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Scene learning for cloud detection on remote
sensing images

Zhenyu An and Zhenwei Shi∗, Member IEEE

Abstract—Cloud detection plays a major role for remote sens-
ing image processing. To accomplish the task, a novel automatic
supervised approach based on the ”scene learning” scheme is
proposed in this paper. Scene learning aims at training and
applying a cloud detector on the whole image scenes. The cloud
detector herein is a special classifier that is used to separate
clouds from the backgrounds. Concretely, scene learning regards
each pixel of scenes in training image as a sample, and use it
to train a cloud detector. Accordingly, the detecting process is
also implemented on each pixel of testing image using the trained
detector. Generally, scene learning scheme contains two modules:
feature data simulating, cloud detector learning and applying.
We first simulate a kind of cubic structural data (also named
feature data) by stacking different fundamental image features,
including color, statistical information, texture and structure.
Such data synthesizes different image features, and it is used for
cloud detector training and applying. Cloud detector is designed
based on minimizing the residual error between the feature data
and its labels. The detector is easily to be trained because of
its closed-form. Apply the detector and some necessary cloud
refinement methods to the testing images, we could finally detect
clouds. We also theoretically analyze the influence of feature
number and prove that more features lead to better performance
of scene learning under certain circumstance. Comparisons of
qualitative and quantitative analyses of the experimental results
are implemented. Results indicate the efficacy of the proposed
method. Index Terms—Cloud detection, scene learning, feature
data, cloud detector, cloud refinement.

I. INTRODUCTION

W ITH the development of image acquisition technology,
high resolution remote optical images can be more

easily obtained. These images are widely applied to city
surveying, military target recognition, meteorology, change de-
tection, mineral development, and many other fields. However,
analyses on the optical images are often disturbed by clouds.
According to Q. Zhang and C. Xiao’s belief [1], ”cloud covers
more than 50% of the surface of the earth”, and ”many aerial
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photographs will contain cloud regions”, which implies the
universal presence of clouds in optical images. Clouds usually
cause negative influence on the surface studies as they cover
the objects on the grounds. The images may not be negligible
for some special image processing tasks, like change detection,
although the clouds only possess a low percentage in the whole
scene. Therefore, as a crucial preprocessing step for many
subsequent image analyses, cloud detection is a meaningful
work.

In the early studies, researchers usually focused on de-
tecting clouds in images with low spatial resolution, like
NOAA/AVHRR images with about one kilometer square per
pixel. Orthogonal transformation [2]—-”Tasseled Cap” trans-
form was therefore proposed to locate the mist and clouds.
Zhang et al. improved the method and developed a haze
optimized transformation (HOT) [3], and used it for detecting
and characterizing haze/cloud spatial distributions in Landsat
scenes. O. Hagolle et al. proposed a multi-temporal cloud
detection method [4]. It exploited the ”sudden increase of
reflectance in the blue wavelength” and obtains effective
results. However, the method needs a set of images for in
the same grounds at different time, and the demand is not
always satisfied. High temporal and spectral resolutions were
also widely applied in cloud detection. Cihlar et al. exploited
the normalized difference vegetation index (NDVI) to detect
cloud-contaminated pixels, and optionally replace them with
interpolated values [5], and the method is supported by the
AVHRR data. Related work could also be referred to deshadow
or dehaze. Richter and Muller developed a de-shadowing tech-
nique for multispectral and hyperspectral imagery over land
[6]. Richter proposed a haze removal method for multispectral
resolution satellite sensors [7]. Long et al. [8] proposed an
effective and fast dehazing method for single remote sensing
image. However, those methods are not designed for detecting
clouds in remote sensing images and they may face problems.

Recent developments in machine learning provide more
available approaches to cloud detection. Some researchers
treated cloud detection as segmentation problem, namely,
segmenting cloudy areas in the images. Based on prior knowl-
edge of spectral properties, M. S. De Ruyter et al. separated
clouds from backgrounds by applying multiple thresholds [9].
R. Rossi et al. proposed to extract features using SVD from the
cloudy image and then use SVM to accomplish the detection
task [10], but it required the images from the QuickBird and
Landsat 7 satellites be co-registered. Q. Zhang and C. Xiao [1]
proposed a progressive refinement scheme by using a series
of steps to segment clouds from backgrounds in RGB color
aerial photographs, but the parameters setting in the process
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of segmentation should be set carefully. On the other hand,
some researchers regarded the cloud detection problem as a
classification task, which aimed at categorizing all pixels in
the image as cloudy or noncloudy. S. Le Hégarat-Mascle and
C. André used Markov random fields for cloud detection on
high resolution optical images [11] based on three assumptions
of clouds: clouds and shadows are connected; the image
location of the shadow of a cloud is known if we know the
geometry of the acquisition and the sun location; each cloud
and its associated shadow have the same shape and area. G.
Vivone et al. improved the classification rate by introducing a
novel penalty term within the classical maximum a posteriori
probability-Markov random field (MAP-MRF) [12]. However,
the above methods face two main problems: 1) cloudy regions
cannot be accurately distinguished from bright noncloudy
regions 2) both of the algorithms are usually time-consuming

Since existing methods cannot solve the above problems,
we propose a ”scene learning” scheme to accomplish the
task. In this paper, we consider cloud detection in the remote
sensing images with only RGB colors which makes it still
a challenging work because there are less spectral channels
and relatively more complicated backgrounds in the images.
The core principle of the ”scene learning” scheme is to learn
a cloud detector from the training data and then apply the
detector in the testing data. One will see that the proposed
scheme effectively overcomes difficulties in cloud detection
task. The whole processing chain is illustrated in Fig. 1.
Generally, the scheme belongs to the supervised learning
approach, and it aims at training and applying a cloud detector
on the whole image scenes. It contains two main modules:
feature data simulating; cloud detector designing and applying.
Feature data is a kind of new data with cubic structure.
We extract different fundamental features (color, statistical
information, texture and structure) from the original image and
stack them together, then the feature data is formed. Therefore,
each plain of the feature data is an image feature map as shown
in Fig. 1. Such data synthesizes different image features which
provides more information than original image. In the cloud
detector designing and applying module, a cloud detector is
designed and applied with a closed-form. To train the detector,
we label all the pixels of training image, and then minimize
the residual error of the label map and the feature data to
train the detector. Next, applying the trained detector to the
testing image, we could then obtain a saliency map, where
cloudy areas are outstanding and backgrounds are effectively
suppressed (as shown in Fig. 1). Finally, the detection results
can be obtained by using effective cloud refinement methods.

