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a  b  s  t  r  a  c  t

Automatic  target  detection  is a  research  focus  in  hyperspectral  image  processing  field.  Algorithms  such
as the matched  filter (MF)  and  the  adaptive  coherence/cosine  estimator  (ACE) directly  use  the prior
knowledge  of  target  spectral  signatures  to detect  targets.  In this  paper,  we  propose  a difference  measured
eywords:
yperspectral image processing
arget detection
ifference measured function

function  based  matched  filter  (DFMF),  which  could  include  the  famous  algorithm  MF  as  a  special  case.
The DFMF  uses  a new  measured  function  to  build  an objective  function,  and  utilizes  the  gradient  descent
method  to  find  an optimal  projection  vector.  After  finding  the  optimal  projection  vector,  the  interesting
targets  can  be detected  in the  projection  space.  The  experimental  results  demonstrate  the  proposed
algorithm  could  detect  interesting  targets  effectively  and  performs  better  than  some  other  experimental

algorithms.

. Introduction

The hyperspectral image with two spatial dimensions and one
pectral dimension is referred to “data cube” [1]. A prominent fea-
ure of the hyperspectral image is the high spectral resolution. The
yperspectral imaging sensor provides each pixel a nearly contin-
ous spectrum which usually has dozens of or hundreds of narrow
ands, and the width of each band is usually about 10 nm [2,3]. Uti-

izing the spectral information, targets of interest can be detected
ffectively. Due to the important applications both in the military
nd the civilian fields, the automatic target detection has become

 research focus in the hyperspectral image processing field.
Several target detection algorithms for hyperspectral images

ave been developed. The matched filter (MF) [1,4,5] and the

daptive coherence/cosine estimator (ACE) [1,6–9] are two  famous
lgorithms. Both the MF  and the ACE have geometric interpreta-
ions. If we use the whitening transformation, which can make the
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components of spectra be uncorrelated and their variances equal
unity, the output of the MF  can be seen as the projection of the
whitened test pixel’s spectrum to the whitened target signature,
and the output of the ACE can be seen as the cosine square of the
angle between the whitened test pixel’s spectrum and the whitened
target signature [1,10]. Thus, both the MF and the ACE measure
the similarity of the test pixel’s spectrum and the target signature
in the whitened space, but in different ways. Another famous and
widely used target detection algorithm is the constrained energy
minimization (CEM) [11–13] detector. The formulations of the MF
and the CEM are very similar. In fact, if we do a mean removing
preprocessing, the CEM becomes the MF  [1].

In this paper, we  propose a difference measured function based
matched filter (DFMF) which uses a new measurement, and can
include the MF  as a special case. The algorithm finds an optimal pro-
jection vector through solving a constrained optimization problem.
Then, we  project the whitened test pixels’ spectra to the optimal
projection vector, and detect interesting targets in the projection
space.

The following paper is organized as follows. In Section 2, we give
a brief introduction to the MF  and the ACE. Section 3 proposes the
new algorithm, and Section 4 proofs the stability of the proposed
algorithm. In Section 5, some experimental results and analyses are
given. Some conclusions are drawn in Section 6.
2. A brief introduction to the MF  and the ACE

The spectrum of a K-band pixel can be represented in a vector
form as x = [x1, . . .,  xK]T, where T denotes matrix transpose. The

dx.doi.org/10.1016/j.ijleo.2012.09.003
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
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pectra of an N-pixel hyperspectral image can be arranged in a
atrix form as X = [x(1), . . .,  x(N)], where the size of X is K × N.

 K-dimensional vector d = [d1, . . .,  dK]T is used to represent the
pectral signature of the interesting target, and d can be obtained
rom the spectral library.

For a pixel’s spectrum x, the output values of the famous MF  and
CE are [1]:

MF = DMF (x) = (x − �)T �−1(d − �)

(d − �)T �−1(d − �)
(1)

ACE = DACE(x) = [(d − �)T �−1(x − �)]2

(d − �)T �−1(d − �)(x − �)T �−1(x − �)
(2)

here � = E{x} is the mean spectrum of the hyperspectral image,
nd � = E{(x − �)(x − �)T} is the covariance matrix. Usually, DMF(x)
r DACE(x) is compared to a threshold �. If DMF(x) > � or DACE(x) > �,

 is determined as a target pixel; otherwise, it is determined as
ackground. If we use x̃  to denote �−1/2(x − �) and d̃  to denote
−1/2(d − �), yMF and yACE can be rewritten as [1]:

MF = DMF (x) = d̃
T
x̃

d̃
T
d̃

(3)

ACE = DACE(x) = (d̃
T
x̃)2

‖d̃‖2‖x̃‖2
= cos2� (4)

here � is the angle between d̃ and x̃.  �−1/2(x − �) and �−1/2(d − �)
an be seen as the whitening processing. After the whitening
rocessing, the covariance of the whitened x̃ is I, which means the
hitened data’s components are uncorrelated and their variances

qual unity [1,10]. Note that d̃
T
d̃ is a constant, and has no influence

o the detection result. From (3) and (4), it can be seen that the out-
ut of MF  is the projection of x̃ to d̃, and the output of ACE is the
osine square of the angle between x̃ to d̃ [1]. In fact, the MF  and
he ACE directly use the similarity of d̃ and x̃ in the whitened space
o determine whether x̃ belongs to a target pixel or not.

