purity index (PPI) [20],

vertex component analysis (VCA) [21], simplex growing algorithm (SGA) [22], minimum volume simplex analysis

(MVSA) [23], [24], simplex identification by variable splitting and augmented lagrangian (SISAL) [25]. Among

all these geometric-based methods, N-FINDR is a popular one. N-FINDR is based on the pure pixel assumption,

which assumes the existence of pure pixels in the images. The idea of N-FINDR is to find a maximum-volume

simplex with all the pixel spectra enclosed, and vertices drawn from the simplex could serve as reliable estimates

of endmembers. However, though the computational complexity of N-FINDR is much lower than that of PPI, VCA

and most statistic-based algorithms, it still costs a long time when tackling large-size remote sensing images. During

each vertex selection process, N-FINDR needs to iterate through all the pixels in the image, and has to conduct

complex determinant calculation for each pixel. Researchers have devised many approaches to further improve the

efficiency of N-FINDR [22], [26]–[28].
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In this paper, we propose a two-step strategy to improve the efficiency of N-FINDR: Medium-distance-based

candidates location and geometric-distance-based vertices determination. In the first step, we remove most non-

candidate pixels based on the medium distance between pixel vectors and the data center in the whitened data

space. In the second step, we replace the simplex volume measure with an equivalent distance measure and thus

complex determinant calculation could be avoided.

The major contributions of this paper can be summarized as follows:

• We introduce a novel spectral-unmixing-based method to accurately estimate the area of green algae blooms

in sub-pixel level.

• We propose a medium-distance-based candidates location strategy to compress the searching space in N-FINDR

algorithm.

• We propose an equivalent distance-measure-based method to improve the efficiency of N-FINDR when deter-

mining the simplex vertices, and theoretical proof is provided.

The rest of this paper is organized as follows. In section II we describe some related works for green algae

detection and endmember extraction. In section III, we give detailed description of our spectral-unmixing-based

green algae area estimation method. The experimental results on GOCI image and synthetic data are shown in

Section IV. Section V concludes this paper.

II. RELATED WORKS

Here, we first give a brief introduction to some classical green algae detection methods, and then we present the

theoretical foundation about spectral unmixing and N-FINDR.

A. Classical Green Algae Detection Methods

Existing green algae detection methods are mainly based on certain indices, including NDVI [7], EVI [11], IGAG

[3], OSABI [9], etc.. Usually, these methods could be used only in images with atmospheric correction.

NDVI, first proposed in the 1970s, is a traditional vegetation mapping method [10]. In [7], NDVI was used to

analyze the offshore extent of floating algae. The basic assumption of NDVI is that all forms of vegetation have a

sharp increase in the reflectance spectra near 700nm (also called red edge) [12]. Based on this property, an index

can be defined by the following equation:

NDV I =
RNIR −RRED

RNIR +RRED
(1)

where RNIR and RRED are Rayleigh-corrected reflectance in near-infrared (NIR) and red bands. For GOCI, RNIR

and RRED use reflectance at 865nm and 660nm, respectively. NDVI is a conventional vegetation detection method

which has been widely used in practical applications. Based on similar assumption, many improved methods are

developed. Consequently, we adopt NDVI as one of the comparison methods in the experiments.

Huete and Justice modified NDVI by proposing EVI, which is defined as:

EV I =
G× (RNIR −RRED)

RNIR + C1 ×RRED − C2 ×RBLUE + C3
(2)
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where RBLUE for GOCI is 443nm [3]. G, C1, C2 and C3 are compensation coefficients which are set as G = 2.5,

C1 = 6, C2 = 7.5 and C3 = 1 for MODIS data [11], and the same coefficients are also used for GOCI data [3].

EVI is a classical variation of NDVI, and it has been used in green algae detection. In this paper, EVI is also

discussed in the experiments.

In [3], based on the analysis for the spectral characteristics of green algae from in situ optical measurements

and satellite data, Son et al. developed a green algae detection method specially for GOCI data, named IGAG. The

major advantage of the IGAG method is that it can separate muted or subtle signals of floating green algae from

surrounding complex water signals [3]. IGAG is defined by:

IGAG =
R555 +R660

R745 −R660
+

R745

R660
(3)

where R555, R660 and R745 are reflectance wavelengths of Rayleigh-corrected GOCI data.

