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Abstract

Hyperspectral remote sensing has been used in many fields, such as agriculture,
military detection and mineral exploration. Hyperspectral image (HSI), despite its
high spectral resolution, has lower spatial resolution than panchromatic image (PI).
Therefore, it is useful yet still challenging to effectively fuse HSI and PI to obtain
images with both high spectral resolution and high spatial resolution. To solve the
problem, a new HSI fusion method based on multiplication of spectral constraint and
non-negative matrix factorization is proposed in the paper. In the model, the HSI is
first decomposed into basis (abundance matrix) and weight (spectral matrix), then
the details of HSI are sharpened by enhancing the details of the abundance with PI.
Meanwhile, a spectral constraint term is proposed. It is used to specifically preserve
the spectral information in the model. Therefore, the fused data is characterized by
good spatial and spectral information. Finally, experiments with both simulated and
real data are implemented and the results show that the proposed method performs
better in both visual analysis and objective indices than conventional methods, thus
making it a good choice for HSI fusion.
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1 Introduction

Hyperspectral remote sensing is a new remote sensing technique. Hyper-
spectral data, characterized by its combination of high spectral resolution and
two-dimensional spatial image [16,24,44], has attracted many people’s inter-
ests recently. The data contains continuous spectral curves which describe the
reflectivity of different specific objects on the ground, making it play an im-
portant role in the image detection, classification, and recognition. However,
due to the constraint of sensors, HSI usually has low spatial resolution, which
limits its application in some circumstances. Meanwhile, panchromatic image
(PI), another kind of image, can be more easily obtained with high spatial
quality but insufficient spectral information. Naturally, to fuse the two differ-
ent kinds of former images and obtain a new image with both ideal spatial
and spectral information is a critical and useful task. Therefore, the fusion
process has become a critical preprocessing step in the applications of remote
sensing [31,32,34].

Various methods proposed for image fusion could be sorted into several
basic categories: arithmetic methods, projection-substitution-based method-
s, ARSIS (the French acronym for ”Amélioration de la Résolution Spatiale
par Injection de Structures”) concept fusion methods, model-based methods,
and hybrid methods. Among these methods, the simplest way is the arith-
metic methods, which are usually based on the addition or/and multiplication
between the original HSI and PI. These methods cost relatively less computa-
tional time. However, the fused data usually has serious spectral distortion [8].
Projection-substitution-based methods are the popular and classic methods.
In these methods, researchers transform the HSI into some other new spaces,
replace one of the newly obtained components with the PI. Then, the fused
data is obtained after inverse transformation. To a great extent, the quality
of the fused results via these methods lies on the proper transformed space
chosen, also the spectral information of the fused data usually distort in some
degree. Intensity hue saturation (IHS) [10,42,43], principal component anal-
ysis (PCA) [38], Gram-Schmidt (GS) [23] transform are all the typical used
methods. For methods based on the ARSIS concept, researchers assume that
the high frequency components of HSIs could be obtained from those in PIs.
Thus in these methods, the high-frequency information is extracted from the
PIs before being injected into the HSIs. The multiresolution analyses, such
as Laplacian pyramid [33], discrete wavelet transform (DWT) [22,37], and ”á
trous” wavelet transform (ATWT) [30,35], have been used to accomplish the
fusion task. An ATWT-based method named the additive wavelet intensity
method (AWLP) [3], is also a typical one. However, although they are also
widely applied in image fusion, they are better suited to cases where the res-
olution ratio between the HSI and PI is two [47]. Model-based methods are
usually based on image formulation models and some strong theoretical frame-
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works. Researchers treat the fusion process as different inverse optimization
problems and establish proper fusion models, respectively. Projection onto
convex sets (POCS) [1], maximum a posteriori (MAP) method [17,15], vari-
ational fusion methods [2,40], non-negative matrix factorization based meth-
ods [48–51], are the representative methods. Hybrid methods, like the Ehlers
method [14] (combination of the IHS method and the ARSIS method) and
[27] synthesize the virtues of different fusion methods.

However, the methods mentioned above have some limitations for the fu-
sion of HSI and PI. Most fusion methods, like PCA, wavelet transformation
and IHS method, address the fusion between the multiscale image (MSI) and
PI. Compared with the MSI, HSI has its special properties for its more precise
spectral information. Therefore, two principles should be taken into consider-
ation in the HSI fusion process [40]. One is the effective combination of the
spatial information in two different source images, which requires the textures
and details of the original images (specifically PI) being preserved in the fused
data. Another is the preservation of spectral information, which means that
the spectral information of the fused data should be close to that of the orig-
inal hyperspectral data. Here, the spectral information means spectral slope
index (SSI), spectral absorption index (SAI), and other different information
that spectra contain. As in conventional methods, only several bands have
been taken into consideration, the fused data will not be ideal in spatial and
spectral quality simultaneity if the above methods are directly used. Thus,
some researchers focus on other possible approaches. MAP methods [17,15]
and variational method [40] are designed for HSI fusion, the former methods
are proposed with the assumption that the fused hyperpixels are conditionally
independent and the latter have complex choice of parameters. Naoto Yokoya
et al., proposed to fuse HSI and MSI by using unmixing model with coupled
non-negative matrix factorization [48].