There are some differences between the scene learning
scheme and conventional learning approaches. First, we label
all the pixels rather than small sampled patches. In conven-
tional learning methods, researchers usually sample different
small patches and learn classifier from them. However, in the
proposed method, each pixel is labeled and the whole scenes
of image are applied to obtain cloud detector in training step.
Such implementation could exploit each pixel’s information
and benefit the subsequent cloud boundary refinement. Second,
a closed-form cloud detector is designed which has a concise
form and easily to be implemented. More importantly, it is

more effective than other methods in the cloud detection
task. Third, to apply the detector under the scheme, we
propose to simulate feature data using different fundamental
image features. To explore influence of feature number, we
theoretically prove that more features of the data lead to better
performance of the learning scheme.

The main contributions of our method can be summarized
as follows:

i. A scene learning based cloud detecting frame is proposed.
Under the frame, we design a novel closed-form cloud de-
tector for remote sensing optical images, and the detector
could be learned from all the pixels in the image instead
of sample patches.

ii. We theoritically calculate the residual error for training
data, and we also prove that more features will lead to
better performance of detector.

iii. By utilizing the characteristics of clouds, cloud refinement
based on optimal thresholding method and subsequent
detail refinement is proposed.

The rest of this paper is organized as follows: In Section II,
scene learning scheme is proposed. In Section III, we mainly
discuss the feature data simulating and cloud detector learning,
the approach for choosing and calculating image features,
and properties of the detector. Also, theoretical demonstration
on the influence of data dimensions is provided. In Section
IV, cloud refinement work is presented. An optimal thresh-
olding algorithm and subsequent necessary processing steps,
including small object elimination and internal hole filling are
combined to finally locate clouds. In Section V, experiments
on the real data are implemented. The proposed method
and the state-of-art cloud detection methods are compared in
both subjective and quantitative evaluations. Finally, the paper
comes to the conclusion in Section VI.

II. SCENE LEARNING SCHEME

In the section, scene learning scheme is discussed, which
provides us a novel view for training and applying detector.
It is superior to conventional learning scheme via exploiting
the whole scenes of image and details about the scheme is
discussed in detail as follows.

A. Conventional patch learning scheme and their problems

Supervised learning methods are widely applied for target
detection and classification. Detector training is the most
important step in the task. To train a classifier in conventional
learning and training frame, the positive and negative data are
segmented in small patches (usually smaller than the whole
image). These patches usually have rectangle shape and are
designed according to the object size. Different features, like
histograms of oriented gradients (HOG) [13], local binary
patterns (LBP) [14] and other feature descriptors, are then
extracted from the patches, thus obtaining feature vectors for
the patches (sample images). Obviously, patch size should
be carefully designed and it is usually coincide with the
target size. Once the size is fixed, we should first segment
a large amount of positive and negative samples. Also, the
detecting step is based on extracting and applying features
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Fig. 1. Proposed processing chain for cloud detection. Feature data with high dimension is first simulated using labeled image and then applied to training a
cloud detector with the corresponding label map. Clouds in the testing image could be finally detected using the detector along with some necessary refinement
process.

on the different patches. This feature learning scheme, which
takes the patch as a unit, could be named ”patch learning”
and it achieves successes in pedestrian detection [13] and face
detection [15].

However, the above training scheme may face problems
in cloud detection task for the following reasons: 1. Unlike
conventional targets like pedestrians and faces, clouds in the
image are usually polymorphic, which means clouds cannot
be covered by the fixed size and shape. As illustrated in
Fig. 2, clouds sometimes have so various shapes that they
cannot even be covered by rectangles. Therefore, it brings
difficulties for detecting clouds with different scales. 2. Cloud
boundaries are also crucial for the detection task. However, in
conventional patch learning scheme, researchers focused on
finding the centers of targets and they usually do not clearly
segment object boundaries. As a result, it is not approximate
to apply conventional method to cloud detection in remote
sensing images.

B. Scene learning scheme for cloud detection

To solve the above two problems of conventional ”patch
learning”, we propose a new ”scene learning” scheme. Scene
learning aims at training and applying a cloud detector on
the whole image scenes. The cloud detector herein is a
special classifier that is used to separate clouds from the
backgrounds. Concretely, scene learning regards each pixel
of scenes in training image as a sample, and use them to
train a cloud detector. Accordingly, the detecting process is
also implemented on each pixel of testing image using the
trained detector. Therefore, under the scene learning scheme,
each pixel of image will be exploited as a sample, which could
effectively avoid the problem caused by the small patches in
traditional patch learning method. Generally, scene learning

scheme contains two main modules: feature data simulating
and cloud detector designing.

For cloud detection, four features including color informa-
tion, statistical information, structural information, and texture
information are extracted from the original image. All these
features have the same spatial size, so they could be stacked
into a new data. As shown in Figs. 3(b) and (e), the new
data has a cubic structure, and each plane of the data is a
fundamental feature of original image. Each pixel of such data
could be represented by a column vector and each element
of the vector is a feature value. So the data has the similar
shape as spectra and named ”feature data”. We then label
all the pixels of the input training image instead of different
patches in conventional learning method, as shown in Fig.
3(c) (white pixels stand for clouds and black pixels stand for
backgrounds). Therefore, we have a training data set of both
positive and negative samples, and the number of the training
data set is exactly the pixel number of the image.

All the pixels in the feature data and the labeled image will
be applied for training a cloud detector. In the paper, a closed-
form cloud detector is designed and it is also a column vector.
To apply the detector for detecting clouds, we calculate the
inner product of the testing feature vectors and the trained
detector, thus obtaining a map. In the map, pixels of cloud
areas have much higher gray levels than those of backgrounds,
so the cloud are salient as shown in Fig. 3(f). The map will be
named ”saliency map” and will be quite helpful for segmenting
clouds from the backgrounds. Using effective cloud refinement
methods, we could finally locate clouds. So the core principle
of the proposed method is to train a cloud detector in the whole
scenes rather than only some patches with specific sizes. That
is also the reason why we name the proposed learning scheme
”scene learning” frame.
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Fig. 2. Clouds in the real world. Clouds in (a),(b) and (d) are small while they are large in (c), (e) and (f), and they also have different shapes.

