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Abstract

With a wide range of applications in different fields like airport management
and military warfare, airplane detection has been a critical part in remote
sensing image processing. In this paper, we focus on the airplane detection
in large (usually larger than 10000 × 10000 pixels) panchromatic image (PI)
with high spatial resolution (usually superior to 1m), and propose an auto-
mated airplane detection system. The system contains two main modules: In
the first module, line segment detector (LSD) is applied to detect runway of
an airport, thus segmenting airport region in a large PI and reducing airplane
candidates. The other is used to detect airplanes in the segmented airport
regions. We first use circle frequency filter to further locating airplane can-
didates, then accomplish precise detection task by combining Histograms of
Oriented Gradients (HOG) descriptor and AdaBoost algorithm. Therefore,
besides a practical airplane detection system, the other contributions of our
approach include the following three parts: 1) it locates runway of an airport
with LSD; 2) it classifies airplane candidates by using circle frequency filter;
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3) it precisely detects airplanes by exploiting HOG and AdaBoost algorith-
m. Experimental results on real data indicate the efficacy of the proposed
system. The airport and airplane detection rates are higher than 94% and
96%, respectively. Meanwhile, the false alarm rate of airplane detection is
superior to 0.05%. Moreover, the whole time cost for handling a large PI is
less than 2.5 minutes, which implies that the system is a satisfactory choice
for airplane detection in practical applications.

Keywords: Airplane detection, Line segment detector (LSD), Circle
frequency filter, Histograms of oriented gradients (HOG), AdaBoost.

1. Introduction

Recently, with remote sensing data of high spatial quality being more
easily obtained, new prospect has been opened in field of automatic detection
in those images, offering opportunities to detect objects like airports, trees
and roads. Among them, airplane detection is an outstanding interesting
part for its wide applications. However, although some methods have been
proposed for target detection in remote sensing images [13, 15, 21, 24, 25, 26],
there are not too many systemic researches on airplane detection for its
complexity and sensitiveness. In conventional researches, learning methods
are usually applied to airplane detection. Different features of airplane are
extracted, and then applied to train classifier and detect airplanes. Li et
al. [16] proposed an airplane detection approach based on visual saliency
computation and symmetry. Bo et al. [1] used shape values and shape
features to detect airplanes.

Clearly, the above learning methods have some limitations for the detec-
tion in modern remote sensing images. Firstly, the conventional detection
methods usually use only one simple feature, which is effective for small
images with relatively simpler backgrounds. However, the modern remote
sensing images have more complicated scenes, making traditional methods
face with difficulties when handling large remote sensing images. A single
feature is not capable to classify airplanes from backgrounds, thus resulting
in a large quantity of false alarms. Secondly, to locate airplanes in an im-
age, traversal pixels of the image is usually applied in conventional methods,
meaning that nearly every pixel of the image should be checked weather it
is target. However, for a large remote sensing image (usually larger than
100000 × 10000 pixels), the process of traversal usually brings large com-
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putation complexity that people cannot tolerate. Therefore, if we directly
apply the above airplane detection algorithms to these images, false alarm
rate would be high and the time cost is intolerable. Inspired by these dis-
cussion, it could be concluded that, to accelerate the detection process in
large images, we should first locate candidates of airplanes. Specifically, air-
port area, where airplanes usually appears, should be first classified. Note
that, for a large remote sensing image with high spatial resolution (usually
superior to 1m), airport only occupies relatively smaller area of whole image.
Therefore, the airport detection could effectively reduce the time cost for
airplane detection.

In fact, different airport detection methods have been proposed and they
can be roughly classified into two groups: one is built on image segmentation
[21] and the other is based on edge detection [3]. The former makes use of
image segmentation and extracts regions of interest (ROIs), and the latter
puts focus on the runway detection because it is the most remarkable feature
of an airport. Traditional detection methods like hough transform, canny
edge detector and sobel detector, have been used to detect runways. The
methods proposed by Pi et al. [18] and Gan et al. [12] detect the edges of
runway and segment airport by using region growing algorithm [14].