Inspired by the previous work, for the fusion of HSI and PI, we propose a
Multiplication of Spectral constraint and Non-negative Matrix Factorization
(MS-NMF) model. In the model, HSI is first factorized into basis (abundance
matrix) and weight (endmember matrix) with the MS-NMF, then the abun-
dance matrix is sharpened with the PI. Finally, the HSI is reconstructed with
the constraint of spectral preservation. Note that, since the abundance matrix
has been sharpened, the fusion process is completed with the reconstruction
process. Meanwhile, the spectral information is also exploited in the model,
thus making the fused data preserve the information of original spectra. We
will see that the proposed method has the following main advantages: Direct
constraint on the spectra of HSI; Effectively enhancement on the details; Wide
extendibility for more in-depth research.

The rest of paper is organized as follows: In Section 2, conventional NMF
and its application in HSI is introduced. In section 3, we establish the MS-
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NMF model to deal with the HSI fusion problem, then use the steepest descent
method to solve the extremal function. Finally, we evaluate our method by the
simulated and real data experiments in Section 4, and followed by conclusions
in Section 5.

2 Non-negative Matrix Factorization (NMF)

Given a non-negative matrix V, NMF finds two non-negative matrices W
and H to satisfy:

V ≈WH (1)

The matrix V ∈ RN×K is approximately factorized into the multiplication
of W ∈ RN×L and H ∈ RL×K . W is a basis which is optimized for linear
approximation of the data set V, H is the coefficient matrix of the data set
V projected on basis of W [26].

To find out an approximate factorization result satisfying V ≈ WH for
NMF, an objective function should be defined. It is able to quantify the quality
of the approximation. One useful measurement is the square of the Euclidean
distance [11] between V and WH:

F (W,H) =
1

2

∑
i

∑
j

(Vij − (WH)ij)
2
=

1

2
∥V−WH∥2 (2)

Lee and Seung [26] used a multiplicative update rule for minimizing the object
function as follows:

W←W. ∗ (VHT )./(WHHT + ε) (3)

H← H. ∗ (WTV)./(WTWH+ ε) (4)

where .∗ and ./ denote elementwise multiplication and division, respectively.
ε is an extremely small non-negative number in computing for insuring the
denominator non-zero. Therefore, so long as the initialization is non-negative,
the rule insures matrices non-negative.

Use it to decompose the hyperspectral data V ∈ RN×K with K bands
and N pixels, then the results W and H are obtained as illustrated in Fig. 1.
Note that before the factorization, image of each band is scattered to a column
vector. The resultW = [W1, ...,WL] ∈ RN×L (L ≤ K) is the matrix of objects
distribution (also named abundance matrix), and each column Wl ∈ RN(l ∈
1, 2, ..., L) corresponds to a pure object on the ground. H ∈ RL×K (also named
endmember matrix) represents the spectral reflection of the objects like tree,
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Fig. 1. The decomposition on the HSI data via NMF.

river and roof. L is the number of pure objects in the scene. Therefore, we
reconstruct the hyperspectral data V by V ≈ W ∗H, where W and H are
the previously decomposed results.

Besides the factorization form in equation (1), Karoui et al. proposed an-
other form in [20]. In their method, image of each band is scattered to a row
vector before the factorization. Therefore, the factorization form becomes:

VK×N ≈ HK×LWL×N (5)

where K, N , and L represent the band number, pixel number and pure object
number, respectively.W and H represent the abundance matrix and endmem-
ber matrix. Obviously, this form is the transposition of equation (1), and they
are essentially the same mathematically. However, in equation (5), the ”re-
quest for many samples is usually met” [20], and it is designed for MSI with
few spectral bands, while the form in equation (1) requires ”many” bands.
Therefore, in the proposed fusion for HSI and PI, the form in equation (1) is
adopted for the quantity of bands in HSI. In fact, NMF with form in equation
(1) has been widely used in hyperspectral image processing, like unmixing [19]
and feature extraction [25].

As discussed before, W represents the distribution of the data, so if it is
enhanced with PI effectively, then the details of the reconstructed matrix V
is sharpened. Based on the idea, MS-NMF is proposed and details are shown
in the following sections.
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Fig. 2. Proposed fusion process via MS-NMF.

3 Hyperspectral image fusion via MS-NMF

3.1 Proposed Fusion Model

The process of MS-NMF is proposed as shown in Fig. 2. First, image of
each band in the 3-D HSI is interpolated to the same spatial resolution of
PI (this step is usually accomplished with the registration process). Also, the
interpolated HSI is denoted as our ”original HSI” in the following discussion.
Scatter the interpolation data into a matrix and factorize it with NMF, then
we obtain abundance matrix W and endmember matrix H. Meanwhile, us-
ing high-pass filter, we obtain the high-frequency information of PI. Then the
abundance matrix W is enhanced with the high-frequency information. Fi-
nally, the fusion process is accomplished by the NMF reconstruction with the
enhanced W and the endmember matrix H. Clearly, effective enhancement of
W, which will be detailedly discussed in the following section, is one of the
critical procedures for the fusion process.