Fig. 3. Detector training and application. (a) is the labeled training data and (c) is its labeled map. (d) shows some input testing images. (f) illustrates the
saliency maps using the trained detector. (b) and (e) show the simulated feature data.
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Under the scene learning scheme, two main problems should
be solved: 1. Feature selection for cloud detection. Simulating
feature data requires different proper fundamental features. 2.
Cloud detector designing. How to train a cloud detector is the
key problem of the paper. In the next section, we will first
mainly discuss the features of color, statistics, structure and
texture, and the the cloud detector designing method.

III. FEATURE DATA SIMULATING AND CLOUD DETECTOR
DESIGNING

A. Feature selection and feature data simulating

Feature data is simulated by stacking different features of
input image. As stated above, we have selected four different
features including color, statistics, structure and textures. Ap-
parently, they are carefully chosen and they could represent
different characteristics of image. Details of the extraction
method of features are discussed as follows.

1) Color: Color plays an important role for cloud detection,
as cloud has obviously different intensity (white) from that of
backgrounds. Three channels in RGB color space, as well as
the hue and saturation components in HSI space [16], [17] are
extracted for each pixel, thus producing 5 color features. The
transformation from RGB to HSI color space is expressed as
follows:

H =

{
θ, Ib ≤ Ig

360− θ, Ib > Ig
(1)

S = 1− 3×min(Ir, Ig, Ib)

Ir + Ig + Ib
(2)

Î = (Ir + Ig + Ib)/3 (3)

θ = cos−1

 [(Ir − Ig) + (Ir − Ib)]/2√
(Ir − Ig)

2
+ (Ir − Ib)(Ig − Ib)

 (4)

where Ir, Ig and Ib are respectively the red, green and blue
channel of input image I. H, S and Î are respectively the
hue, saturation and intensity components in HSI space. Each
feature plane is normalized by subtracting its mean value over
the entire image.

2) Local statistical information: Local statistical informa-
tion is widely used in different image processing areas. It is
not a special local measure for image but contains different
matrices. For cloud detection task, one can observe two facts:
1. Cloud areas usually have higher intensity, as they have
larger reflectivity than other regions. 2. The regions inside
the clouds are generally smooth and have low intensity differ-
ences. Therefore, in the paper, two matrices will be applied to
describe the statistical information to some extent. They are
local mean value and local variance value, which could be
respectively written as:

M(i) =
1

W

W∑
j∈R(i)

Ij (5)

V(i) =

√√√√ 1

W

W∑
j∈R(i)

(Ij − I)
2

(6)

where I is the input image, M(i) and V(i) represent the mean
and variance value of pixel i, R(i) is a local window, W
is the total pixel number in R(i). In practical application,
R(i) is usually a square window with its center at pixel i.
In our experiments, the window width of is R(i) set to 3,
7, 11. The different widths help to obtain statistical results in
different scales. For an image in RGB color space, we obtain 6
dimensions for each band (including mean value and variance
value for three different window widths). Therefore, there will
be 18 dimensions for the RGB image.

3) Texture: Texture provides us with information about the
spatial arrangement of color or intensities in an image. It
is a more descriptive concept than a precise mathematical
definition. It contains quite a lot of different information in the
image and could be categorized into two parts: the structured
approach and the statistical approach, and the latter one will
be adopted in the paper. Concretely, we use Gabor filter [18],
[19], [20], a advantageous and wildly applied method in image
texture and edge description, to obtain the textures..

Gabor filter could be written as:

g(x, y;λ, θ, σ) = exp

(
−x′2 + y′2

2σ2

)
exp

(
i

(
2π

x′

λ

))
where

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

here, λ represents the wavelength of the sinusoidal function,
θ represents the orientation, σ is the standard deviation of
the Gaussian envelope. In our work, λ = {0.8, 1, 1.2},
θ = {0◦, 45◦, 90◦, 135◦} and σ = {1, 1.5, 2, 2.5, 3, 3.5, 4}.
Therefore, there are 84 responses for each pixel, and Fig. 4
shows part of filtering results of Fig. 3(a).

4) Structure: Compared with texture information, structure
information of an image, the ”primary data of human percep-
tion, not the individual details”, is a higher level feature in
feature selection and feature data simulating. J.-F. Aujol et
al. regard images as ”structure+texture” images [21], as they
share the similarity that semantically meaningful structures are
formed by texture elements. Thus, if well separated, image
structure could provide researchers with the core information
about the image. Since information inside the cloud regions is
much less than its structural information, the structural analysis
will benefit the cloud detection. To exploit structure image S
for an input image I, a relative total variation model will be
employed, which could be mathematically written as:

S = argmin
S

N∑
i=1

(Si − Ii)
2
+ λ

(
Φx(i)

Ψx(i) + ε
+

Φy(i)

Ψy(i) + ε

)
(7)

where ε is a small constant, N is the total number of image,
λ is a pre-setting parameter for balance. Φx(i) and Φy(i) are
the general pixel-wise windowed total variation measure. They
represent the absolute spatial difference within the window
R(i) and could be written as:

Φx(i) =
∑

j∈R(i)

gi,j |(∂xS)j |

Φy(i) =
∑

j∈R(i)

gi,j |(∂yS)j |
(8)
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Fig. 4. Part of filtering maps of Fig. 3(c) using Gabor filter. Parameter λ = 0.8 is used for all the maps. From top to the bottom, θ = {0◦, 45◦, 90◦, 135◦},
respectively. From left to the right, σ = {1, 1.5, 2, 2.5, 3}, respectively. .

where j belongs to a window R(i), (∂xS) and (∂yS) respec-
tively calculate the partial derivative in x and y directions of
image S. gi,j is a weighting function, and it is defined as

gi,j = exp

(
− (xi − xj)

2
+ (yi − yj)

2

2σ2

)
(9)

Ψx(i) and Ψy(i) is defined different from Φx(i) and Φy(i),
they are written as:

Ψx(i) =
∑

j∈R(i)

|gi,j(∂xS)j |

Ψy(i) =
∑

j∈R(i)

|gi,j(∂yS)j |
(10)

According to the L. Xu et al. belief [22], equation (8)
and equation (10) respectively form the windowed total
variation map and windowed inherent variation map. Detail
and texture information are visually salient in windowed
total variation maps, while they are indistinctive in inherent
variation map. Their combination map, namely, the expres-
sion

(
Φx(i)

Ψx(i)+ε +
Φy(i)

Ψy(i)+ε

)
is named relative total variation

(RTV) map. In RTV map, meaningful structures are penalized
much less than textures, so it makes main structures stand
out. Thus, the optimization problem (7) could extract the
structure map S. More details about RTV model could be
seen in the work [22]. In our work, we set the parameter
λ = {0.0005, 0.001, 0.0015}, so we obtain 9 structure maps.