To further characterize ocean surface algae blooms, Shanmugam et al. proposed a novel index, OSABI, which

could not only detect the existence of algae blooms, but determine their growth stages [9]. In OSABI method, the

significant increase in aerosol reflectance from NIR to red wavelengths is taken into consideration, and targeted

aerosol correction is conducted to remove the aerosol scattering effects. OSABI is defined by the following equation:

OSABI = α× (Lw(λ1)− (Lw(λ2)− Lw(λ1))). (4)

For MODIS data, Lw(λ1) and Lw(λ2) are the water-leaving radiance at 748nm and 667nm, and α is a constant

set as 10 [9]. For GOCI data, we set λ1 and λ2 as 745nm and 660nm, respectively.

NDVI and EVI are two representative vegetation detection methods, and many studies are based on the variation of

them. IGAG and OSABI are both recently developed methods for green algae detection. The promising performance

shown in [3] and [9] demonstrates that they are one of the state-of-art methods. In this paper, all the above four

methods are discussed. However, we note that when detecting algae blooms, the methods described above depend

on certain thresholds. Obviously, the selection of thresholds would impact the results to a great extent.

B. Spectral Unmixing

Spectral unmixing refers to the process of decomposing a hyperspectral/multispectral image which is denoted

by a mixing model [14]. The most popular model is linear mixing model (LMM) [14]. In LMM, the hyperspec-

tral/multispectral image is considered as a linear combination of endmember signatures. LMM is defined as follows:

y = Mα+ n (5)

where y ∈ RL×1 denotes an observed pixel spectrum, M = [m1,m2, . . . ,mp] ∈ RL×p is the endmember matrix

in which each column stands for an endmember spectrum, α = [α1, α2, . . . , αp]
T ∈ Rp×1 is the abundance vector,

and n ∈ RL×1 denotes an additive noise. L is the number of bands, and p is the number of endmembers. To be

physically meaningful, the fractional abundances should meet the constraint of nonnegative (ANC) and sum-to-one

(ASC), which are defined by,

ANC :αi ≥ 0, i = 1, 2, . . . , p (6)
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Fig. 1. Flowchart of the proposed method.

ASC :

p∑
i=1

αi = 1 (7)

Spectral unmixing contains two steps: endmember extraction and abundance inversion. In this paper, we propose

a fast endmember extraction strategy, and then classical nonnegatively constrained least squares (NCLS) [29] is

used to obtain the abundance maps. Note that the above two steps can also be implemented simultaneously [14],

[30].
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C. N-FINDR

In the 1990s, Winter proposed a popular endmember extraction method called N-FINDR [19]. The idea of this

algorithm is to find a maximum-volume simplex which could enclose all the observed pixel vectors, and vertices

drawn from the simplex are considered as endmembers. The volume of simplex is calculated by

vol(V) =
1

(p− 1)!
|det([

1T
p

V
])| (8)

where V = [v1,v2, . . . ,vp] is the vertices of simplex and 1p is a p×1 all-one vector. Note that vi ∈ V is a vector

with p-1 dimensions. Usually, vi is obtained by running a dimension-reduction algorithm on original image data.

In this paper, maximum noise fraction (MNF) [31] is used for dimension reduction. MNF is a transformation that

would select the bands with highest signal noise ratio (SNR). That means the image noise could be suppressed.

Assume the coordinate origin is a known vertex, then we can get the equivalent form of Eq. (8):

vol(V′) =
1

(p− 1)!

√
det(V′TV′) (9)

where V′ = [vp −v1,vp −v2, . . . ,vp −vp−1]. Vertices that maximizing the volume are regarded as endmembers.

The principle of N-FINDR is to exhaustively seek a collection of pixel vectors which could maximize the volume

of the simplex. First, simplex vertices are randomly initialized by pixel vectors. And then alternately replace each

vertex with all the pixels. If one selected pixel could enlarge the simplex volume, this pixel are considered as a new

vertex. Repeat this process, until the volume no longer changes by any replacement. The obtained vertices are the

final endmembers. There are two factors that affect the computation cost of N-FINDR. First, when determining each

vertex, the whole image data are taken into account. Second, for each pixel vector, complex determinant calculation

have to be done. The above processes are time consuming, especially when the image data are quite large.