To our knowledge, although airport detection is a preprocessing of air-
plane detection, the two correlative detection tasks were individually dis-
cussed, and few papers nor researches have been proposed to accomplish
the tasks simultaneously. Therefore, in this paper, we propose a practical
automated airplane detection system for large panchromatic image (PI) as
illustrated in Fig. 1. In the system, airport and airplane detections are
synthetically considered. In our work, instead of conventional edge detec-
tion method, we first use Line Segment Detector (LSD) [23] to effectively
locate the airport regions. Then an airplane detection algorithm is proposed
by combining circle-frequency filter (CFF) [20] and Histograms of Orient-
ed Gradients (HOG) [17, 27], where CFF is used to quickly locate airplane
candidates and HOG is used to finally validate airplane locations.

The paper is organized as follows: In Section 2, airport detection based on
LSD is discussed. In Section 3, we introduce the airplane detection method
based on combining CFF and HOG in detail. In Section 4, numerical exper-
iments on the real world data are discussed. Finally, the paper closes with
conclusion in Section 5.
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Figure 1: Proposed system for airplane detection.

2. Airport detection based on LSD

As discussed before, airport detection aims at locating airport area, thus
narrowing the regions of airplane candidates. In the paper, we propose an
airport detection method based on detecting runway with LSD algorithm as
illustrated in Fig. 2. In the method, LSD is first applied to the downsampled
image, and generates substantial line segments of different objects. Then,
based on two strategies, we pay attention to line segment connecting for LSD
usually obtains lots of fragmented line segments in intersections. Finally, we
accumulate adjacent parallel line segments with similar orientations, and the
area with most parallel line segments is just the obtained airport region.
Details will be displayed in the following sections.

Figure 2: Process of detecting airport.

2.1. Brief introduction of LSD

LSD makes full use of pixel gradient orientation to detect line segments in
an image. Firstly, pixels that share the similar gradient angles are gathered
into potential line areas (also named line support regions), then a validation
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Figure 3: An example of LSD. (a) Test image for LSD. (b) Result after applying LSD.

step based on the a-contrario approach [7, 19] and the Helmholtz principle
[8, 9] is implemented to find line segments of the image. Thus, the algorithm
has three major steps:

1. Group pixels of image to line support regions in which pixels share
similar gradient orientation within a specific tolerance angle;

2. Find a line segment that best approximates line support regions;

3. Verify each line segment based on a-contrario model.

Fig. 3 illustrates a simple example of LSD. From Fig. 3(b), we see that
the line segments of Fig. 3(a) are effectively detected by applying LSD.
Note that a tolerance angle (in step 1) of 22.5◦ is claimed to give the best
result in the original LSD. In our case, runways in airports are always strictly
straight whereas other objects like roofs and rivers are not, implying that the
tolerance angle for airport detection could be much lower. Therefore, in our
case, we reduce the tolerance angle, and test a range of angles from 5◦ to
22.5◦. The results show that angles between 5◦ and 12.5◦ are satisfying.

2.2. Airport region locating based on LSD

As illustrated in Fig. 2, process for the airport detection has three major
parts: Application of LSD, line segment connection and parallel line segment
accumulation.
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Figure 4: Original remote sensing image.

Figure 5: The line segments of Fig. 4 after applying LSD.
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2.2.1. Application of LSD

For a PI with spatial resolution 1m as shown in Fig. 4, we first down-
sample it by 10 times. By setting the tolerance angle 5◦, we apply LSD to
the downsampled image, thus obtaining line segments as shown in Fig. 5.
Clearly, the line segments of runway (as shown in the top rectangle) are much
more outstanding compared with those in other areas (shown in the bottom
rectangle). Note that LSD is based on clustering pixels with similar gradi-
ent information. However, pixels in intersectional areas have quite different
gradient information, thus causing the discontinuousness of line segments in
these areas. This could be easily demonstrated in Fig. 3(b). Meanwhile, in
the top rectangle of Fig. 5, fragmented line segments also confirm the above
conclusion. Since the discontinuous line segments of runways are inevitable,
and they are easily confused with other short line segments, connecting these
adjacent fragmented line segments of runway is critical before validating the
airport area.