All the above 116 feature maps are stacked vertically
to form feature data, including color, statistical information,

texture and structure features. A group of parameters have
been carefully tuned and provided in the above discussions,
and they could be directly applied to cloud detection. In the
next section, details on detector designing and application are
provided.

B. Cloud detector designing

In the section, we design a cloud detector using the above
simulated feature data. The detector has a closed-form by
minimizing the residual error between the data and its labels.
Details of the process could be mathematically analyzed as
follows.

Given a training data set of N points:

D = {(x1, z1), (x2, z2), ..., (xN , zN )} (11)

xi ∈ RL×1 is the observed data (L is the data dimension)
and zi ∈ {0, 1}Ni=1 is label for data i. xi belongs to cloud if
the label zi = 1, otherwise zi = 0. Then a detector wL×1

is expected to be obtained to distinguish the clouds from the
backgrounds, and it could be written as:

wTxi = zi, i = 1, ..., N (12)

In such circumstance, the residual error (also named empirical
risk) ϵ(w) could be defined as

ϵ(w) =
1

N

N∑
i=1

1z{wTxi ̸= zi} (13)
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Fig. 5. Structure maps of Fig. 3(c). Parameters λ for first and second rows are respectively 0.0005, 0.001 and 0.0015. From left to the right are the red,
green and blue bands, respectively.

where 1z is an indicator function. Obviously, w could be
obtained by minimizing the error. In equation (12), there are N
equations and usually N ≫ L, so they form overdetermined
equations. To calculate w, the least square method is applied.
Then the original N equations could be re-grouped with a
quadratic form.

w = argminJ(w) = argmin
1

2N

N∑
i=1

(wTxi − zi)
2

(14)

here, J(w) could be written using an expectation form.

J(w) =
1

2
E((wTxi − zi)

2) (15)

where 1
2E((wTxi − zi)

2) = 1
2N

N∑
i=1

(wTxi − zi)
2. According

to the Karush-Kuhn-Tucker condition [23], we have:

∂J(w)

∂w
=

1

2

∂E(wTxix
T
i w − 2wTxizi + zi

2)

∂w
= E(xix

T
i )w −E(xizi) = 0 (16)

Finally, we have

w = C−1d (17)

where C = E(xix
T
i ) and d = E(xizi). Obviously, vector w is

exactly the detector we need, and it possesses some advantages
as follows.
Remark 1: This detector has a closed-form solution, and

it is easy to be implemented. To solve the problem that the
original residual error is the summation of indicator functions,
a quadratic form is applied instead. The quadratic form could
effectively approximate the original problem while providing
a close-form solution, which will be quite convenient to be
implemented in practical application.
Remark 2: To find clouds in a testing image, we should

simulate feature data using the same features as in the training
process. For each pixel x of the data, the inner product

between x and the detector vector w could be calculated using
the equation

y(x) = wTx (18)

The projected value y(x) is large if the input pixel is in
cloudy area, otherwise, the value is small. We could obtain
projected results for all the pixels, and they form a new map as
illustrated in Fig. 3(f). In the map, pixels of cloudy areas have
much higher gray levels than those in backgrounds. Therefore,
cloudy areas in the map are salient. The map is thus named
”saliency map”. In such circumstance, simple thresholding
method could help to determine the cloudy area in the image.
Details will be discussed in the next section.

Remark 3: Both C and d, the two core factors of detector
w, have clear physical meanings. For d, it is the mathematical
expectation of multiplication between data xi and its label
zi. Since the label zi has only two possible value, namely, 0
and 1, d is in proportional to the mean value of the positive
samples. Assume D̂ = {(x̂1, 1), (x̂2, 1), ..., (x̂N ′ , 1)} ⊆ D is
the positive set of the training set with N ′ points, then we
have d = E{xizi} = N ′

N E{x̂i}. For C, it is the mean value
of sample correlation matrix without removing the samples’
means. Physically, C synthesizes the energy of backgrounds
and targets. With the above knowledge of C and d, the
physical meaning of detector w can be well understood.
Inverse of C suppresses all the scenes of image, including
backgrounds and foregrounds. However, by multiplying d, the
objects are effectively enhanced, thus making the clouds be
outstanding in the saliency map.

Remark 4: The closed-form solution is easy to be ex-
tended for new input samples. Assume we have calculated
C and d for N points. For a new input sample {x̃, z̃}, to
calculate the new C̃ and d̃, it is not necessary to calculate
all the elements again. We could only calculate the covariance
matrix x̃x̃T and xz̃, then add them to the original C̃ and d
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with a proper proportion 1
N+1 . So we have:

C̃ =
C×N + x̃x̃T

N + 1
(19)

d̃ =
d×N + x̃z̃

N + 1
(20)

The calculation could be recurrently implemented until all
the new samples are involved. Therefore, the process of
calculating C̃ and d̃ is uncorrelated to original specifical
samples, and it could reduce a large amount of unnecessary
calculations.

C. Influence of feature number

To analyze how the feature number affects the performance
of the detector, we should theoretically calculate the residual
error of the proposed detector in the first place.