III. SPECTRAL-UNMIXING-BASED METHOD FOR GREEN ALGAE AREA ESTIMATION

In this section we describe the proposed green algae area estimation method in detail. The flowchart of the

whole method is shown in Figure 1. When extracting endmembers, to overcome the difficulties which aggravate the

computational complexity of N-FINDR, we propose two efficient algorithms: medium-distance-based candidates

location and geometric-distance-based equivalent simplex volume calculation. Once endmember signatures are

selected, NCLS is utilized to obtain their abundance maps. Based on the reference green algae spectrum provided

by Chinese State Oceanic Administration (CSOA), we use spectral angle mapping (SAM) to choose the green algae

spectrum from the extracted endmembers, and the corresponding abundance map could be used to estimate the

covering area.

A. Candidates Location

We use the medium distance between all pixels and the data center as the criterion of candidates location. Data

centering and whitening [32], [33] are used to preprocess the original image. Data centering is a process of removing

the mean value of the data, and data whitening could make data covariance matrix be an identity matrix. Then, in
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(a) (b)

Fig. 2. Candidates selection for (a) data without whitening and (b) data with whitening.

the whitened data space, we calculate the distance of each pixel to the center and, if smaller than their median,

those pixels are regarded as non-candidates. In other words, only pixels with larger distance to the center than their

median may be candidate vertices. By this means pixels that are likely to be non-candidates are removed, and thus

the computational complexity declines. Illustration of candidates location is shown in Figure 2. Data in Figure 2 are

randomly selected from GOCI data (collected on 29 June, 2013), totally containing 420 samples. X-axis and Y-axis

are the Rayleigh-corrected reflectance value (denoted by Rrc) of 660nm and 865nm, respectively. Reflectance is a

ratio, and thus the unit is not necessary. As is shown in Figure 2, data whitening is necessary. The data are sphered

after whitening, with weaker correlation and isotropic distribution. The process of candidates location could be

summarized as follows:

step 1: Input GOCI data Y = [y1,y2, . . . ,yN ] ∈ RL×N . N is the total number of pixels.

step 2: Data centering. Let Ŷ = [ŷ1, ŷ2, . . . , ŷN ] ∈ RL×N denote the centered data. Then the ith point ŷi is

calculated by

ŷi = yi −
1

N

N∑
k=1

yk (10)

step 3: Data whitening. For ŷi ∈ RL×1, its covariance matrix C = E{ŷiŷ
T
i }. Let C = EDET denotes the

eigenvalue decomposition for C, then define

W = ED− 1
2ET = C− 1

2 (11)

where D is the eigenvalue matrix, E is the eigenvectors, and W is the whitening matrices. The whitened vector

ŷ′
i can be obtained by

ŷ′
i = Wŷi. (12)
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step 4: Medium-distance calculation and candidates location. In the whitened space, we calculate the medium

distance of the data center to each pixel. The medium distance dm is defined by

dm =

√√√√ L∑
j=1

(medium(Ŷ′j))2, (13)

where Ŷ′ is the whitened data, j denotes the value in the jth band. Pixels with larger distance than dm are chosen

as candidates.

Since data whitening is a linear transformation of the original data (Ŷ′ = WY), the simplex vertices is not

changed by data whitening. That is, data whitening would never affect the final results of endmember extraction.

After candidates location, about half of all pixels are selected as candidates. Note that median distance is not the

only criteria that is acceptable to locate candidates. Other distance measure, such as 0.9 times medium distance, is

also available.

B. Geometric-Distance-Based Vertices Extraction

In N-FINDR, determinant calculations with size p × p have to be conducted N times in each vertex selection

process. To improve the computation efficiency, we implement a novel geometric-distance-based fast vertices

extraction method, and the relationship between the new approach and traditional volume-based method is discussed.