3.2 Enhancement of W

Different approaches, like addition, multiplication and division, are avail-
able for the enhancement of W. In our approach, we accomplish the procedure
with assumption that the missing high-frequency information of the fused HSI
can be extracted from the PI. The assumption is reasonable for PI is obtained
with covering a broad range of the wavelength spectrum [41]. Meanwhile, as
discussed before, if each column of abundance matrix W is transformed in-
to a map with size of the original PI, then the obtained map represents the
distribution of a particular object. Therefore, W could represent the scene
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in HSI with reduced dimensions (only few pure endmembers, whereas much
more bands in original HSI). Moreover, the abundance map has the similar
spatial resolution as that of the original HSI, thus justifying the great sim-
ilarity between the W and original HSI. Note that the assumption is also
similar to those of the improved additive wavelet method of Kim et al. [21]
and general image-fusion (GIF) method of Wang et al. [47]. However, it is also
worth mentioning that, in view of Thomas et al. [41], object occultation and
moving objects also result in some local dissimilarities, where the assumption
is not fully satisfied. Therefore, in our approach, instead of the original PI,
high-frequency information of PI is first extracted and then injected into the
HSI. The operation could avoid the influence of the local dissimilarities caused
by the object occultation to some extent yet not effective for the moving ob-
jects, thus leading the ”ghost scene” in the fused data. Therefore, handling
the images with moving objects remains a challenging problem for most of the
fusion methods including ours. In this paper, images without moving objects
are used to evaluate the fusion methods.

Based on the assumption, we first obtain the high-frequency information
by filtering the original PI with a high-pass filter. Also, we could obtain the
high-frequency information by subtracting the PI with low spatial resolution,
which is the low-pass filtered PI. In our approach as shown in Fig. 2, high-pass
filtering is used. Therefore, we have the high-frequency information denoted
PIh:

PIh = PI ∗ h0 (6)

where h0 is a high-pass filter and * denote convolutional operation. The size
of filter coincides with the resolution ratio of PI and HSI. 3×3 and 5×5 are
suitable for the 1:2 and 1:4 ratio of spatial resolution between PI and HSI,
respectively. After obtaining the expected high-frequency information PIh, we
then scatter it into a column vector. Replicate it into a matrix with the same
column number as the W, thus obtaining Ph with the same size of W.

As discussed before, different methods could be applied to enhance the W.
Here, based on the assumption that the high frequency of fused HSI could be
injected from the PI, we use the mean of W and Ph. Before the addition, Ph

is normalized within the value 0 and 1 in order to regularize the different units
of Ph and W. Therefore, the approach is similar to the HPF fusion method
[47], and the fusion model is obtained as follows:

min F(W,H) =
1

2
∥V−WH∥2 (7)

s.t. W ≥ 0,H ≥ 0.

and the fused data Vf is easily obtained:
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Vf = (W+Ph)/2×H (8)

Note that the enhancement is not limited to the proposed process, other more
effective approaches maybe available, implying the wide extendibility of the
proposed fusion model.

3.3 Constraint of spectral information

The above simple fusion process is equivalent to adding the high-frequency
component Ph to the original HSI. This simple addition operation does not
distinguish the information that the PI brought. Therefore, information re-
dundancy usually happens for the fused HSI. Moreover, components with low
frequency of PI are also brought in, resulting in the distortion of spectral in-
formation. Therefore, it remains a challenge to accomplish the fusion process
while preserving the spectral signature.

Obviously, to fuse the images without changing the spectral signature at
all is impossible. However, we could relax the constraint, and keep the spectral
vectors as parallel as possible. Specifically, the index spectral angle mapper
(SAM) is a proper choice to describe the parallelism with its definition as
follows:

SAM = arccos(
⟨⃗a, b⃗⟩
∥a⃗∥∥⃗b∥

) (9)

where a⃗, b⃗ respectively represent the same pixel’s spectral vectors of the orig-
inal and fused HSI. ⟨⟩ is the inner product and ∥∥ is the Euclidian l2-norm.
Obviously, in fusion process, SAM of a pixel is expected to be zero, because the
two vectors could only be parallel in this condition. Therefore, in the paper, a
spectral constraint function based on SAM will be introduced to preserve the
spectral signature.

Suppose Vf is the fused data, where Vf ∈ RN×K contains K bands, and

N is the pixel number, then we have SAM = arccos(
⟨Vf (i,:),V(i,:)⟩

∥(Vf (i,:)∥∥V(i,:)∥) for each

pixel, where Vf (i, :) and V(i, :) represents the spectral vector of pixel i before
and after fusion. Both of them have the size 1×K. So the spectral constraint
function is the summation of all the pixels:

SAM =
N∑
i=1

arccos(
⟨Vf (i, :),V(i, :)⟩
∥(Vf (i, :)∥∥V(i, :)∥

) (10)

However, the original definition of SAM is difficult for us to establish con-
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straint function, so we simplify it by using the value of its cosine instead.
Therefore, we have the following term:

SAM cos =
N∑
i=1

⟨Vf (i, :),V(i, :)⟩
∥(Vf (i, :)∥∥V(i, :)∥

(11)

In this form, the calculation of inverse cosine in equation (10) is avoided.
However, the term SAM cos is expected to be N instead of 0, because for each

pixel i, the reference value of
⟨Vf (i,:),V(i,:)⟩

∥(Vf (i,:)∥∥V(i,:)∥ is 1. Therefore, a more available

form for fusion is needed. Note that the l2-norm in term (11) is inconvenient
for the latter calculation of gradient, a quadratic form is used and we have:

SAM cos qua =
N∑
i=1

(⟨Vf (i, :),V(i, :)⟩)2

(∥(Vf (i, :)∥∥V(i, :)∥)2
(12)

In the form, term SAM cos qua is not completely the same as SAM cos for
the quadratic operation on each pixel though both them have the reference
value N . On the other hand, we have the following inequality for each pixel i.
:

0 ≤ (⟨Vf (i, :),V(i, :)⟩)2

(∥(Vf (i, :)∥∥V(i, :)∥)2
≤ 1 (13)