2.2.2. Line segment connecting

Line segment connecting aims at making line segments of runways con-
tinuous. To accomplish the task, two strategies should be satisfied simul-
taneously. They are proposed from computational geometry and listed as
follows:

1. The line segments are nearly collinear or parallel.

2. The line segments are close to each other.

According to strategy 1, we first obtain slopes of all the line segments.
Then the line segments share similar slope values are potential line segments
to be connected. As shown in Fig. 6, if we take AB as our reference, then
GH is obviously excluded for γ (the slope of GH) has significant difference
from α ( the slop of AB). Line segments CD and EF are preserved for their
slopes β and δ are all close to α.

Strategy 2 implies that, the distance of two line segments to be connected
are required to be within a proper value. Here, the ”proper value” have
two meanings: The distance from one midpoint of a line segment to the
other is less than a threshold which is usually quite small; Distance between
midpoints of the two line segments should be less than a threshold. As
illustrated in Fig. 7, if AB is the reference line segment, then GH should be
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Figure 6: Strategy 1 for line segment connecting.

Figure 7: Strategy 2 for line segment connecting.

excluded for the distance d1 is too large, and EF is also excluded because
the length M2M3 is too large. However, CD is preserved for the length
M1M2 is enough small, and it should be connected to the line segment
AB. Therefore, strategy 1 guarantees that the connected line segments have
similar directions, and strategy 2 guarantees that the connected line segments
are enough close.

To connect AB and CD, the length of AC, AD, BC and BD are all first
calculated. Then two points with the maximum length are connected. So
AB and CD could be connected into one line segment BC. Note that the
connecting process is iterative, implying that, after connecting AB and CD,
BC will be used as a new line segment and maybe connected with other line
segments. However, AB and CD are labeled and will not be used again.

With the proposed strategies, we could implement the line segment con-
necting process and obtain the result as illustrated in Fig. 8. Subscene (the
airport area) is shown in Fig. 9. Obviously, the line segments are effectively
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Figure 8: Result of whole image after line segment connecting.

connected and this will be helpful for the subsequent detection process.

2.2.3. Parallel line segment accumulating

From Fig. 8, it is clear that line segments in the airport regions are
characterized by following factors:

1. Line segments in the airport area are parallel,

2. Line segments in the airport area are longer than those in other areas,

3. The airport area has denser and more line segments, whereas other
areas like roads or rivers usually have only two line segments.

Based on the characteristics, if we accumulate adjacent parallel line segments
with region growth, then we would obtain regions with different number of
line segments. Among the regions, airport area has longer, denser and more
lines segments than other areas. Therefore, we calculate total length of all
parallel lines in each region, then the region with maximum length is just
the airport area.

The accumulating process starts from randomly choosing a seed line seg-
ment, then any adjacent line segment that has similar orientation to the seed
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Figure 9: Result of subscene after line segment connecting.

line segment will be added to the region of seed line segment. This step is
repeated until no line segments can be added. Finally, the region that has the
densest line segments is chosen as airport region. The accumulating result
is shown in Fig. 10. Note that, to reduce time cost, we choose a few longest
line segments as seeds instead of starting from every line segment. After the
accumulation, we could easily obtain the pixel coordinates of airport area in
the original image by multiplying sampling ratio (in our case, it is 10), thus
locating the airport region as shown in Fig. 11.

3. Airplane detection

After accurately obtaining airport region, we focus on airplane detec-
tion in this section. Although different features, like corners and lines have
been used to detect airplanes [24, 25], most of methods exploit only partial
characteristics of airplanes and would face problems when handling PI with
complex scenes. Therefore, by synthesizing different features, we propose an
airplane detection method based on CFF and HOG feature. The proposed
method contains two main steps as shown in Fig. 12: First, we quickly obtain
airplane candidates by using CFF. Then the trained classifier, Adaboost is
used to validate airplanes with HOG descriptor.