The illustration of our method is shown in Figure 3. Assume A, B and C are vertices having been selected, we

intend to find another vertex D which would maximize the volume of the simplex. Obviously, D1 would generate

larger simplex than D2, since the distance between D1 and plane ABC is larger than that of D2. Motivated by this

theorem, we utilize the distance between each candidate and the hyperplane which is composed by other vertices

to substitute the volume calculation of the simplex. Candidate with the largest distance is selected as the vertex in

the current searching. The mathematical model of this idea can be expressed as follows

arg max
vi∈Rp−1

dis{vi, span(v1, . . . ,vi−1,vi+1, . . . ,vp)}

s.t.vi ∈ YC

(14)

where vi is an estimated vertex of the simplex, span denotes the subspace spanned by vertices, dis{·} is a function

calculating the distance between vertex and hyperplane, and YC are the candidate data set obtained in Section

III-A. When extracting vi, we should first determine the hyperplane w, which is expressed by

wTv′ + 1 = 0,

v′ ∈ {v1,v2, . . . ,vi−1,vi+1, . . . ,vp}
(15)

and
w = −(V′T )−11T

p−1,

V′ = [v1,v2, . . . ,vi−1,vi+1, . . . ,vp]
(16)

where Eq. (16) is the solution of Eq. (15). Dimension reduction process can make sure that V′ is a phalanx.

Generally, V′ is reversible because the bands number of GOCI data is 8, which is much higher than the number
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Fig. 3. Illustration for distance-based vertices extraction.

of endmembers. And even if V′ is irreversible, pseudo-inverse is also available. Here the final solution is the least

squares minimum norm solution. Thus the distance function in Eq. (14) can be written by

dis{vi, span(v1, . . . ,vi−1,vi+1, . . . ,vp)} =
wTvi + 1

∥wT ∥
(17)

The pixel which maximizes the distance in Eq. (17) is chosen as a vertex. In our algorithm, initialization is conducted

by random sampling from the image data.

In our method, the most heavy computational burden is (V′T )−1. However, during each searching process for an

endmember, (V′T )−1 only needs to compute once. N-FINDR, by comparison, has to calculate the matrix determinant

for each candidates, totally N times. In this way the computation complexity of our method significantly declines.

Next, we give theoretical proof for the following theorem:

THEOREM 1. Under ANC, ASC, pure pixel assumption and the same initialization, distance-based and volume-based

measure lead to the same vertices extraction results.

Proof for theorem 1: Let V = [v1,v2, . . . ,vp] be vertices obtained by N-FINDR, we prove the following

conlusion: In the process of extracting vi, the distance-based and volume-based measure would achieve the same

result. In order to simplify the computation, we assume the coordinates origin is also a vertex. Then Eq. (15) could

be rewritten as

wTv′ = 0,v′ ∈ {v1,v2, . . . ,vi−1,vi+1, . . . ,vp} (18)

This simplification strategy will not change the final obtained vertices, since it is equal to data space translation.

For a pixel vector u ∈ V, the distance between u and hyperplane w is defined by

dis(u) =
|wTu|
∥w∥

(19)
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According to Eq. (5), u can be expressed by

u =

p∑
k=1

αkvk (20)

Put Eq. (20) into Eq. (19), we get

dis(u) =
|wTu|
∥w∥

=

|wT
p∑

k=1

αkvk|

∥w∥
=

|
p∑

k=1

αkw
Tvk|

∥w∥

=
|α1w

Tv1|+ |α2w
Tv2|+ . . .+ |αpw

Tvp|
∥w∥

=
|αiw

Tvi|
∥w∥

(21)

When ANC, ASC and pure pixel assumption are satisfied, to maximize Eq. (21), the abundance αi should be 1. In

this condition, the selected vertex is exactly vi which is also the one obtained by N-FINDR. That is, distance-based

measure achieves the same result as volume-based measure. The proof of Theorem 1 is thus completed.

In real scenarios, the density and growth stages of green algae blooms also affect the observed spectra [9].

Obviously, green algae blooms of maturity stage are more dense than that of initial stage. A region completely

covered by maturity or initial stage green algae blooms may present various spectra. This is mainly because the

influence of nonlinear mixture [14], [34]. However, this spectral variation is little, when compared with the spectral

difference between an endmember and another. In the data simplex, dense and less dense green algae pixels would

both appear around one of the vertices. In this paper we ignore this difference to simplify the unmixing process.