Multiplying (∥(Vf (i, :)∥∥V(i, :)∥)2 on the term, then we have

0 ≤ (⟨Vf (i, :),V(i, :)⟩)2 ≤ (∥(Vf (i, :)∥∥V(i, :)∥)2 (14)

The left half of the inequality (14) holds for the data in HSI is non-negative
and the right half of inequality holds because of the original definition of
vector norm. Moreover, in HSI fusion, the vector of fused data Vf (i, :) and
the original data V(i, :) are expected to be parallel, thus making the term
(∥(Vf (i, :)∥×∥V(i, :)∥)2−(⟨Vf (i, :),V(i, :)⟩)2 close to 0. Therefore, to establish
the spectral constraint function, we use this form and obtain the following
term:

S(Vf(W,H)) =
N∑
i=1

(∥(Vf (i, :)∥2∥V(i, :)∥2 − (⟨Vf (i, :),V(i, :)⟩)2) (15)

Note that the form of term (15) seems to be quite different from the original
definition of SAM. However, it could represent the parallel degree between the
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fused HSI and the original HSI with reference value 0. Moreover, the closer to
0, the spectral information in fused HSI and original HSI are more identical.
Therefore, term (15) will be applied to preserve the spectral information in
HSI fusion. On the other hand, term (15) is still not convenient because of
the vector form in the expression, whereas the matrix form is applied to the
original NMF (7). Therefore, with the definition of l2−norm, we easily obtain
the following equality:

N∑
i=1

∥(Vf (i, :)∥2∥(V(i, :)∥2 =
N∑
i=1

(
(Vf (i, :)Vf (i, :)

T )(V(i, :)V(i, :)T )
)

(16)

where ()T represent the transpose operation. Meanwhile, suppose we have:

A=VfV
T
f (17)

B=VVT (18)

then we have Aii = (Vf (i, :)Vf (i, :)
T ) and Bii = (V(i, :)V(i, :)T ). Therefore,

the term (16) could be rewritten as follows:

N∑
i=1

∥(Vf (i, :)∥2∥(V(i, :)∥2 =
N∑
i=1

AiiBii

= tr(A⊙B)

= tr
(
(VfV

T
f )⊙ (VVT )

)
(19)

where ⊙ is the Hadamard (elementwise) product and tr() is the trace of ma-
trix. With similar implementation on the term

∑N
i=1(⟨Vf (i, :),V(i, :)⟩)2) in

equation (15), we have

N∑
i=1

(⟨Vf (i, :),V(i, :)⟩)2 = tr
(
(VfV

T )⊙ (VVT
f )

)
(20)

Based on the equalities (19) and (20), we obtain an equivalent form of term
(15) as follows:

S(Vf(W,H)) = tr((VfV
T
f )⊙ (VVT ))− tr((VfV

T )⊙ (VfV
T )) (21)

This is, perhaps, a more useful result compared with the original form (10)
and (15) as it not only represents the parallelism of all the pixels in HSI, but
also benefits the latter calculation of gradient.
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Note that the term F(W,H) in (7) and S(Vf(W,H)) in (21) share some
similar characteristics: First, both are theoretically non-negative because W
and H are non-negative. Moreover, they would be positive in practical appli-
cations, because the spectra of the fused HSI would not be completely parallel
to those of the original HSI. Also the obtained W and H cannot completely
reconstruct the original data V since the introduction of high-frequency in-
formation in PI. Second, both the terms should be minimized to obtain the
best W and H to reconstruct the data V and preserve the spectral infor-
mation. Meanwhile, they all have the reference value 0. Third, both terms
are coupled for they contain the same W and H thus implying that the two
terms should be associated instead of individually minimized. Finally, it is also
worth mentioning that, S(Vf(W,H)) is proportional to fourth power of matrix
elements whereas the term F(W,H) in (7) is proportional to squares power of
matrix elements, thus implying the different level of numerical value between
optimization term (7) and (21). Therefore, if addition is adopted, then the
carefully tuning of parameters, a quite difficult problem for each experiment,
is inevitable.

Based on the previous discussion, we multiply the spectral constraint func-
tion (21) and the original NMF model (7), then obtain the fusion model MS-
NMF:

min G(W,H) = F(W,H)× S(Vf(W,H)) (22)

s.t. W ≥ 0,H ≥ 0.

where F(W,H) = 1
2
∥V−WH∥2 and S(Vf(W,H)) is defined in (21).

Finally, we obtain the fused data:

Vf = (W+Ph)/2×H (23)

where Ph is replication of high-frequency information of original PI, and it
has the same size of W. In this model, we see that the spatial quality of the
HSI is enhanced by the PI. Meanwhile, the spectral quality is preserved by
using the proposed spectral constraint S(Vf(W,H)). Next, we discuss how to
solve this optimization problem.