3.1. Airplane candidate locating with circle-frequency filter

CFF is first proposed and successfully applied to face detection. In our
work, it is used to quickly obtain the potential regions of airplanes. Obvious-
ly, an airplane usually has two wings and a long fuselage as shown in Fig. 13,
and it is also symmetrical to the fuselage. Therefore, if we extract an array of
pixels along a circle with a proper center (the center of airplane) and a proper
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Figure 10: Result after line segment accumulating.

Figure 11: Result of airport detection .

11



Figure 12: Process of airplane detection.

radius (the red circle as shown in Fig. 13), then the array approximates to a
sine curve with period 4 as shown in the bottom row. Four peaks and valleys
of the curve coincide with pixels of airplane and background, respectively.
Clearly, the periodicity only happens when the proper circle is chosen, which
means, proper center and proper radius are chosen. Then we could calculate
the fourier transform amplitude of the array, and the amplitude with the
largest value labels the candidate of airplane.

Considering a pixel I(i,j) in an image, fk(k = 0, 1, ..., N − 1) represents
a circle array around the pixel with the radius r, where N represents the
length of array, and r is smaller than half length of wingspan and larger than
half width of fuselage. Then we easily obtain the amplitude of its Fourier
transform [6] response by using the following equation:

F(i,j) = (
N−1∑
k=0

fk cos
cπk

N
)2 + (

N−1∑
k=0

fk sin
cπk

N
)2 (1)

where c is a constant that represents the period in Fourier transform and it
coincides with the period of array. As discussed before, the period of array
is 4. Thus, the constant c is set 8 for the amplitude F(i,j) is maximum only
in this circumstance. Therefore, we obtain the whole CFF response of Fig.
11 as shown in Fig. 14.

From Fig. 14, we see that CFF has rapidly located the airplane candidates
for the response of airplanes are stronger than other places like runways
and flat roads. However, large number of background regions, like edges
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Figure 13: The periodicity of airplane and its CFF result.

Figure 14: The circle frequency response of Fig. 11.
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of buildings and corners of streets, also have strong contrast and confuse
the detection results. To validate true result from the amount of potential
airplane points, learning algorithm will be used to finally locate airplanes in
the next section.

3.2. Precise detection based on HOG descriptor and AdaBoost

In this section, a more precise detection work based on HOG and Ad-
aBoost is needed, thus validating the airplane candidates obtained by ap-
plying CFF. HOG descriptor was first proposed in 2005 and used in the
pedestrian detection. Triggs [17] and Zhu et al. [27] extended the use of
histograms with a dense scan approach. AdaBoost is also an effective learn-
ing algorithm to combine a set of simple weak classifiers and form a strong
classifier with weighted majority vote. Compared with support vector ma-
chine (SVM) [5, 4], AdaBoost provides strong bounds on generalization and
guarantees comparable performance. Therefore, in our system, the above
two methods are applied to finally obtain airplanes. First, HOG descriptors
of the labeled image patches are extracted, then they are used to train the
classifier Adaboost. After that, the trained classifier is used to airplane can-
didates, and we could finally locate airplanes precisely by using region grow
to cluster nearby points.

3.2.1. HOG descriptors and its application

HOG descriptor exploits gradient information and local shape informa-
tion. In the original work for calculating HOG, each normalized sliding win-
dow with size 64×128 was divided into cells of size 8×8 pixels, and each
group of 2×2 cells was integrated into a block with an overlap of one cell in
both horizontal and vertical directions. Then, a nine-bin HOG in each cell
is constructed, while each block contained a concatenated vector. Therefore,
each block was represented by a 36-D feature vector that was normalized to
an L2 unit length and each sliding window was represented by 7×15 blocks,
thus forming a feature vector with 3780 dimensions.