C. Green Algae Determination and Abundance-Based Area Estimation

When endmember signatures are determined, the abundance maps can be obtained by many classical algorithms

[14]. In this paper, NCLS [29] is used. Specially, SAM is utilized to identify which is the green algae spectrum

among all the endmember spectra. The spectral angle between two spectra is defined by

θ = arccos

L∑
i=1

tiri

(
L∑

i=1

ti)−
1
2 (

L∑
i=1

ri)−
1
2

(22)

where t = [t1, t2, . . . , tL]
T is one of an endmember spectrum, and r = [r1, r2, . . . , rL]

T is the reference spectrum.

We use the green algae spectra provided by CSOA as the reference spectrum. For each extracted endmember, we

calculate its spectral angles with the reference spectrum, and the one with the minimum value is considered as

the green algae endmember. The SAM algorithm may perform poor when the number of matching targets is huge.

However, since GOCI data have only 8 bands, the amount of extracted endmembers is not more than 7 (usually

3 to 5). In this case the accuracy of SAM is guaranteed and, even the reference spectrum and the extracted green

algae spectrum are not exactly the same, we can also achieve satisfying results because we only need to select

endmember most similar to the reference.
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(a) (b)

(c) (d)

Fig. 4. GOCI and HJ-1B data used in this paper. (a) A false composite GOCI image (R-G-B=865-660-555nm). (b) Labeled GOCI data without

land and cloud. (c) A false composite HJ-1B image (R-G-B=830-660-560nm). (d) Labeled HJ-1B data without land and cloud.

When green algae endmember is determined, we use the corresponding abundance map to estimate the real

covering area of green algae blooms in the ocean. The area is calculated as follows

Area = Res2
N∑
i=1

ai (23)

where ai denotes the green algae abundance of the ith pixel in the image, and Res is the resolution of GOCI data

(∼500m).
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IV. EXPERIMENTS AND DISCUSSION

Here, we use both real-world GOCI data and synthetic data to test the performance of the proposed algorithm.

Our method was compared with some state-of-art algorithms, including NDVI [7], EVI [11], [12], IGAG [3] and

OSABT [9]. In related literatures, the thresholds for NDVI, EVI and IGAG are all set as 0 [3], [7], [11], [12].

For OSABT, the set of threshold is concerned with the growth stages of green algae, usually 0∼4 [9]. In our

experiments, since we aim to estimate the accurate area of green algae blooms rather than simply detected their

existence, besides reporting the estimation results based on thresholds given by literatures, we also slightly increase

the thresholds, as shown in Table II and Table IV. In addition, we compared our endmember extraction process with

traditional N-FINDR [19] and an improved method, SGA [22], in extraction results and computation complexity.

For GOCI data, we mask out land and cloud regions manually. The number of endmembers in test GOCI data,

which is set as 4, is determined by HySime [35]. Since determining the number of endmembers is a prior step

before spectral unmixing, N-FINDR, SGA and our method share the same setting. After extracting endmembers,

the abundance of each material is calculated by NCLS. The algorithms were implemented using Matlab 2013a on

a desktop PC equipped with an Intel i7-6700K CPU (at 4.0 GHz) and 32 GB of RAM memory.

TABLE I

GENERAL CHARACTERISTICS OF GOCI AND HJ-1B DATA.

GOCI HJ-1B

Spatial Resolution (m) 500 30

Revisiting Period (h) 1 96

Digitization (bit) 12 8

Band 1 (nm) 402-422 430-520

Band 2 (nm) 433-453 520-600

Band 3 (nm) 480-500 630-690

Band 4 (nm) 545-565 760-900

Band 5 (nm) 650-670 -

Band 6 (nm) 675-685 -

Band 7 (nm) 735-755 -

Band 8 (nm) 845-885 -

TABLE II

AREA ESTIMATION OF GREEN ALGAE BLOOMS BY DIFFERENT METHODS (GOCI DATA).