3.4 Numerical Solution for the Fusion Model

In order to solve the previous optimization problem, we use the gradient
descent method. We first obtain the partial derivatives of G(W,H) in model
(22):
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∇WG(W,H) =
1

2
F(W,H)(diag(VVT )WHHT + diag(VVT )PHHT

−diag(WHVT )VHT − diag(PHVT )VHT )

+(WH−V)HTS(Vf(W,H)) (24)

∇HG(W,H) =F(W,H)(WT
0 diag(VVT )W0H

−WT
0 diag(W0HVT )V)

+WT (WH−V)S(Vf(W,H)) (25)

where W0 = (W + Ph)/2 and diag(∗) is diagonal matrix of the matrix (∗).
Using the steepest descent method [29], we have the following whole algorithm
for MS-NMF in Algorithm 1:

Algorithm 1: MS-NMF approximation

1. Initialize matrices W ≥ 0,H ≥ 0 with vertex component analysis (VCA)
method [28]. Set learning rate α = 10−6, Gold = 0.
2. Calculate the partial derivatives ∇WG(W,H) and ∇HG(W,H) in (24)
and (25), respectively. Begin iteration:

a) While

|Gold −G(W,H)

G(W,H)
| > tol, tol ∈ R+

b) Update W and H by the following step:

Gold =G(W,H)

Wk+1=max{0,Wk − α∇WG(W,H)}
Hk+1=max{0,Hk − α∇HG(W,H)}

c) End While
3. Obtain W,H.
4. Return the fused data by Vf = (W+P)/2 ∗H.

where α is the learning rate.max{0,Wk−α∇WG(W,H)} andmax{0,Hk−
α∇HG(W,H)} ensure that both W and H are non-negative. Note that in
the algorithm, VCA method is applied to initialize the endmemeber matrix
H. To obtain the abundance matrix W, least square method (LSM) [39,5] and
fully constrained least squares (FCLS) [18] are employed, thus forming MS-
NMF with LSM and MS-NMF with FCLS. In the experiments, comparisons
between them are implemented.
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4 Numerical Experiments

4.1 Quality Indices for Assessing Image Fusion

In order to quantitatively evaluate the performance of different fusion
methods, a number of indices are required to be computed and assess the
correlations between the fused images, the original images and the reference
images. In the paper, the following typical metrics will be applied to assess
the different fusion methods:

1. Average Gradient (AG). This index is used to characterize the details of
image. For an image without noise, the larger AG is, the image we obtained
is better in its spatial information.

2. Entropy (E). The entropy [9,36] of an image reflects the average infor-
mation content of an image. The larger value it is, the more information the
image contains.

3. Correlation Coefficient (CC) [45]. CC evaluates the correlation degree
of the fused image and the original images band by band. Here we use it to
evaluate the correlation between the fused and original HSI.

4. Spectral Angle Mapper (SAM). The definition is shown as in (9). Ob-
viously, it is an important index in describing the performance of spectral
preservation. In our experiments, we calculate the SAM in all pixels, and use
their mean value as our final result.

5. Spectral Information Divergence (SID). SID is used to estimate the
similarity of pixel spectra between and after fusion [6], and it makes use of
the relative entropy to account for the spectral information, so it is effective
in characterizing the spectral features.

6. Root Mean Square Error (RMSE). It describe the difference between
the original and fused image for the pixels in each image with reference value
0.

7. Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) [4,46]
is proposed to summarizes the global errors in all the bands with reference
value 0.

Among the seven metrics, AG and E are used to evaluate the properties
of the fused HSI. CC, SAM and SID are used to evaluate the correlations
between the fused HSI and the original HSI (interpolation version), whereas
RMSE and ERGAS are used to evaluate the correlations between the fused
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HSI and the reference HSI [4].

4.2 Fusion Results of Simulated Images

To assess the quality of different fusion methods, two properties are checked
in the simulated fusion. One is the synthesis of both spatial and spectral
information, which requires the fused image being clear in spatial quality. The
other is the consistency property, which means that the fused image should
be as identical as possible to the reference image or the original image [41].

In the simulation experiment, we use the HSI free from https://engineering.

purdue.edu/~biehl/MultiSpec/hyperspectral.html. It is collected from
the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor
with 210 spectral channels. It has spectral resolution of 10 nm that acquired
from 0.4 µm to 2.4 µm and the size is 307 × 307 pixels. After low-SNR(signal
to noise ratio) bands are removed, only 162 bands remain. To simulate PI
with high spatial resolution, we first pick the bands of the original data with
the spectral channel 0.5−0.76 µm, the wavelength that PI usually covers.
Therefore, we calculate the mean of images within the channel, treat it as the
original PI. While simulating the HSI, considering the memory of the comput-
er, we need to further remove some bands. Therefore, 62 bands are randomly
removed in the experiments. Note that, these bands are randomly removed
instead of picking a special wavelength range, thus demonstrating the efficacy
of the proposed method on HSI with a wide wavelength range. Then, we spa-
tially degrade each band of the HSI to 77 ×77 pixels. Finally, the degraded
version is upsampled to 307 × 307 pixels by bilinear interpolation. We use it
as the original HSI for fusion. Thus, the original two different source images
are registered by default and shown in Fig. 3.

The proposed method is implemented to make a comparative analysis with
some commonly used fusion methods, namely, DWT [38], Ehlers [14], HPF
[47], GS, AWLP [3], SPNMF [50], MAP [17]. As discussed in Algorithm 1, two
different methods, including LSM and FCLS are used to obtain the abundance
matrix W in the initialization of MS-NMF. Comparison between them will
also be implemented in the experiment.

