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Abstract—Ship detection in optical remote sensing imagery has
drawn much attention in recent years, especially with regards
to the more challenging inshore ship detection. However, recent
work on this subject relies heavily on hand-crafted features
that require carefully tuned parameters and on complicated
procedures. In this paper, we utilize a fully convolutional network
(FCN) to tackle the problem of inshore ship detection and design
a ship detection framework that possesses a more simplified pro-
cedure and a more robust performance. When tackling the ship
detection problem with FCN, there are two major difficulties: 1)
the long and thin shape of the ships and their arbitrary direction
makes the objects extremely anisotropic and hard to be captured
by network features and 2) ships can be closely docked side
by side, which makes separating them difficult. Therefore, we
implement a task partitioning model in the network, where layers
at different depths are assigned different tasks. The deep layer
in the network provides detection functionality and the shallow
layer supplements with accurate localization. This approach
mitigates FCN’s trade-off between localization accuracy and
feature representative ability, which is of importance in the
detection of closely docked ships. The experiments demonstrate
that this framework, with the advantages of FCN and the task
partitioning model, provides robust and reliable inshore ship
detection in complex contexts.

Index Terms—inshore, ship detection, fully convolutional net-
work, optical remote sensing.

I. INTRODUCTION

HE ship detection in remote sensing imagery has been

under extensive investigation over the last decades, both
in synthetic aperture radar (SAR) imagery and in optical
imagery. Recently, ship detection in optical imagery is under
more active research because of its high resolution and human
eye friendly color presentation.

A considerate amount of research in optical imagery focuses
on the detection of different types of objects, such as roads
[1], buildings [2], oil tanks [3], vehicles [4] and ships [5], [6].
Aside from detecting scattered objects, the classification of
scenes also received a lot of attention recently, such as in [7],
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where the objective is to classify image patches into different
categories, such as buildings, forests, harbors, etc.

Inshore ship detection presents more challenges seeing that
the targets have extremely long and thin shapes and are subject
to rotation. They are also surrounded by complex contexts
such as nearby ships and docks. Consequently, recent research
on inshore ship detection has been based on the detection of
ship foredecks first and has been focusing on carefully hand-
crafted features. Methods in [8] and [9] both use Harris corner
detection for ship foredeck detection while [10] relies on line
segment detection for preliminary proposal selection. These
approaches also rely on procedures such as edge extraction
and image binarization that require carefully tuned parameters
and do not generalize well when the targets are not presented
in ideal quality.

Recently, convolutional neural networks (CNN) have been
utilized in a large number of applications on remote sensing
images [11]. Fully Convolutional Networks (FCN) is a special
kind of CNN that is used to label remote sensing images pixel
by pixel [12], [13]. CNNs and FCNs do not rely on hand-
crafted features and are able to automatically learn features
from labeled data and thus are easy to implement. They also
show great generalization ability in wide range of applications.
Therefore, we are motivated to replace hand-crafted features
with a robust FCN framework.

Neural networks occupy a dominant position in detection
and classification in everyday images. However, its trade-off
between localization accuracy and representative ability is a
rarely mentioned limitation. The size difference between tar-
geted objects in everyday images and remote sensing images is
also seldom mentioned. Objects in remote sensing images can
be small and closely arrayed, making the accurate localization
of targets more important. Recent study shows the increase
in the depth of layers increases the representation ability
[14]. However, the incurred increased scale of down-sampling
also decreases localization accuracy and can inhibit its use in
remote sensing images.

In this paper, we partition the detection task among the
network layers at different depths to combine the advantages
of shallow and deep networks, featuring both localization
accuracy and representative ability. In our proposed method,
the deep part of the network is used to provide a coarse-
positioned detection and also a confined, more managed and
thus simpler problem space for the shallow part, which then
is able to supplement with accurate localization. The task
partitioning model presents similarities to the attention model
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Fig. 1. The structure of the proposed network. All the convolutional layers are
marked by light blue blocks and the size of blocks approximately indicates
the number of included layers. The pink block denotes the foredeck/stern
detection result produced by the shallow path, which has high localization
accuracy. The dark blue block denotes the attention map produced by the
deep path which has high recall/accuracy performance.

[15] used in neural network community. Nevertheless, the
implementation details and the concepts of these two models
are quite different. We will provide a brief introduction to
the attention model and a comparison for clarity. We also
use similar terms, such as attention map, in the following
sections. Moreover, the idea of attention map is also similar to
saliency detection [16]-[18] and we refer the interested readers
to related literature.
The main contributions of our work are as follows,

o Focusing on the problem of inshore ship detection, we
replace hand-crafted features with those learned by FCN,
which allows unified optimization rather than individually
tuned parameters and constitutes a more robust and
scalable framework.

o With the task partitioning model, the tasks of localization
and detection are partitioned onto different layers of
the network, thereby mitigating the localization accu-
racy/detection ability trade-off common in FCNs and is of
vital importance in ship detection tasks in remote sensing
imagery.