Groundtruth Our Method NDVI EVI IGAG OSABT

Threshold >0 >0.1 – >0 >0.1 >0 >0.1 >0 >2 >0 >1 >2

Area(km2) 317 279 299 2527 1331 2527 427 38752 739 38563 553 192
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A. Experiments on GOCI Data

The GOCI data used in this paper were collected on 12:16, June 29, 2013, Beijing time, which can be downloaded

from the Korea Ocean Satellite Center (http://kosc.kordi.re.kr/). In theory, Rayleigh scattering and aerosol effects

should be removed by atmospheric correction beforehand. However, Son et al. [3] observed that for GOCI data,

if standard atmospheric correction was used to remove the aerosol reflectance, some green algae may be mistaken

as aerosol signal. In addition, researches have shown that Rayleigh signals were dominant in general atmospheric

conditions [3], [8], [12]. In our experiments, we use the Rayleigh-corrected reflectance data to derive green algae

bloom indices and verify our spectral-unmixing-based algorithm. The same strategy was also used in [3]. We used

the GOCI Data Processing System (GDPS) [2] which was specially designed for GOCI data to perform Rayleigh

correction. A false color composite image was shown in Figure 4(a) (R-G-B=865-660-555nm). Green algae blooms

approximately distributed in the box region according to visual observation. Note that visual observation is not

involved in the quantitative evaluation for the experimental results. It could only provide an intuitive feeling about

the distribution of green algal blooms. In our experiments, we mainly focus on the area estimation of green algae

blooms in sub-pixel level. To highlight this point, we manually removed land and cloud regions. The manually

segmentation result was presented in Figure 4(b), where only the white region was used in green algae area

estimation. Note that the image shown in Figure 4(a), which is bound by 118.03◦E to 124.54◦E and 31.71◦N to

37.20◦N with 1175×1219 pixels size, is part of the original GOCI data.

Due to the extensive distribution of green algae blooms in the ocean, determining the real green algae covering

area via field observations is almost an impossible work. In this paper, to obtain a relatively accurate groundtruth,

we utilized the HJ-1B data which was collected in the same date, close time and similar region with GOCI. HJ-1B

data used in this paper (it could be downloaded from China Center For Resources Satellite Data and Applica-

tion, http://218.247.138.121/DSSPlatform/productSearch.html) were collected on 11:13, June 29, 2013, covering

119.53◦E to 122.32◦E and 34.98◦N to 36.63◦N with 8256×6287 pixels size. General characteristics of GOCI

and HJ-1B data are exhibited in Table I. HJ-1B data only have 4 bands, but their spatial resolution (30m) is

much higher than that of GOCI. Figure 4(c) shows the false color composite image (R-G-B=830-660-560nm), and

green algae blooms mainly distribute in the box region. This image is a 2-level product, with atmospheric and

geometric correction completed. Similarly, in Figure 4(d) we have removed land and cloud regions. Because HJ-1B

image covered less region than GOCI data, we first implement registration for the two image based on geographic

information. Only the region both covered by GOCI and HJ-1B data is used in our experiments to estimate the green

algae area. To refine the registration result, slight manual modification was followed. The registration process did

not need to quite exact, since the green algae blooms were mainly observed in the middle of the images. Because

the HJ-1B and GOCI images were collected on close time, we could assume that green algae blooms covered the

same area in the above two images. We run NDVI algorithm in HJ-1B data to determine the area of green algae

blooms (using 0 as the threshold), and the result was considered as the groundtruth for GOCI data. We adopted

this strategy mainly based on the following reasons:
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• Labeling the green algae pixels via visual interpretation in GOCI data is influenced by many subjective factors.

Most of all, it is still challenging for visual interpretation to determine the green algae covering area in sub-pixel

level.

• As is discussed above, in 500m-resolution GOCI data, the area estimation results by NDVI may be larger than

the real value owing to the existence of mixed pixels. However, HJ-1B data have 30m resolution. Under this

resolution, the spectra mixing problem is highly suppressed. NDVI algorithm could achieve satisfying results.

• Some novel green algae detection methods, such as IGAG and OSABT, have to use the 745nm band which is

not included in HJ-1B data. By comparison, NDVI is a more popular and commonly used method.

Figure 5(a-f) illustrate the green algae distribution maps of different methods. All these maps cover the same

region. Figure 5(a) shows the detection result for HJ-1B data based on NDVI, which is regarded as the real green

algae distribution. Figure 5(b) shows the abundance map obtained by our proposed method, and Figure 5(c-f)

present distribution maps by NDVI, EVI, IGAG and OSABT, respectively. Table II gives the quantitative area

estimation results for green algae blooms. Figure 5 demonstrates that all the algorithms could approximately obtain

the distribution of green algae blooms. However, compared with the groundtruth, the area estimation by NDVI

(Figure 5(c)) is obviously larger. This result indicates that for 500m-resolution GOCI data, NDVI could only detect

whether green algae exists rather than accurately estimate their covering area. EVI performs better when estimating

the distribution situation of green algae blooms (Figure 5(d)), however, as is displayed in Table II, if 0 is set as

the threshold, EVI obtains the same result as NDVI. IGAG algorithm could exactly detect muted and subtle green

algae signals [3], however, due to the sub-pixel problem, IGAG performs poor when estimating the covering area

(Figure 5(e) and Table II). OSABT could not only detect the existence of green algae blooms, but also classify

different growth stages (Figure 5(f)). Therefore, the final results are strongly impacted by the setting of threshold.