. The proposed algorithm

Like the MF,  we can find a projection vector w = [w1, . . . , wK ]T

hat can separate the target pixels and background pixels by pro-
ecting the whitened spectra to w. The MF  and the ACE directly
se the similarity of d̃ and x̃ to detect targets. We  can use a new
easurement to find the projection vector w. The w can be found

y minimizing E{G[(w − d̃)T x̃]}, where G is a function to measure
he difference of the projection of the whitened data x̃ to w and d̃.
ince G is a difference measured function, G(0) should be zero; for
reventing the bias of negative difference and positive difference

etween d̃
T
x̃ and wT x̃, we require G to be an even function [14].

enerally speaking, G should be functions like quadratic function
r quartic function, and should not increase too rapidly to prevent
he algorithm is sensitive to outliers [14]. In order to make the algo-
ithm stable, we add the norm constraint ‖w ‖ =1. The constrained
inimization problem becomes:

min  � (w) = E{G[(w − d̃)T x̃]}
s.t. ‖w‖ = 1

(5)
here G is a difference measured function (such as G(u) = log cosh u)
14]. After getting the optimal projection vector w,  we  project the
hitened data x̃ to w,  and get the output of DFMF: yDFMF = wT x̃.
2013) 3017– 3021

If we  select the function G as G(u) = u2, the constrained mini-
mization problem becomes:

min  � (w) = E{[(w − d̃)T x̃]2} = E{wT x̃x̃T w − 2wT x̃x̃T d̃ + d̃
T
x̃x̃T d̃}

= wT �w − 2wT �d̃ + d̃
T
�d̃

s.t. ‖w‖ = 1

(6)

For the whitened data, � = I, and we  can get the closed form
solution:w = d̃/‖d̃‖. Then, the output of DFMF is:

yDFMF = wT x̃ = d̃
T
x̃

‖d̃‖
(7)

Comparing (7) with (3), we  can find that yDFMF = ‖d̃‖yMF . For a given
hyperspectral image, ‖d̃‖ is a constant, so there is no difference
between the detection results of DFMF and MF, when G(u) = u2.
Thus, MF  can be seen as a special case of DFMF. The only difference
between the CEM and the MF  is that the CEM uses the correla-
tion matrix, while the MF  uses the covariance matrix. If we remove
the mean of the hyperspectral image from all pixels, the correlation
matrix equals the covariance matrix, and the CEM becomes the MF.
Thus, we can also see CEM as a special case of DFMF.

If we select G as G(u) = log cosh u, we actually measure the

sparseness of the difference between wT x̃ and d̃
T
x̃. Except the

quadratic function, if we  select some other difference measured
functions, such as G(u) = log cosh u and G(u) = u4, there is no closed
form solution. In this case, we use the simple gradient descent
method [15] to solve the optimization problem. The gradient of
� (w) to w is:

∂� (w)
∂w

= E{g[(w − d̃)T x̃]x̃} (8)

where the function g is the derivative of G.
We have the following gradient descent iterations:

w ← w − �
∂� (w)

∂w
(9)

w ← w/‖w‖ (10)

where � is the learning rate. The difference measured function
based matched filter (DFMF) is obtained as follows:

Algorithm outline: DFMF

(1) Center the hyperspectral image data to make the mean zero,
and whiten the data to give x̃. Choose a random initial value
for w such as w = [1, 0, 0, . . .]T, and make it norm one. Choose a
suitable learning rate �. In this paper, � is set to 1.

(2) Update the weight vector by

w ← w − �E{g[(w − d̃)T x̃]x̃} (11)

w ← w/‖w‖ (12)

(3) Set a convergence criteria: if ‖w − wold ‖ <10−4, stop. If not con-
verged, go back to step (2).

(4) Project the data x̃ to w, and get the detection result wT x̃.

The larger the detection result wT x̃ of a pixel is, the more likely
the target is present in the pixel. Furthermore, a threshold � can
be set, if wT x̃ > �, we  determine the target is present in this pixel;
else if wT x̃ < �, we  determine the target is absent in this pixel.