We begin with calculating the quadratic residual error J(w)
in equation (15). So we have:

J(w) =
1

2
E((wTxi − zi)

2)

=
1

2
E(wTxix

T
i w − 2wTxizi + zi

2)

=
1

2
(E(zi

2) +E(wTxix
T
i w − 2wTxizi))

=
1

2
(E(zi

2) +wTE(xix
T
i )w − 2wTE(xizi)) (21)

=
1

2
(E(zi

2) +wTCw − 2wTE(xizi))

Substitute (17) into (21), we have

J(w) =
1

2
(E(zi

2) + (C−1E(xizi))
TCC−1E(xizi)

− 2(C−1E(xizi))
TE(xizi))

=
1

2
(E(zi

2) + (E(xizi))
TC−1E(xizi)

− 2(E(xizi))
TC−1E(xizi))

=
1

2
(E(zi

2)− (E(xizi))
TC−1E(xizi))

=
1

2
(E(zi)− (E(xizi))

TC−1E(xizi)) (22)

With the assumption that C = E(xix
T
i ) and d = E(xizi)

as in the Section II, the above equation could be written as:

J(w) =
1

2
(E(zi)− dTC−1d), i = 1, 2, ..., N (23)

Thus, we finally obtain the residual error. Note that, the
residual error in (23) is obtained when the feature dimension
is fixed. However, in the proposed scene learning scheme,
different features will be added for cloud detection, so how
the new features affect the performance of detector w is an
important issue, and it will be further discussed.

For simplicity, we first explore the influence if one more
dimension is introduced. In such circumstance, the original
L-dimensional data in (11) becomes a (L + 1)-dimensional
data, and the spectral dimension could be represented as
Φ = {1, ..., L, L + 1}. For the i-th pixel, xi is its vector in

the original space. Assume xi,L+1 is its value in (L + 1)-
th dimension, then the i-th pixel in the new space could be
represented as

xi,Φ =

[
xi

xi,L+1

]
Similar to the result in equation (23), in the new space, the

residual error could be represented as:

J(Φ) =
1

2
(E(zi)− dT

ΦC
−1
Φ dΦ) (24)

where CΦ = E(xi,Φxi,Φ
T ) and dΦ = E(xi,Φzi). Then

an important theorem in describing the influence of feature
dimension is written as follows.

Theorem 1 (Influence of feature number). The residual error
J(w) in L feature dimensions is not smaller than the residual
error JΦ in L+ 1 feature dimension if sL+1 − sTC−1s ̸= 0.
Mathematically, the following inequality holds:

J(w)− J(Φ)=
1

2

(dL+1 − sTC−1d)
2

sL+1 − sTC−1s
≥ 0 (25)

where s = E(xixi,L+1), dL+1=E(xi,L+1zi) and sL+1 =
E(x2

i,L+1).

Proof for the Theorem 1 could be seen in Appendix.
Remark 1: One can obviously conclude from Theorem 1

that the residual error is reduced by 1
2
(dL+1−sTC−1d)

2

sL+1−sTC−1s
if a new

feature number is added into the feature data. Once the feature
number of feature data is gained, the proposed scene learning
scheme performs better if the condition dL+1 − sTC−1d ̸= 0
holds. It explains why we use four features in total for cloud
detection rather than a single feature.

Remark 2: If dL+1 − sTC−1d = 0 holds, then the
new added feature could not improve the performance of
detector. It indicates that too many features may only cause
computational problem without improving the performance
of proposed method. In our study, four different features are
extracted to comprise the feature data. These features represent
most fundamental image features, so we do not add more
features.

IV. CLOUD REFINEMENT

As stated above, clouds are usually well separated from the
backgrounds in the saliency map. To further confirm the cloud
boundaries and eliminate the tiny noise, refinement step will
be applied in the section.

A. Cloud segmenting via optimal thresholding method

Since clouds have been well extracted from the background-
s, histogram of saliency maps is usually bimodal distribution.
Fig. 6 shows an example of saliency map and its histogram.
Fig. 6(a) is the original color image, Fig. 6(b) is the saliency
map and Fig. 6(c) is its histogram. From the histogram, one
can see that one peak usually appears at a low gray level, and
it represents the cluster of the backgrounds, as the H1 area
shows; the other appears at a high gray level, which represents
the cluster of clouds, as the H2 area shows. To segment such
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Fig. 6. Illustration of saliency map and histogram of an image. (a) is the original color image, (b) is the candidate map and (c) is the histogram of the map.

an image with bimodal distribution, Otsu’s method [24] seems
to be a proper choice.

Otsu’s method assumes that histogram of image is bimodal
(like the saliency map). It calculates a threshold value, which
could separate the input image G into two classes—-the
foreground and background, and their interclass variance is
maximum. Mathematically, the Otsu’s threshold value t should
satisfy the optimization problem:

t = argmax
t
{ω0(µ0 − µ)2 + ω1(µ1 − µ)2} (26)

where ω0 = N0/N, ω1 = N1/N, µ0 =
t∑

i=1

i · pi, µ1 =

256∑
i=t

i · pi, µ = ω0µ0 + ω1µ1. Here, N0, N1 and N are respec-

tively the foreground, background, and total pixel numbers.
pi is the frequency of gray level i. µ0, µ1 and µ respectively
represent mean gray values of the foregrounds, backgrounds
and whole image. For cloud detection in RGB color image,
t will be an value between 1 and 256. Traversal strategy is
adopted to obtain the result. Therefore, we could obtain a
segmentation map Rseg using the Otsu’s threshold, and it is
written as:

Rseg
(i) =

{
1, G(i) ≥ t
0, otherwise

(27)

where t is the calculated threshold value using Otsu’s method.
Here, cloud pixels are all labeled with value 1, and background

pixels are labeled with 0. As marked in the histogram (it is 82)
of Fig. 6(c), the threshold of Fig. 6(b) can be calculated by
using the Otsus method. From the result of the corresponding
binary map shows in Fig.7(a), we see that the center area of
clouds are located. However, compared with the reference map
in Fig. 7(d), the cloud boundaries are eliminated, as marked
in the red circle. It implies that the original Otsu’s threshold
is needed to be revised for cloud detection task.