Critical parameters for the different methods are as follows: For DWT and
AWLP method, two levels of decompositions are used. For Ehlers method,
hanning filter is used, and the cut-off frequency of low pass filter and high
pass filter are respectively with order n = 32 and n = 16, as the paper [14]
does. The size of window for HPF is 5 × 5 pixels. The software environment
for visualizing images (ENVI) is used to implement the fusion process with
the method GS. For SPNMF, the weighted coefficient α is set 0.4 and the
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Fig. 3. Original HSI and PI in experiment 1. (a) The original HSI. (b) The original
PI.

constant weight β is set 10−3. For the proposed method, learning rate is set
10−6, and the number of endmember number is 5. It is also worth mentioning
that, accurate estimating the number of endmembers in HSI is quite difficult,
although some estimation methods have been proposed currently [7,13]. In
our experiment, virtual dimensionality is used to determine the endmember
number like in the paper [19].

Fig. 4(a) shows the degraded HSI with size of 77 × 77 pixels. Fig. 4(b)
shows the interpolated HSI with size of 307 × 307 pixels, and it is the source
image that we use in the experiment. Fig. 4(c) shows the reference image. Fig.
4(d)-(l) are the fused results obtained by the methods DWT, Ehlers, HPF,
GS, AWLP, SPNMF, MAP, MS-NMF with LSM and MS-NMF with FCLS,
respectively.

By visually comparing the fused images with the original source image
and the reference image, we see that the fused HSIs are all sharpened to some
extent compared with the original HSI in Fig. 4(b). However, the fused images
in Fig. 4 (d),(e) and (i) via the methods DWT, Ehlers and SPNMF are blurred
in some degree. On the other hand, by comparing the color of fused images
in Fig. 4(f) and (g) with that in Fig. 4(b), obviously, the fused image has
obviously higher luminance than the original image. In Fig. 4(e), the color
of the building also changes compared with in result Fig. 4(b) which implies
that the fused images obtained by the methods Ehlers, HPF, and GS have
color distortion. From Fig. 4(h) and (j), it seems that the methods AWLP
and MAP obtain the similar fused results. So the similar results in Fig. 4(k)
and (l), Although Fig. 4(l) seems to have more bright color because of slight
color distortion, it has clearer details in the roof compared with other results.

15



Fig. 4. Original HSI and fused images in simulating experiment. (a) The degraded
original HSI with 77 × 77 pixels. (b) The interpolated HSI with size of 307 × 307
pixels. (c) The reference HSI. (d)-(l) are the fused results with the other methods
DWT, Ehlers, HPF, GS, AWLP, SPNMF, MAP, MS-NMF with LSM and MS-NMF
with FCLS. All the images are shown in false color with bands 10, 30, 60.
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Fig. 5. Subscenes of the original HSI, reference HSI and fused HSIs by different
methods (double zoomed). (a) - (b) The original HSI and the reference HSI. (c)-(k)
The subscenes of fused HSIs by methods DWT, Ehlers, HPF, GS, AWLP, SPNMF,
MAP, MS-NMF with LSM and MS-NMF with FCLS, respectively. All the images
are shown in false color with bands 10, 30, 60.
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To clearly see the details, we illustrate the subscenes of the original, refer-
ence and fused HSI with double zooming in Fig. 5. Compared with Fig. 5(j),
Fig. 5(k) have more color distortion for the roofs become gray whereas they
are white in the original and reference HSI (Fig. 5(a) and (b), respectively).
Compared with the Fig. 5(c), (d), (h) and (i), Fig. 5(j) and (k) also have
clearer edges. Meanwhile, compared with the Fig. 5(e) and (f), Fig. 5(j) ob-
tains the result which is closest to the original image. Therefore, the proposed
MS-NMF method provides high-quality spatial details while preserving color
well.

Table 1
Evaluation results of the simulated experiment

AG E CC SAM SID RMSE ERGAS

DWT 0.0214 6.4924 0.8532 3.7138 0.0762 1.0911 12.1884

Ehlers 0.0213 6.6939 0.9359 6.7069 0.0146 1.4255 8.8062

HPF 0.0276 6.3402 0.8854 5.4977 0.0624 2.4122 19.8292

GS 0.0275 6.5360 0.8882 11.0082 0.2217 4.8774 46.0235

AWLP 0.0268 6.4793 0.8854 3.2416 0.0323 1.3250 10.6380

SPNMF 0.0191 6.3947 0.9225 5.2058 0.0127 0.8680 6.5192

MAP 0.0288 6.4898 0.8040 12.1253 0.1311 1.8193 19.3487

MS-NMF with LSM 0.0295 6.5361 0.8863 2.6877 0.0025 0.5918 3.7912

MS-NMF with FCLS 0.0462 7.1589 0.7736 4.7009 0.0111 2.2529 13.7435

The indices illustrated in Table 1 could help us quantitatively evaluate the
performance of different fusion methods. The bold italic font is the best one in
the same column. Since the reference HSI could be obtained in the simulated
experiments, the indices RMSE and ERGAS are calculated in the experiment.
From Table 1, we see that, the two indices RMSE and ERGAS obtained by
the proposed MS-NMF with LSM method behaves best among all the meth-
ods, which implies that, the proposed method obtains the fused data which is
the closest to the reference image. As mentioned, AG and E are indices repre-
senting the clarity and the information of an image, respectively. According to
Table 1, the fused HSI by the proposed MS-NMF with FCLS method have the
best AG and E. It implies that, the proposed fusion method enhances the spa-
tial quality of HSI effectively. Indices SAM and SID all describe the spectral
correlations of the fused HSIs and the original HSIs. In the proposed method,
the spectral information of the original HSI is preserved well (indices SAM
and SID in Table 1 confirm this) since the spectral constraint is introduced.
Therefore, though the index CC is not the best in the proposed method, the
indices SAM and SID confirm the preservation of the spectral information.
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4.3 Fusion Results of Real Images

In the experiment on the real image, free HSI is obtained from https://

engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html. Subscene
of the Washington DC is illustrated in Fig. 6(a), which contains 150 × 250
pixels. Only 64 bands remain after low-SNR bands are removed. Meanwhile,
by using the free software Universal Maps Downloader (a simple yet effective
tool) from http://www.softonpc.com/umd/, PI (as shown in Fig. 6(b)) could
be obtained from the Google map, and its spatial resolution is twice of the
HSI. They are registered manually before the fusion.