4. Stability of the DFMF
In this section, we proof the stability of the DFMF. The spec-
trum of the hyperspectral image is assumed to follow the linear
spectral mixing model [1,16]: x̂ = Su =

∑M
i=1siui, where x̂ is the

mean removed spectrum. For the linear spectral mixing model, the
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5. Experimental results

In this section, a synthetic hyperspectral image and a real hyper-
spectral image were used to do experiments. To see how different
Z. Shi et al. / Optik

pectrum x̂ is assumed to be the linear mixture of M deterministic
pectra s1, . . .,  sM named endmembers, and u1, . . .,  uM are the cor-
esponding abundances. Among s1, . . .,  sM and u1, . . .,  uM, sk and uk
re used to denote the endmember and the abundance of the inter-
sting target, respectively. The whitened spectrum is x̃ = �−1/2Su,
here x̃ is the whitened spectrum and � is the covariance matrix.
enote A = �−1/2S, and a1, . . .,  aM are the columns of the matrix A.
hen, we have the following theorem:

heorem 1. Assume that spectra of the hyperspectral image follow
he linear spectral mixing model and the abundances u1, . . .,  uM are
ndependent with each other. Furthermore, suppose the endmember
umber M is equal to the spectral band number K. Also, assume abun-
ances are independent with each other, E{u} = 0, and E{uuT} = I. The

nteresting target’s whitened spectral signature d̃ is  assumed to locate
n the orthogonal subspace of span{al(l = 1, . . .,  M,  l /= k)}. Then, with
he constraint ‖w ‖ =1,  the local minima of � (w) in (5) include the kth
olumn of the matrix A if the following inequality holds.

{g′(uk − d̃
T
akuk) − ukg(uk − d̃

T
akuk)} > 0 (13)

here the function g is the derivative of G, and g′ is the derivative of g.

roof. The proof refers to [17–20]. We  only prove the case that
 = 1, the proofs of the other cases (k /= 1) are similar. After the
hitening processing, we get:

{x̃x̃T } = �−1/2SE{uuT }(�−1/2S)T = AE{uuT }AT = I (14)

nder the assumption E{uuT} = I, we have AAT = I. Noting that M = L,
 is a square matrix. Thus, A is an orthogonal matrix.

We make the transform z = ATw.  Noting that A is an orthogonal
atrix, (5) becomes:

min  �2(z) = E{G(zT u − d̃
T
Au)}

s.t.‖z‖ = 1
(15)

he gradient and the Hessian of � 2(z) are:

�2(z) = E{g(zT u − d̃
T
Au)u} (16)

2�2(z) = E{uuT g′(zT u − d̃
T
Au)} (17)

˜
 is assumed to locate in the orthogonal subspace of span{a2, . . .,
M}. This assumption is reasonable. Because a2, . . .,  aM denote these
hitened background endmembers, and the assumption means

he interesting target’s whitened spectral signature d̃  is orthogonal
ith the subspace spanned by the whitened background endmem-

ers. Thus, d̃
T
Au = d̃

T
a1u1. Then (16) and (17) become:

�2(z) = E{g(zT u − d̃
T
a1u1)u} (18)

2�2(z) = E{uuT g′(zT u − d̃
T
a1u1)} (19)

We  analyze the stability of the point z = e1, where e1 = (1, 0, 0,
 . .)T. Calculating the gradient and the Hessian at point z = e1, and
tilizing the independence of the ui, we obtain:

�2(e1) = e1E{u1g(u1 − d̃
T
a1u1)} (20)

2�2(e1) = diag{E[u2
1g′(u1 − d̃

T
a1u1)],

E[g′(u1 − d̃
T
a1u1)], E[g′(u1 − d̃

T
a1u1)], . . .}  (21)

aking a small perturbation ε, we obtain:
2(e1 + ε) = �2(e1) + εT∇�2(e1) + 1
2

εT∇2�2(e1)ε + o(‖ε‖)2

= �2(e1) + ε1E{u1g(u1 − d̃
T
a1u1)} + 1

2
E{u2

1g′(u1 − d̃
T
a1u1)}ε2

1

Fig. 1. The first band of the real hyperspectral image.

+ 1
2

E{g′(u1 − d̃
T
a1u1)}

∑
j /=  1

ε2
j + o(‖ε‖2) (22)

Because of the constraint ‖z ‖ =1, we  get ε1 =
√

1 −∑
j /=  1ε2

j
− 1.

