@ARTICLE{10976421, author={Lyu, Shuchang and Zhao, Qi and Sun, Yaxuan and Cheng, Guangliang and He, Yiwei and Wang, Guangbiao and Ren, Jinchang and Shi, Zhenwei}, journal={IEEE Transactions on Geoscience and Remote Sensing}, title={Unsupervised Domain Adaptation for VHR Urban Scene Segmentation via Prompted Foundation Model-Based Hybrid Training Joint-Optimized Network}, year={2025}, volume={63}, number={}, pages={1-17}, keywords={Remote sensing;Training;Decoding;Semantic segmentation;Foundation models;Adversarial machine learning;Adaptation models;Semantics;Feature extraction;Optimization;Hybrid training;prompted foundation model;semantic segmentation;unsupervised domain adaptation (UDA);urban scene;very-high-resolution (VHR) images}, doi={10.1109/TGRS.2025.3564216}}