In Section II we give a brief introduction to FCN and the
attention model. Section III describes the proposed FCN with
task partitioning. Section IV demonstrates the performance of
our framework and Section V concludes the letter.

II. RELATED WORK

CNN is extremely effective in image related tasks, such as
object detection and classification [19], [20]. A CNN consists
of a cascade of convolutional layers which convolute their
inputs with kernels and pass the outputs along in order.
The layers are also occasionally interleaved with activation
functions, such as ReLU [21], to enhance the network’s
ability to represent non-linear features, and pooling layers, to
reduce computation complexity and improve robustness and
generalization ability. Typically, one or two fully connected
layers are located at the end to produce a scalar label as the
output of the network.

The convolutional layers keep their calculated outputs in
accord with the inputs spatially, whereas the fully connected
layers produces feature vectors or scalar labels that have no
direct spatial information. FCNs are a type of CNN designed
to predict a label map rather than a scalar label for an input
image, by replacing fully connected layers in CNN with small
sized convolutional layers and are often used in pixel-labeling
task [22].

NN

Fig. 2. The images (a) and labels (b) used to train the network. Results from
deep and shallow paths are shown in (c,d), respectively. Here different gray
levels indicate different categories (sea, land, ship body and foredeck/stern).
The first 3 classes are regarded as non-attention and the foredeck/stern (white)
is attention in the attention map. Note that the results (d) are the ones that
have gone through the attention map so the redundant detection results outside
attention are not shown. The final results are shown as composite images (e)
for clarity.
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The convolutional networks are trained through stochastic
gradient descent, which includes iterative forward passes that
takes labeled data as input, and backward propagations that
update the parameters (i.e. weights) to minimize the difference
between the actual and desired outputs, otherwise known as
the loss of the network.

The attention mechanism is a design pattern that was
recently widely used in neural network community. It first
achieved successful implementations in language understand-
ing such as machine translation [23] and later in visual
tasks such as [15]. These approaches train the networks to
generate both feature maps that encode the information of
the input, and the attention maps that reveal regions of the
feature maps where the following parts of the network should
focus on. In our approach, however, we follow another line
of thought, putting back-propagating loss, rather than feature
maps, through the attention maps.

III. PROPOSED METHOD
A. Motivation

Unlike everyday images where the coverage of an image
is always limited and the objects of interests are usually
near the center of an image, remote sensing images, if not
manually selected and cropped, usually have no specific region
of interest. Consequently, to understand a remote sensing
image, it is reasonable for machine learning to provide a label
for each pixel of the image, rather than a single label for the
entire image. In this paper, we use FCN to label every pixel
in the remote sensing images.

Recent CNN backbones such as Resnet and VGG are
effective in visual tasks such as everyday object classification
and segmentation. These networks all have a large number
of layers and a high amount of down-sampling with pooling
layers (usually 8x, 16x) because the targeted objects often have
a radius of over hundreds of pixels. In our dataset, however,
with image resolution at 1 meter/pixel, the distance between
the center of two ships that are docked side by side is less than
20 pixels, and the down-sampling will merge these two ships
into neighboring pixels as can be seen in Fig. 2c. Because



a ship also can have the length at over 200 pixels and can
be positioned at any orientation in the image, a shallow and
simple network will not be able to effectively detect even small
parts such as foredecks or sterns.

We introduce the idea of task partitioning into this detection
framework, which mitigates the need for CNN’s representative
ability by confining the problem space with the deep layers,
and acquires accurate localization with the shallow layers.

B. Proposed Network

The structure of our proposed network can be seen in
Fig. 1. We base our network on Resnet-50 [14] and modify
it into a fully convolutional network by replacing the last
fully connected layers with convolution layers (Res-FCN).
We nominally split the original network into 2 parts, the
shallow layers and the deep layers. We add two convolutional
layers after the shallow layers and lead the network into
a separate shallow path and the deep layers establish the
deep path after the shallow layers. Here the deep path is
designed to produce the aforementioned attention maps, and
the shallow path is designed to produce the detection results
with accurate localization. The combination of attention maps
and the detection results from the shallow path allows the
network to produce results that have high recall/accuracy and
high localization accuracy.

We formulate the problem as the detection of key points of
the ships, i.e. foredecks and sterns. The FCN is widely used
as segmentation frameworks, but the impact will be minimal
if we train FCN to segment the areas that are regarded as the
center of the target objects. The segmentation areas can then
be clustered into key points in the same ways in detection
frameworks, such as non-maximum suppression (NMS). The
figures in this paper are all presented as in segmentation
problems to conform to the nature of the FCN.