We notice that
√

1 −  ̌ = 1 − ˇ/2 + o(ˇ). Thus, the term of order ε2
1

in (22) is o(‖ ε ‖ 2), i.e., of higher order, which can be neglected. We
obtain ε1 = −

∑
j /= 1ε2

j
/2 + o(‖ε‖2) by using the first-order approx-

imation for ε1. Finally, we  obtain:

�2(e1 + ε) = �2(e1) + 1
2

E{g′(u1 − d̃
T
a1u1) − u1g(u1 − d̃

T
a1u1)}

×
∑
j /= 1

ε2
j + o(‖ε‖2) (23)

which proves z = e1 or w = a1 is a minimum under the conditions of
the theorem.
Fig. 2. The 20th band of the synthetic hyperspectral image.
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Fig. 3. ROC curves of different difference measured functions for the synthetic
hyperspectral image.
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unctions G in Eq. (5) affect detection results, different functions
ere chosen, and the results were compared. The proposed algo-

ithm was compared with some other algorithms. We  used the
eceiver operating characteristic (ROC) [1,21] curves to quantita-
ively evaluate the detection algorithms. The ROC curve plots the
etection probabilities vary with the false alarm rates [1,22,23].

 higher ROC curve means the detection algorithm can achieve a
igher detection probability under the same false alarm rate, and
hus the corresponding algorithm is better.
ig. 4. Detection results of different algorithms for the synthetic hyperspectral
mage. (a) The detection result of the DFMF for the synthetic hyperspectral image.
b) The detection result of the MF  for the synthetic hyperspectral image. (c) The
etection result of the CEM for the synthetic hyperspectral image. (d) The detection
esult of the ACE for the synthetic hyperspectral image.
Fig. 5. ROC curves of different algorithms for the synthetic hyperspectral image.

5.1. Synthetic hyperspectral image experiments

We  used the real hyperspectral image collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor to design a
synthetic hyperspectral image. Fig. 1 shows the first band of the real
hyperspectral image. The scene is a part of the San Diego airport.
The AVIRIS collected data in 224 bands, and the spectral coverage
was from 0.4 �m to 2.5 �m [2]. After removing water absorption
and low SNR bands, we  had 189 bands left. There are three airplanes
in the real hyperspectral image as shown in Fig. 1. We  removed two
of the three airplanes and implanted the two  removed airplanes to
another part of the San Diego airport to design a synthetic hyper-
spectral image with 200 × 200 pixels. Fig. 2 shows the 20th band of
the synthetic hyperspectral image.

To see how different difference measured functions affect the
detection results of the proposed algorithm DFMF, we  chose three
different functions: G(u) = u2, G(u) = u4 and G(u) = log cosh u to do
experiments. Fig. 3 shows the ROC curves of these three func-
tions. From Fig. 3, we can see G(u) = log cosh u performs best.
We compared the DFMF with the MF,  the CEM, and the ACE.
Since G(u) = log cosh u had the best detection result among the
three experimental difference measured functions, G(u) = log cosh u
was used in the DFMF. Figs. 4 and 5 show the detection results
and ROC curves of different algorithms, respectively. In Fig. 5,
ROC curves of the MF  and the CEM are almost overlapped.
From Figs. 4 and 5, we  can see the performance of the DFMF is
best.
Fig. 6. ROC curves of different difference measured functions for the real hyper-
spectral image.
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Fig. 7. Detection results of different algorithms for the real hyperspectral image. (a)
The detection result of the DFMF for the real hyperspectral image. (b) The detection
result of the MF for the real hyperspectral image. (c) The detection result of the
CEM for the real hyperspectral image. (d) The detection result of the ACE for the real
hyperspectral image.
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Fig. 8. ROC curves of different algorithms for the real hyperspectral image.

.2. Real hyperspectral image experiments

In this section, we  used the Fig. 1 shown real hyperspectral
mage to conduct experiments. We  also chose the three functions:
(u) = u2, G(u) = u4 and G(u) = log cosh u for the DFMF. Fig. 6 shows

he ROC curves of these three functions. Once again, the perfor-
ance of G(u) = log cosh u is best. The DFMF was  compared to the

F,  the CEM, and the ACE. G(u) = log cosh u was  used in the DFMF.

he Detection results and ROC curves of different algorithms are
hown in Figs. 7 and 8, respectively. ROC curves of the MF  and the
EM are almost overlapped in Fig. 8. Figs. 7 and 8 indicate the DFMF

[

[

2013) 3017– 3021 3021

behaves best. The experimental results demonstrate for the real
hyperspectral image, the DFMF performs better.

6. Conclusion

A new target detection algorithm for the hyperspectral image is
proposed in this paper. The algorithm uses a difference measured
function to build an objective function, and transforms the tar-
get detection to a constrained optimization problem. The gradient
descent method is utilized to solve the constrained optimization
problem. We  also find the proposed algorithm could include the
MF as a special case. One synthetic hyperspectral image and one
real hyperspectral image were used to do experiments. The exper-
imental results show the proposed algorithm behaves better than
the other experimental algorithms. Performances of different dif-
ference measured functions were also compared, and the results
show the G(u) = log cosh u is a good choice.
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