In our work, we compute the HOG descriptor in a similar way but with
a reference image window size of 40×40 pixels, reference block size of 16×16
pixels, reference cell size of 8×8 pixels. Therefore, in each block, we have
2×2 cells and features with 36 dimensions. The calculation will go through
the whole window with step width of 8 pixels. So in each image window,
we obtain HOG descriptor with 576 dimensions, and the whole steps for
calculating HOG descriptor is shown as follows:
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1. Compute the horizontal and vertical gradient of the image by Sobel
filters.

2. Compute both the magnitude and orientation of the gradient.

3. For each block, split the block into 2×2 cells.

4. Compute a nine-bin histogram for each cell.

5. Normalize the histograms within a block of 2×2 cells.

6. Group all the normalized histograms into a single vector with 2×2×9
dimensions.

7. Regard the block as a window, go through the whole image window,
re-group all the histograms into a vector with 36×16 dimensions.

To calculate HOG descriptor, a database including 8000 samples is es-
tablished as shown in Fig. 15. 3000 positive samples (shown in Fig. 15(a))
and 5000 negative samples (shown in Fig. 15(b)) are contained. Moreover,
positive samples are collected from world-wide airport with fuselage angle
ranges from 0◦ to 315◦. Negative samples are randomly collected with a vari-
ety of backgrounds. In our work, HOG descriptors extracted from the above
samples will be applied to train the AdaBoost in the next section.

3.2.2. Application of Adaboost

Given training database with positive and negative samples, the classifi-
er, AdaBoost [10, 11] could be trained. Classification And Regression Tree
(CART) [2] is employed as the weak learners, and detailed training procedure
is shown in the following Algorithm 1:

Here, the iteration number T = 30.
As discussed before, the potential airplane regions could be obtained by

applying CFF and the trained classifier will be directly used to validate the
airplane candidates. We first calculate HOG descriptors of all pixels in the
potential airplane region. Then the AdaBoost classifier is used to eliminate
false points and obtain pixels of airplanes. Finally, we cluster adjacent pixels
by region growing and accomplish the detection task.

In conclusion, the whole system for airplane detection has been estab-
lished as shown in Fig. 16. Obviously, airplane candidate location is critical
for a large PI with complex scenes. Therefore, LSD is first applied to find
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Figure 15: Part of training database. (a) Part of positive images. (b) Part of negative
images.

Figure 16: The whole process for airplane detection.
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Algorithm 1 Training process of AdaBoost.

1: Given training data set (x1, y1), ..., (xm, ym), where (xi ∈ X, yi ∈ Y =
−1,+1), m is the total number of the training data set.

2: Initialize the weight distribution Dt(i) = 1/m(1 ≤ i ≤ m).
3: Main Iteration: For t = 1,...,T

• train the decision tree CARTs with the lowest error.
• Calculate the error of classification results by the following expres-

sion:
εt =

∑
i:hi(xi )̸=yi

Dt(i) (2)

where ht : X → {−1,+1}
• Update the weight distribution by the following expression:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt

=
Dt(i)

Zt

·
{ e−αt if ht(xi) = yi

eαt if ht(xi) ̸= yi
(3)

where

αt =
1

2
ln(

1− ϵt
ϵt

) (4)

and Zt is a normalized factor.
4: The final strong classifier obtained is:

H(x) = sign(
T∑
t=1

αtht(x)) (5)
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airport in the proposed system, thus reducing large computation complexi-
ty. Then CFF is used to further narrow the number of airplane candidates.
Therefore, the pre-processing for airplanes reduces a large amount of calcu-
lations. After that, HOG and AdaBoost are combined to effectively finally
validate airplanes. In the next section, experiments on the real world data
are implemented to confirm the effectiveness of the proposed system.

4. Numerical Experiments

The proposed system is implemented on about 50 remote sensing images
which are obtained from Google Earth. All the images have sizes range from
13000 × 13000 pixels to 17000 × 17000 pixels, and the spatial resolution is
1m. The system is run under C/C++ program, and the computer has an
Intel Core 3.2 GHz CPU, 4GB memory.