We label the training data with 4 labels, foredeck/stern,
ship body, sea and land (see Fig. 2). By providing sea and
land labels, we hope to prevent the network from degenerating
and thus to enhance the generalization ability of the network,
considering that most of the areas in a remote sensing image do
not contain ships and yet we keep the network “active” in those
areas nonetheless. The deep path, which produces the attention
maps, is trained with these labels to discriminate these classes
and provide coarse locations and the shallow path, is trained
to provide accurate locations of the foredecks/sterns. With the
attention map from the deep path, the shallow path only has
to locate the accurate positions of the foredecks/sterns within
the coarse foredeck/stern candidates.

We additionally include a variation in the training labels
for the shallow/deep path to make them more suitable in their
tasks. The foredeck/stern areas in the labels given to the deep
path are morphologically dilated to increase recall rate of the
detection. The opposite is done for shallow path to increase
accuracy in localization.

The experiments show that with the simplified problem
space, the shallow path, despite its limited depth, is able to
locate the foredeck/stern accurately with high recall/precision.
With the foredeck/stern candidates, the task of locating the

whole ships becomes trivial. We extract rectangle patches
that have one foredeck/stern on each end and use a simple
convolutional network to valid the candidates.

C. Conventional Attention Model

The conventional attention model exerts focus, i.e. weights
on features and thus relieves the following network layers of
features that are regarded useless. Here we denote the input
features from previous part of the network by f € REXH*W,
First, a summarized feature map is calculated by the attention
model as follows,

s=g(W+f+b) (1)

where * denotes convolution operation, W denotes the convo-
lution filter and g the non-linear activation function. This can
be viewed the same as a conventional layer, with the exception
that s € REXHXW (' = 1. Next, a spatial softmax operation
is applied on s, which can be regarded as a normalization,
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where [ is the spatial index of the features which includes
2 dimensions (z,y) corresponding to the size of s, H and
W, respectively. L marks the neighboring locations of . Here
the calculated o is the attention map and is then applied on
features via element-wise production across channels. Features
with large corresponding values in the attention map are
reserved and those with small ones can be viewed as discarded.

a(l) 2)

D. Proposed Task Partitioning Model

The task partitioning model in our approach is implemented
from another perspective. The network is separated into 2
paths, shallow and deep path. The deep path has more discrim-
inating ability and produces the attention map and is trained
explicitly. The attention map is applied on the shallow path and
affects the shallow path losses that are taken into consideration,
rather than the feature. In the training stage, the deep path
helps to provide a simpler problem space for the shallow path,
i.e. it uses its attention map to decide which easy part of the
problem the shallow path needs to solve and which it does
not, allowing the shallow path to focus on finding the accurate
location of the targets. In the inference stage, the attention map
decides which of the detections from shallow path are valid.

The process of producing and applying the attention map
can be formulated as follows,

s=g(Wxf+D) .5 € RZXHXW 3)
ow = 1(8(011) < 8(1’1)) ,O0 € RVHXW 4)
d=cOo @)

where 1(e) denotes the element-wise function that outputs 1
when its corresponding input element is true and otherwise 0.
© is the element-wise multiplication operation and c is the loss
that goes through the attention map. The deep path is trained
discriminately and the training follows the conventional object
classification scheme in neural network study. Because here,



Fig. 3. Outputs of proposed network. Original images (Top), detection
results (Middle-Top), attention maps (Middle-Bottom) and Composite results
(Bottom) for clarity. Here in the attention maps we show all the classification
results (4 classes) for completeness and when acting as attention maps, only
the white areas are attention areas.

for simplicity, the classification problem is reduced to two cat-
egories (attention and no attention), we simplify the equation
into comparing the 1st dimension of s on every spatial location
[ (intuitively, the two elements on every [ denote the scores
for non-attention, attention, respectively). Different from the
aforementioned conventional attention model, which produces
soft scores, our model produces binary attention maps.

In our experiment, we train the deep path to classify pixels
into 4 classes (sea, land, ship body, foredeck/stern) and when
used to produce attention maps, the Ist three classes are
regarded as non-attention.

IV. EXPERIMENTS

A. Experiment Dataset

We experiment our proposed method on an optical remote
sensing dataset collected from Google Earth and GaoFen-2
satellite. This dataset contains 24 images each with above
5000 x 5000 pixels and with a resolution of 1 meter/pixel.
These images feature both large harbor areas and rich land
objects, which suits the need to fully test our framework.
We set our method to only detecting battleships longer than
100 meters in order to limit the size range of the targets,
because we surmise that a multi-scale framework and a higher
resolution dataset would be needed for smaller-sized targets.
We select 14 images as our training set to train our Res-FCN
and the rest as the test set. Due to the limitation of GPU
memory, the images are cut into 321 x 321 patches for training.
Moreover, we rotate the patches that include ships to augment
the training set in orientations and lay more attention on ship
objects.