Fig. 6. Original HSI and PI in experiment 2. (a) The original HSI. (b) The original
PI.

Fig. 7 shows the original and fused HSIs obtained with different methods.
Fig. 7(a) is the original HSI. (b) - (d) are the fused results with the methods
DWT, Ehlers, HPF, GS, AWLP, SPNMF, MAP, MS-NMF with LSM and MS-
NMF with FCLS, respectively. All the images are also illustrated in false color
with bands 10, 30, 60. The indices in Table 2 also show the evaluation results in
the experiment 2. The bold italic font is the best one in the same column. It is
worth mentioning that the calculations of indices RMSE and ERGAS require
reference HSI, which we can not obtain in real world. Therefore, table 2 lacks
those two indices. On the other hand, indices CC, SAM and SID are used to
assess the correlations between the fused HSI and the original HSI, therefore,
in the experiment with real data, the above three indices are calculated with
the fused and original HSI, as the paper [4] does.

From Fig. 7(b) and (d), we see that the methods DWT and HPF distort
the color of the original HSI in Fig. 7(a). The roads in Fig. 7(f) are also dis-
torted. It implies that, the methods DWT, HPF and AWLP possibly result in
spectral distortion in some degree if they are used in HSI fusion. Meanwhile,
from Fig. 7(i) and (j), we see that, both MS-NMF with LSM and FCLS obtain
fused HSIs with good spatial quality, so as the fusion results in Fig. 7(e), (g)
and (h), which obtained with methods GS, SPNMF and MAP, respectively. It
is difficult for evaluating those results visually, therefore, the indices in table
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2 are helpful for quantitative evaluation. From the indices CC, SAM and SID
in Table 2, we see that the proposed MS-NMF with FCLS behaves better in
spectral preservation implying that the proposed method preserves the spec-
tral information effectively. Meanwhile, AG and E of the proposed method
are close to the best (obtained by the method DWT and MAP, respectively).
Therefore, the proposed method performs better in the fusion of HSI and PI
than the conventional methods in experiments on both the simulated and the
real world data.

Fig. 7. Original HSI and fused images in experiment 2. (a) The original HSI with
150 × 250 pixels. (b)-(j) are the fused results with the other methods DWT, Ehlers,
HPF, GS, AWLP, SPNMF, MAP, MS-NMF with LSM and MS-NMF with FCLS.
All the images are shown in false color with bands 10, 30, 60.
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Table 2
Evaluation results of the experiment 2

AG E CC SAM SID

DWT 0.0418 6.8245 0.6514 15.9504 0.1458

Ehlers 0.0299 6.5982 0.7634 12.7090 0.0543

HPF 0.0358 6.3402 0.7117 20.2816 0.1036

GS 0.0203 6.5360 0.7947 30.6946 0.0870

AWLP 0.0326 6.9484 0.5286 9.5986 0.0554

SPNMF 0.0198 6.4293 0.8459 4.1366 0.0067

MAP 0.0370 7.0180 0.6097 3.3216 0.0319

MS-NMF with LSM 0.0244 5.8745 0.8836 3.4732 0.0048

MS-NMF with FCLS 0.0329 6.3614 0.9002 3.2097 0.0046

5 Conclusions

In the paper, a hyperpsectral image fusion model MS-NMF is proposed.
It is based on the multiplication of original NMF and the proposed spectral
constraint function. In the model, HSI is first factorized into the abundance
matrix and endmember matrix. Then the abundance matrix is enhanced with
PI. Meanwhile, to preserve the spectral information of the original HSI, a sim-
plified spectral constraint function is proposed and specifically utilized in the
model. Therefore, compared with the conventional methods, we see that the
proposed method is designed according to the feature of HSI. With exploit-
ing different initializing methods LSM and FCLS, MS-NMF has two different
forms. In the experiments with synthetical and the real world data, visual anal-
ysis and quantitative assessment are implemented. From the results, we see
that, both forms of the proposed methods have obvious advantages in simulta-
neously preserving the spatial and spectral information. Specifically, MS-NMF
with FCLS behaves better in spatial information in both simulated and real
data, while MS-NMF with LSM seems to behave better in spectral preserva-
tion in simulated data. It is also worth mentioning that, besides the proposed
enhancement process and applied optimization algorithm, more effective ap-
proaches would benefit the fusion result, implying the wide extendibility of
MS-NMF.

21



References

[1] M. L. S. Aguena, N. Mascarenhas, Multispectral image data fusion using
projections onto convex sets techniques, in: Proceedings of Computer Graphics
and Image Processing (2002) pp. 76-82.

[2] C. Ballester, V. Caselles, L. Igual, J. Verdera, A variational model for P+XS
image fusion, International Journal of Computer Vision 69(1)(2006) 43-58.

[3] P. Blanc, T. Blu, T. Ranchin, L. Wald, R. Aloisi, Using iterated rational filter
banks within the ARSIS concept for producing 10m Landsat multi-spectral
images, International Journal of Remote Sensing 19(12)(1998) 2331-2343.