In the paper, an optimal thresholding method is proposed
based on revising the Otsu’s value t. Note that cloud bound-
aries have lower intensities than pixels in the center part of
clouds. Therefore, to find the eliminated cloud boundaries,
we should reduce the Otsu’s value t. Assume the revised
threshold value is t̂, then the following two facts about the
histogram in Fig. 6(c) will be exploited in finding the proper t̂:
1. The gray levels within the yellow rectangle have the similar
frequency and the variance of the frequency is low enough. 2.
The variance will be dramatically larger if t̂ is smaller. Based
on the two facts, traversal strategy is also applied to find t̂.
We traverse pixel levels from the Otsu’s threshold t to the
minimum pixel level (it is 1 for RGB color image), until the
variance of histogram frequency between the t and the present
level t̂ is larger than a pre-setting constant.

It is worth mentioning that, although only one map (with
simple background) is shown, most saliency maps have the
similar histogram as illustrated in Fig. 6(c). They also have the
bimodal distribution and the similar cloud boundary property,
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Fig. 7. Illustration for the improved Otsu’s threshold. (a) is the binary map using the original Otsu’s threshold. (b) shows the boundaries of clouds. (c) is
the binary map using the improved Otsu’s threshold. (d) is the reference map.

therefore, the above optimal thresholding method could be
widely applied. Pseudocode of the whole process for searching
optimal threshold is shown as in Algorithm 1. In the algorithm,
h(t̂ : t) represents the t̂-th to t-th elements of h.

Algorithm 1 Optimal threshold approximation.
1: Input saliency map G, and its gray levels range from 1 to

256.
2: Obtain the Otsu’s threshold t via solving the problem (26).
3: Obtain the gray histogram vector h256×1 of the image G.

Each element h(i) represents the total number of gray
level i in G.

4: Initialize a constant parameter v0 = 400, and two variables
v1 = 0, t̂ = t.

5: while (v0 > v1 AND t̂ > 0) do
6: ĥ = h(t̂ : t), num = t− t̂+ 1.

h =

num∑
l=1

ĥ(l)

num
(28)

v1 =

num∑
l=1

(ĥ(l)− h)2

num
(29)

7: if v0 > v1 then
8: t̂← t̂− 1
9: else

10: Break;
11: end if
12: end while
13: Output the optimal threshold t̂.

We calculate the optimal threshold t̂ (it is 52) of Fig. 6(b)
using the proposed method, and mark it in Fig. 6(c). One
can observe the fact that, in the histogram, there are some
gray levels between the original Otsu’s threshold t and the
threshold t̂, as the yellow rectangle shows. We threshold the
saliency map and set the pixel value as 1 if its gray value is
between t̂ and t, and 0 otherwise. Fig. 7(b) shows the binarized
map and we see that it actually represents the boundaries that
have been removed in Fig. 7(a). It indicates that the revised

optimal threshold t̂ is more appropriate for detecting clouds
and the saliency map could be binarized into R̂seg with t̂ using
the equation (30).

R̂seg =

{
1, G(i) ≥ t̂
0, otherwise

(30)

Fig. 7(c) shows the binary map using the improved thresh-
old. Compared with Fig. 7(a), Fig. 7(c) preserves more bound-
aries, and it is more similar to the reference map as shown in
Fig. 7(d). More thresholding maps could be seen in Fig. 8(a)
- (f), and cloud boundaries are also preserved.

B. Detail refinement

As shown in the binary maps in Fig. 7(c) and Fig. 8(a)
- (f), the cloud areas can be generally obtained, and the
boundary information of cloud is more accurate compared
with the detection result by using Otsu’s threshold. However,
three problems should be solved before the detection task is
finally accomplished: 1. Cloud isolation. As shown in the red
circle of Fig. 8(d), the joint area between the two parts of
one cloud may be isolated because of the thin cloud in these
areas. Therefore, we should first close the gaps and make
the isolated parts connected. 2. Tiny interference removal.
Although the proposed algorithm suppresses backgrounds,
some interferences still exist as shown in Fig. 8(e), and they
should be excluded before we obtain the final results. 3.
Internal holes filling. As shown in Fig. 8(f), some thin cloud
may appear in the internal regions, and it may lead to the
appearance of holes which should be filled because they are
also covered by clouds.

To address the above problems, three image processing
approaches will be implemented. First, morphological close
operator [25], [26] is used to implement on the binary map
R̂seg . The close operator is comprised of two fundamental
morphological operators: image dilation and corrosion. Note
that, corrosion operator is applied after dilation operator. So
the close operator could connect the neighboring objects, fill-
ing small holes and smooth the boundaries without changing
the shape much. In the cloud detection task, a mask of disk
shape with radius 4 is applied. In Fig. 8(g), we see that the two
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Fig. 8. Cloud detail refinement process. (a) - (c) are three color images. (d) - (f) are their binary maps with gaps, tiny interference objects, and internal hole,
respectively. (g) - (i) are the binary maps after using morphological close operator. (j) - (l) are the binary maps after removing tiny objects. (m) - (o) are the
final detection results after filling internal holes.

parts in the red circle are connected. Moreover, the boundaries
in Fig. 8(g) - (i) are all smoothed to some extent. Second,
to remove the tiny interferences, the similar method in the
paper [1] is applied. Connected regions are first extracted from
the binary map. For each region, its pixel number is counted.
The region will be classified into interference if the number
is smaller than a given constant. Otherwise it is cloud. Fig.
8(j) - (l) present the results after removing tiny objects. Third,
to fill the holes of each region, the function imfill() [27] in
MATLAB will be applied. This is an effective function that
performs a filling operation on the input binary image. Fig.
8(m) - (o) are the binary images after filling holes. Fig. 8(m) -
(n) do not change compared with Fig. 8(j) - (l), as they do not
have internal holes. However, we see that the hole in Fig. 8(l)
is filled as shown in Fig. 8(o). In conclusion, the above three
procedures are sequentially implemented on the binary map
Ĝseg , and the final cloud detection results are then obtained
as in Fig. 8(m) - (o).