Here, we assume that for green algae blooms in each pixel, growth stages could be represented by the covering

area. However, Table II shows that if we use the thresholds given in reference literatures, area estimation results

obtained by all the traditional green algae detection methods are much larger than the groundtruth. Meanwhile,

traditional methods are sensitive to thresholds changing in GOCI data. Note that thresholds changing has little

impact on HJ-1B data. This is mainly because HJ-1B data have higher resolution, and in this case materials mixing

is much weaker. Figure 5 and Table II demonstrate that NDVI, EVI and IGAG may lead to larger area estimation

results than the groundtruth in GOCI data. OSABT can achieve satisfying performance by setting suitable threshold.

However, the threshold choosing requires abundant experiential and experimental support. Moreover, as is discussed

above, even a little disturbance of threshold may cause remarkable results variation. In summary, for GOCI data,

traditional methods could approximately obtain the distribution region of green algae blooms, but perform poor in

estimating the accurate area. This is because green algae blooms could hardly completely cover a pixel region in

GOCI data, and pixel-level area estimation is likely to cause larger results.

The proposed method aims at accurately estimating the green algae area in 500m-resolution GOCI data. Figure

5(b) shows the distribution of green algae obtained by the proposed method, which is quite similar to the groundtruth.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Evaluation for green algae blooms distribution. (a) NDVI on HJ-1B data (Regarded as the groundtruth). (b) Green algae abundance map

by the proposed method on GOCI data.(c) NDVI on GOCI data. (d) EVI on GOCI data. (d) IGAG on GOCI data. (f) OSABT on GOCI data.

In a single pixel, the covering area of green algae is described by the corresponding abundance. Moreover, in the

broad ocean field that do not contain green algae, the abundance map tends to 0. Table II quantifies the area

estimation results, which is the average result by 5 different initializations. We could see that our method is the
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Fig. 6. Green algae spectral signatures obtained by N-FINDR, SGA, our method and the reference

closest to the groundtruth. In our result, we totally find 10296 pixels with green algae abundance greater than 0.01,

and 19 of them present higher abundance than 0.9. This result may confirm the assumption that in most cases

green algae blooms cannot cover the whole region a pixel occupies. Another advantage of our method is that few

parameters are required. Especially, our approach is immune to threshold, and this property makes it a more robust

algorithm. The comparison experiments indicate for GOCI data, our method could accurately estimate the area of

green algae blooms in sub-pixel level.

Figure 6 shows the green algae spectrum extracted by the proposed method, N-FINDR, SGA and the reference.

The spectrum extracted by our method is almost overlapped with that by N-FINDR, and this result also verifies

the equivalence of the two methods. The reference spectrum is not extracted directly from our test GOCI data,

therefore slight distinction is observed. Though not completely the same, we could still determine the real green

algae endmember by SAM. Table III shows the processing time of endmember extraction by N-FINDR, SGA and

our method. All the sample pixels are randomly selected from the test image (with endmembers number set as 4).

Compared with N-FINDR and SGA, our method only takes about 1/10 and 1/2 processing time, respectively.

TABLE III

COMPUTATION TIME OF ENDMEMBERS EXTRACTION BY N-FINDR, SGA AND OUR METHOD (GOCI DATA).