TABLE I
THE PRECISION AND RECALL RATE OF THE METHODS

Method [ tp [ fp [ fn [ Precision [ Recall
Method in [8] 7680 | 480 | 1120 94.1 % 87.3%
Proposed method | 8060 | 340 740 96.1 % 91.7%

B. Qualitative and Quantitative Performance

We test our model on the test set and select the areas
that feature dense distribution of ships to showcase the per-
formance of the method in Fig. 3, which demonstrates the
network produces accurate locations for the foredeck/stern
candidates. Although the results are initially produced by
the shallow network and may produce a large number of
redundant candidates, the attention map from the deep network
is able to filter out these false targets. With the non-maximum
suppression method, the exact location of each foredeck/stern
is able to be acquired and enables further validation.

We use the precision and recall rate to quantitatively eval-
uate our complete ship detection framework on the test set.
These are calculated with

.. tp
Precision = ————
tp+ fp
t
Recall = _P
tp+ fn

where tp, fp, fn represent the number of true positives, false
positives and false negatives in the detection results, respec-
tively. To test our method comprehensively, we augment our
test dataset via flipping, rotation and slight contrast modifica-
tion and acquire a test dataset with 8800 targets in total. We re-
produce the method in [8] as a baseline (Table I), of which the
parameters are hand-selected in regard to the training dataset.
The method in [8] has a few limitations despite its good
performance under ideal circumstances. The method includes
sea/land segmentation by minimizing an energy function with
the split Bregman method, ship foredeck detection with Harris
corner detection and validation with the shape of the foredeck,
ship width and length. The detection and validation procedures
both rely on the sea/land segmentation result and requires
hand-tuned parameters, which compromise the robustness of
the method. Our method outperforms the baseline in that
its procedure is more concise, requires no empirical selected
parameters and is robust in complex context.

C. Discussion on the Task Partitioning Model

To demonstrate the ability and necessity of our task parti-
tioning model, we present an experiment with a multi-scale
network. The widely used multi-scale structure concatenates
the features from layers of different depths to compensate the
down-sampling in the deep layers and to utilize the details
from shallow layers. The network is able to outline the fine
borders of the ships, however, some of the detections of neigh-
boring foredeck/stern occasionally join each other (see Fig. 4)
making the separation difficult. Only the shallow network is
used to obtain the results in Fig. 4. Even though we accomplish
high localization accuracy, the limited representative ability of
the shallow network causes it to produce many false positives.



Fig. 4. Top: the detection results with the multi-scale network. Bottom: the
detection results with the shallow network. The green areas are those detected
as positive. Notice the positive pixels from different ships can join together
and makes separation difficult.

TABLE II
THE COMPARISON BETWEEN DIFFERENT IMPLEMENTATIONS OF THE
NETWORK
Layer 12 | Layer 25 | Layer 12 (hole) | Layer 25 (hole)
Precision 87.4 % 85.4 % 89.1 % 86.0 %
Recall 92.1 % 89.1 % 93.2 % 89.3 %

D. Network Structure Options

We also experiment with the depth of shallow layers and
the hole settings [22] with the network. The original Resnet-50
features 50 convolutional layers and down-samples at layers
1,2,12,25,41. We remove the down-sampling at layer 12 to
decrease the down-sampling factor to 16x and experiment with
the depth of shallow layers at 12 and 25, which correspond to
outputs with down-sampling factor 4x and 8x, respectively. Al-
though layer 25 has more depth, its down-sampling negatively
affects the performance in accurate localization. The detections
of neighboring foredecks/sterns start to join each other. We
also add hole settings on layers 20 and 23, increasing their
effective kernel size to 5, which enlarge the receptive field of
the shallow layers. The experiment shows that the hole setting
slightly increases the performance of the shallow layer. The
comparison results can be seen in Tab. II. Here, we only show
the performance of foredeck/stern detection instead of ship
detection for a more direct presentation.

V. CONCLUSION

With the feature learning power of Res-FCN we manage to
replace carefully hand-crafted features with machine-learned
ones, increasing the generalization ability and scalability of
the model. We use the task partitioning model to mitigate
the limitations of CNNs and partition the task into detection
and accurate localization. This combination demonstrates its
ability to solve the inshore ship detection problem successfully.
The network is currently unable to provide predictions on
the direction of the proposed candidates. For future work, we
aim to train the network to distinguish the direction of fore-
decks/sterns and thus make the framework more informative
and robust.
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