[4] M. Cetin, N. Musaoglu, Merging hyperspectral and panchromatic image data:
qualitative and quantitative analysis, International Journal of Remote Sensing
30(7)(2009) 1779-1804.

[5] C.-I. Chang, X. Zhao, M. L. G. Althouse, J.-J. Pan, Least squares subspace
projection approach to mixed pixel classification in hyperspectral images, IEEE
Trans. Geosci. Remote Sensing 36(3)(1998) 898-912.

[6] Chein-I. Chang, An information theoretic-based approach to spectral variability,
similarity and discriminability for hyperspectral image analysis, IEEE
Transactions on Information Theory 46(5)(2000) 1927-1932.

[7] Chein-I. Chang, Q. Du, Estimation of number of spectrally distinct signal
sources in hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing
42(3)(2004) 608-619.

[8] P. S. Chavez, J. A. Bowell, Comparison of the spectral information content
of Landsat thematic mapper and SPOT for three different sites in the
phoenix, Arizona region, Photogrammetric Engineering and Remote Sensing
54(12)(1988) 1699-1708.

[9] Y. Chen, Z. Y. Xue, R. S. Blum, Theoretical analysis of an information-based
quality measure for image fusion, Information Fusion 9(2)(2008) 161-175.

[10] M. Choi, A new intensity-hue-saturation fusion approach to image fusion with
a tradeoff parameter, IEEE Transaction of Geoscience and Remote Sensing
44(6)(2006) 1672-1682.

[11] T. M. Cover, J. A. Thomas, Elements of information theory, Wiley-Interscience
(2006).

[12] M. Deshmukh, U. Bhosale, Image fusion and image quality assessment of fused
images, International Journal of Image Processing 4(5)(2010) 484-508.

[13] J. M. B. Dias, J. M. P. Nascimento, Hyperspectral subspace identification, IEEE
Transactions on Geoscience and Remote Sensing 46(8)(2008) 2435-2445.

22



[14] M. Ehlers, Spectral characteristics preserving image fusion based on fourier
domain filtering, in: Proceedings of SPIE-Remote Sensing Environmental
Monitoring. GIS Applications, and Geology. IV, Maspalomas, Gran Canaria,
Spain (2004) pp. 1-13.

[15] M. T. Eismann, R. C. Hardie, Hyperspectral resolution enhancement using
high-resolution multispectral imagery with arbitrary response functions, IEEE
Transactions on Geoscience and Remote Sensing 43(3)(2005) 455-465.

[16] A. F. H. Goetz, G. Vane, J. E. Solomon, B. N. Rock, Imaging spectrometry for
earth remote sensing, Science 228(1985) 1147-1153.

[17] R. C. Hardie, M. T. Eismann, G. L. Wilson, MAP estimation for hyperspectral
image resolution enhancement using an auxiliary sensor, IEEE Transaction on
Image Processing 13(9)(2004) 1174-1184.

[18] D. C. Heinz, C.-I. Chang, Fully constrained least squares linear spectral mixture
analysis method for material quantification in hyperspectral imagery, IEEE
Transactions on Geoscience and Remote Sensing 39(3)(2001) 529-545.

[19] S. Jia, Y. T. Qian, Constrained nonnegative matrix factorization for
hyperspectral unmixing, IEEE Transactions on Geoscience and Remote Sensing
47(1)(2009) 161-173.

[20] M. S. Karoui, Y. Deville, S. Hosseini, A. Ouamri, Blind spatial unmixing
of multispectral images: new methods combining sparse component analysis,
clustering and non-negativity constraints, Pattern Recognition 45(12)(2012)
4263-4278.

[21] Yonghyun Kim, Changno Lee, Dongyeob Han, Yongil Kim, Younsoo Kim,
Improved additive-wavelet image fusion, IEEE geoscience and remote sensing
letters 8(2)(2011) 263-267.

[22] R. L. King, J. Wang, A wavelet based algorithm for pan sharpening Landsat
7 imagery, in: Proceedings of International Geoscience and Remote Sensing
Symposium (IGARSS 2001), 9-13 July 2001, Sydney, Australia (2001) pp. 849-
851.

[23] U. Kumar, C. Mukhopadhyay, T. V. Ramachandra, Pixel based fusion using
IKONOS imagery, International Journal of Recent Trends in Engineering
1(1)(2009) 173-177.

[24] D. Landgrebe, Hyperspectral image data analysis, IEEE Signal Processing
Magazine 19(1)(2002) 17-28.

[25] H. Lee, A. Cichocki, S. Choi, Kernel non-negative matrix factorization for
spectral EEG feature extraction, Neurocomputing 72(2009) 3182-3190.

[26] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix
factorization, Science 401(1999) 788-791.

23



[27] G. A. Licciardi, M. K. Murtaza, J. Chanussot, A. Montanvert, L. Condat, C.
Jutten, Fusion of hyperspectral and panchromatic images using multiresolution
analysis and nonlinear PCA band reduction, in: Geoscience and Remote Sensing
Symposium (IGARSS), 2011 IEEE International (2011) pp. 1783-1786.

[28] J. M. P. Nascimento, J. M. B. Dias, Vertex component analysis: A fast algorithm
to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote
Sensing 43(4)(2005) 898-910.

[29] N. Nocedal, S. J. Wright, Numerical Optimization, 2nd ed. Springer (2006).
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