V. NUMERICAL EXPERIMENTS

In this section, we report results of experiments, aiming
at evaluating the performance of the proposed method. Com-
parisons between the proposed method and the method in

[1] are implemented. Besides, as the work in the paper [1]
did, some popular automatic image segmentation methods
including K-means [28], [29], Mean-shift [30], [31], [32]
and Chan-Vese [33], [34], [35], are also used to evaluate
the performance because of the their close relationships.
These segmentation methods are implemented on the original
RGB color image. Executable program of method [1] could
be available online http://graphvision.whu.edu.cn/. MATLAB
codes for K-means, Mean-shift and Chan-Vese are respective-
ly available at http://www.mathworks.cn/cn/help/stats/kmeans.
html, http://www.mathworks.com/matlabcentral/fileexchange/
10161-mean-shift-clustering and http://www.ipol.im/pub/art/
2012/g-cv/. Both visual comparisons and quantitative evalu-
ations are implemented to demonstrate the efficacy of the pro-
posed method. MATLAB codes are all implemented in Math-
works MATLAB R2009b and a desktop computer equipped
with Intel(R) Core(TM) 2 Duo 2.80GHz CPU with 4GB
memory. Some of the original RGB color images are obtained
by the satellite Quickbird http://glcf.umd.edu/data/quickbird/
and their spatial resolution is about 2.44-2.88 meters. Some
color images are from the Flickr.com. The others are obtained
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from the Google map 1, with the size of 1000 × 600 pixels
and spatial resolution of 1 meter. Ground truth of the images
are all manually marked since it is impossible to field survey
the cloud boundaries. We first label the map using the popular
software Environment for Visualizing Images (ENVI) individ-
ually, so we obtain several ground truth for one image, and
then using their average as the final ground truth.

Four metrics are used to quantitatively assess the algorithms.
They are the right rate (RR), error rate (ER), false alarm rate
(FAR) and ratio of right rate to error rate (RER). RR is
defined as:

RR =
CC

GN
(31)

where CC is the number of correctly detected cloud pixels,
GN is the number of cloud pixels in ground truth.
ER is defined with the same form as in the paper [1]:

ER =
CN +NC

TN
(32)

where CN represents the number of cloud pixels identified
as noncloud pixels, NC represents the number of noncloud
pixels identified as cloud pixels, and TN denotes the number
of pixels of the input image.
FAR is defined with the same form as in the papers [36]

and [37]:

FAR =
NC

TN
(33)

where NC and TN have the same meanings as in equation
(32).
RER is defined as the ratio of RR to ER.

RER =
RR

ER
(34)

From the definition, one can see that RR is used to provide
us with information of correctly detected results, while ER
and FAR are used to provide incorrect information. The
reference values for RR, ER and FAR are respectively 1, 0
and 0. FAR is one part of ER and it explicitly represents the
false alarm rate. Using only one of them to assess algorithms
is insufficient, as some methods may obtain high right rate but
bring too many false alarms. On the contrary, some methods
may obtain low error rate but also low right rate. Therefore,
RER is defined to obtain an integrated result as it considers
the right rate and error rate. The higher it is, the better.

A. Visual analysis

In the experiments, only one image will be used to train the
detector, and it is shown in Fig. 3(a). To make the comparisons
be fair for other methods, this training image will not be
used as the testing image. 38 images in total are used as
testing images. To save space, we display only five groups of
detection results using different algorithms. Fig. 9(a) shows
the original RGB color images. Clouds in these five images
have quite different shapes and thicknesses. They are thick
in the left three images, and semitransparent in the right two
images. Fig. 9(b) is the ground truth images. Figs. 9(c) - (g) are

1Available online: https://maps.google.com/

the detection results using K-means, Mean-shift, Chan-Vese,
method in [1] and the proposed method, respectively.

All the three conventional segmentation methods could au-
tomatically divide the images into two categories: backgrounds
and foregrounds. We then calculate their mean value and take
the classification with higher values as the clouds, because
clouds usually possess much higher brightness. One can ob-
serve that conventional segmentation methods, the method in
[1] and our method could generally obtain clouds if clouds and
backgrounds have high contrast, as shown in the first, second
and third columns of Fig. 9. However, segmentation methods
face the problem in accurately finding the cloud boundaries
because of the different intensity in these areas. Mean-shift
tends to miss some clouds while K-means and Chan-Vese
tend to obtain some interferences. Besides, all segmentation
methods fail to eliminating interferences in the third images,
there the brightness of backgrounds and clouds are similar.
Method of [1] performs better than segmentation methods but
also could not precisely locate the boundaries (see the first
and second columns of Fig. 9(f)).

The fourth column images show a challenging case in cloud
detection since the existence of snows. In such circumstance,
all the three segmentation methods obtain false results and
mistake snows as clouds. Method of [1] performs better but
also brings false alarms. On the other hand, since our method
exploits different image features and obtains a salience map,
where snows and clouds have different details, satisfactory
result is obtained as shown in Fig. 9(g). Meanwhile, since our
method adopts the optimized threshold, cloud boundaries are
also better located compared with existing methods. The fifth
column images illustrate an extreme case, where the brightness
of clouds and backgrounds are quite similar. K-means, Chan-
Vese and method of [1] tend to obtain more false alarms, while
Mean-shift tends to miss some clouds. Although our method
also could not obtain ideal result, it obtains the result that is
closest to the ground truth.

B. Quantitative analysis

TABLE I
CALCULATED RR, ER, FAR AND RER USING DIFFERENT METHODS

K-means Mean-shift Chan-Vese method proposed
of [1] method

RR 0.6884 0.5492 0.9584 0.7890 0.8477
ER 0.0820 0.1184 0.3636 0.0773 0.0458
FAR 0.0528 0.0553 0.2472 0.0289 0.0139
RER 16.4407 7.5397 6.0220 17.4380 23.0686

Four quantitative measures, namely, RR, ER, FAR and
RER are applied to evaluate the different methods. All the
average values for the 38 testing images are tabulated in Table.
I. Indices with bold types represent the best ones in the same
row.

Segmentation methods could not obtain satisfactory results
as the results of RR, ER and FAR are not simultaneously
the best. For example, Chan-Vese performs well in index RR
but it has too high ER and FAR, which implies that it obtains
more clouds but bringing more false alarms. On the contrary,
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Fig. 9. Comparisons of cloud detection results using different methods on part of data set. (a) Original testing images. (b) Ground truth. (c) Detection
results by K-means. (d) Detection results by Mean-shift. (e) Detection results by Chan-Vese. (f) Detection results by [1]. (g) Detection results by the proposed
method.

method of [1] has low ER and FAR but not high RR. On
the other hand, the proposed method obtains better results,
because it has the lowest ER and FAR, and the second
highest RR, which implies that the proposed method detected
precise cloud areas with the lowest error rate. Meanwhile, the
best average value of index RER obtained using the proposed
method confirms the above conclusion.