Pixel Number N-FINDR(s) SGA(s) Our Method(s)

20301 1.88 0.33 0.29

54876 6.84 1.31 0.61

111341 17.19 3.35 1.59

152153 25.63 4.87 2.23

300238 52.31 10.02 4.77
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Fig. 7. Endmembers spectra extracted from GOCI data.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Evaluation for green algae blooms distribution on synthetic data (z = 10). (a) The groundtruth. (b) Abundance map by the proposed

method. (c) NDVI (d) EVI (d) IGAG (f) OSABT

B. Experiments on Synthetic Data

In this section, to further verify that our spectral-unmixing-based method could give more accurate green algae

area estimation in sub-pixel level, we designed a series of synthetic data experiments. The synthetic data are created

as follows:
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• We use the endmembers extracted from the previous real scene experiment as the synthetic experiments

endmembers matrix (size 8× 4). Spectral signatures used in synthetic experiments are shown in Figure 7.

• We create a scene with size z2 × z2, and divide it into z × z patches. Note that the parameter z determines

the size of synthetic images. Initialize each patch with a single endmember (abundance equal to 1). Similar

processes are also used in [36]–[39].

• Run a (z+1)×(z+1) spatial low-pass filter to generate mixed pixels, i.e., the abundance maps of endmembers.

• Obtain the final synthetic images based on LMM, and add Gaussian white noise (SNR=30dB) simultaneously.

Figure 8 displays the true abundance map as well as the distribution maps estimated by different models (z is

set as 10). Though under different dimensions, all the green algae coverage maps are close to the groundtruth.

That is to say both the traditional and our methods perform well in determining the distribution of green algae

blooms. NDVI and EVI achieved similar results (Figure 8(c)(d)), while for IGAG and OSABT, many regions with

values slightly exceeding 0 are observed. As a result the area estimation results by IGAG and OSABT are much

larger than the groundtruth (Figure 8(e)(f)). By contrast, our method performs better. The green algae abundance

map obtained by our method is nearly the same as the groundtruth. In Table IV, quantitative statistics results are

displayed, where parameter z corresponds to image size. It is observed that in synthetic data, the results of NDVI,

EVI, IGAG and OSABT are less sensitive to thresholds than that in real-world data. The reason may be that the

environmental conditions in synthetic data are ideal, and moreover, the materials spectral characteristic are not

complex. However, despite all that, traditional green algae detection methods still present larger estimation results.

When mixed pixels exist, traditional methods cannot accurately estimate the area of green algae. We note that in

real-world GOCI data experiments, similar conclusion could also be inferred. This result verifies the rationality of

our synthetic data experiments. According to Figure 8(b) and Table IV, our method works well. Slight errors are

still observed in our results, however, the index-based methods’ intrinsic problem of higher estimation for the green

algae blooms is overcome. The green algae area is denoted alternatively by the abundance map and, even existing

spectral mixing, we are able to achieve closest results to the groundtruth.

TABLE IV

AREA EVALUATION OF GREEN ALGAE BLOOMS BY DIFFERENT METHODS (SYNTHETIC DATA).

Groundtruth Our Method NDVI EVI IGAG OSABT

– – >0 >0.1 >0 >0.1 >0 >2 >0 >1 >2

2499(z = 10) 2523 8646 6557 8646 4558 10000 4585 10000 7268 3519

8401(z = 14) 8516 33673 25129 33673 18270 38416 18196 38416 28165 14868

26770(z = 18) 26204 93205 71538 93205 55175 104976 54580 104976 77537 45517

17971(z = 30) 180103 678125 510254 678125 401235 810000 391587 810000 568513 321510



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 20

V. CONCLUSION

In this paper, we propose a novel green algae area estimation method based on spectral unmixing. The idea

of spectral unmixing is utilized to estimate the green algae area in sub-pixel level. To reduce the computational

complexity of N-FINDR, we propose two efficient strategies, namely medium-distance-based candidates location and

geometric-distance-based simplex vertices extraction methods. The former reduces the searching space by removing

massive pixels that are considered as non-vertices, and the latter transfers the simplex volume computation to an

equivalent distance measure. Compared with traditional green algae detection approaches, our algorithm could not

only detect the existence of green algae but also accurately estimate their covering area. The effectiveness of our

method has been verified in real-world GOCI data and synthetic data. In general, spectral unmixing methods are

more useful when endmember materials are widely distributed in an entire image scene. However, in GOCI data,

the ocean occupies most of the image, which may lead to uncertain results. In addition, spectral variability in

real-world data also affects unmixing accuracy. Further studies will be devoted to design a more robust and efficient

abundance inversion algorithm under such a circumstance.
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