Figure 17: Two results of airport detection in our method.

In the first experiment, airport detection module of the system is tested.
Fig. 17 shows two detection results, and both airports are correctly located.
Note that, the airports in Fig. 17 have low contrasts, implying that the
proposed method is effective in images with complex scenes. Some other
methods based on other edge detection methods are also implemented and
one result by using hough transform is shown in Fig. 18. We see that the
obtained result is wrongly located because more interfering lines are obtained
though hough transform. Moreover, detection results with different methods
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Figure 18: Result of airport detection with hough transform.

are listed in Tab. 1 and the detection rate in Tab. 1 is calculated by the
following equation:

Detection Rate =
Number of detected airports

Number of total airports
(6)

Clearly, our method costs least time and obtains the best detection results
for the detection rate of our method is 94%, whereas other methods are much
lower.

Table 1: Comparison of runway detection results between different methods

Method Detection Rate Average Time
Ours 94% 15.2s
Sobel 60.78% 20.5s
Prewitt 66.67% 20.2s
Robert 49.02% 21.2s
Canny 25.49% 16.5s

In experiment two, airplane detection module is implemented on the im-
ages with the above located airport regions, and all image sizes are 5000
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Figure 19: One of the final detection result. (a) The whole detection result of image.
(b)-(c) Subscenes of detection results.
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Figure 20: One of the airplane detection result. (a) The whole detection result of image.
(b)-(d) Subscenes of the detection results.
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× 5000 pixels. The final detection airplanes are marked with rectangles as
shown in Fig. 19 and Fig. 20. Fig. 19(a) and Fig. 20(a) are the detection
results of whole images, Fig. 19(b)-(c) and Fig. 20(b)-(d) are the subscenes
of detection results. In Fig. 19(b), nine airplanes are close to each other
with different directions. However, all of them are correctly located without
false alarm, indicating that the proposed method performs well for airplane
detection. In Fig. 19(c), although four false alarms happen, we obtain all
the airplanes, which means that the proposed system also works well for PIs
with complex scenes. Since airplanes and backgrounds have high contrast in
the parking apron, no false alarm happens and all airplanes are accurately
detected in Fig. 20(b). Note that the proposed system also works well in the
area with low contrast (in Fig. 20(d)) because the HOG descriptor helps to
eliminate most backgrounds like roofs and roads. As discussed before, the
training data for AdaBoost contains airplanes with eight directions. So the
airplanes in Fig. 20(d) with different directions are also detected. However,
In Fig. 20(c), there are three false alarms with the similar shape as airplanes,
implying that false alarms are still inevitable in areas with too complex back-
grounds. In order to quantitatively assess the method, two metrics including
true-positive (TP) rate and false-positive (FP) rate are defined as follows:

TP rate =
Correctly detected airplanes

Total number of airplanes
(7)

FP rate =
Pixel number of falsely detected airplanes

Pixels number of whole image
(8)

In our experiments, the total number of airplanes is 296 and 285 of them
are correctly detected. So the TP rate is superior to 96% and the FP rate
is superior to 0.043%. It is also worth mentioning that, average time cost
for the whole detection including airport detection and airplane detection
modules is less than 2.5 minutes, indicating that the proposed system is a
practical approach for the detection task in large PI.

5. Conclusions

This paper proposes an automated airplane detection system for the large
PI with high spatial resolution. Two main modules which utilize character-
istics of objects are contained in the system. Two fast algorithms, LSD and
CFF, are applied in our system to respectively locate airport and airplane,
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thus narrowing the airplane candidates from the complex backgrounds and
helping to reduce a lot of unnecessary calculations. Finally, HOG descriptor
and AdaBoost are combined to validate the airplanes. Experiments with real
world data demonstrate the efficacy of the proposed system with the TP rate
is more than 96%, and the FP rate is less than 0.05%. Moreover, the average
time cost is less than 2.5 minutes. Therefore, the proposed detection system
is a good choice when handling large PIs with high spatial resolution and
complex scenes.
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