C. Experimental results on influence of feature number

In the section, two groups of experiments are implemented,
aiming at deeply exploring the influence of features. In the first
group, we will use various individual features to detect clouds.
In the second group, experimental results using the proposed

methods with different feature combinations are reported.

Fig. 10(a) and (b) are the original images and the cor-
responding ground truth images. Figs. 10(c)-(f) respectively
show the detection results using individual features, including
color (Fig. 10(a)), structure (Fig. 10(b)), statistics (Fig. 10(c))
and texture (Fig. 10(d)). Obviously, all the features could
detect part of clouds. However, the missing or the false
detected regions also happen. Concretely, color feature tends
to miss clouds as shown in Fig. 10(c). Structure feature tends
to mistake noncloud regions as clouds (see the right result in
Fig. 10(d)). Statistics performs slightly better than color and
structure but still obtains false alarms (see the left result in
Fig. 10(e)). Texture seemly obtains a compromised results, it
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Fig. 10. Visual comparisons of detection results using different individual
features. (a) Original testing images. (b)-(e) Detection results using the color
feature, structure features, statistics features, texture features, respectively.

misses some clouds in the middle image of Fig. 10(f), but
mistakes some backgrounds as clouds in the right image of
Fig. 10(f). As a result, although the features show their abilities
in cloud detection, ideal results could not be obtained using
individual feature. On the other hand, theorem 1 in section
III-C has demonstrated that the residual error is reduced if
a new proper feature number is added into the feature data,
which theoretically implies that the feature combination would
be better for detection task. Therefore, we will experimentally
confirm the conclusion in the next experiments.

Fig. 11 shows the detection results using different feature
combinations. From the top to the bottom rows, the feature
combinations color, color + structure, color + structure +
statistics, and color + structure + statistics + texture are
respectively used. Compared with the source images and
ground truth images in Fig. 10(a) and (b), one can easily
see that the detection results become better along with the
increase of feature number. Fig. 12 illustrates the results of
indices ER, RR and RER using different features. The
vertical axis is logarithmic for visual convenience. Obviously,
the values of RR and RER increase along with the number of
features, while the ER values decrease. It also demonstrates
the conclusion of theorem 1, namely, if the feature number

of feature data is gained, the proposed scene learning scheme
performs better.

Fig. 11. Visual comparisons of detection results using different feature
combinations. (a) Original testing images. (b)-(e) Detection results using the
color feature, color + structure features, color + structure + statistics features,
color + structure + statistics + texture features, respectively. (f) Ground truth.

Fig. 12. Quantitative comparisons of detection results using different features.

D. Limitation

It is still a quite difficult problem to detect clouds in remote
sensing image with only RGB colors, especially for the image
if its background regions have similar brightness as clouds. In
such circumstance, all the features of the backgrounds, includ-
ing colors, statistics, structures and textures are inseparable
from those of clouds. On the other hand, the proposed scene
learning frame is essentially a supervised method. Results are
inevitably affected by the training and testing data. Generally,
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diversity of training data is encouraged as it would help to
obtain a more universal cloud detector. If the scenes between
training data and testing data are extremely different, ideal
detection results may be not obtained.

Fig. 13 illustrates an example using different training im-
ages, aiming at discussing their influences. Fig. 13(a) is the
training image which contains cumulus clouds. Fig. 13(b) is
another labeled training with cirrus clouds. Fig. 13(c) are two
testing images. Clouds in the upper image are much thinner
and have relative much lower brightness than Fig. 13(a), and
the cirrus clouds in the bottom image are quite different
from Fig. 13(a). Fig. 13(e) are the results when we just use
Fig. 13(a) as the training image. Although some clouds are
correctly located, more are missed or falsely detected. Fig.
13(f) are the results when both Figs. 13(a) and (b) are applied
to train the detector. Obviously, results are promoted and
they are much closer to the ground truth. Generally, although
the proposed method behaves better than conventional cloud
detection algorithms, its performance acquires proper training
images, which may limit its application to some extent.

VI. CONCLUSIONS AND FUTURE WORK

In the paper, we present an automatic algorithm for cloud
detection on remote sensing images. It is built on exploiting
a novel scene learning frame. The core principle is to train a
cloud detector and then apply it to the testing image. Before
training and applying the detector, feature data is simulated by
stacking different fundamental features. Such data provides
more information than original RGB image, so the method
could effectively enhance the cloud scenes while suppressing
the backgrounds using the data. Applying the trained detector
to testing images, saliency maps will be generated, where
clouds are well separated from backgrounds. For clouds refine-
ment, an optimal thresholding algorithm is proposed based on
revising Otsu’s threshold. Effective detail refinement processes
are subsequently implemented to finally locate the clouds.
Experimental results demonstrate the efficacy of the proposed
method. Residual error in designing detector is calculated.
Furthermore, we theoretically and experimentally demonstrate
that more features lead to better performance.

For further work, influence of feature will be more deeply
studied. In the paper, only four fundamental image features
are applied to simulating feature data. Other features, like
Haar or HOG could be considered. These features have been
proved to be effective in computer vision, and they may
help to improve the algorithm. Besides, how the method
behaves in handling images with more than 3 visible bands
could be researched. Concretely, since the existence of near-
infrared bands, multispectral images provide more information
compared with images with only RGB colors, and the special
band would be helpful for the performance of the proposed
method. On the other hand, one can find that band number
of the simulated feature data is about 40 times of the original
image. It is a quite large data size. Therefore, when applying
the method to cloud detection in hyperspectral images (HSI),
how to choose features and generate should be taken into
consideration, because HSI has much more bands than RGB
image.

VII. APPENDIX

Proof for Theorem 1: To begin with, we calculate the
C−1

Φ . Expand the matrix CΦ, we have

CΦ = E{xi,Φxi,Φ
T } = E

{[
xi

xi,L+1

] [
xi

xi,L+1

]T}
= E

{[
xix

T
i xixi,L+1

(xixi,L+1)
T

x2
i,L+1

]}
=

[
E(xix

T
i ) E(xixi,L+1)

E(xixi,L+1)
T

E(x2
i,L+1)

]
=

[
C s
sT sL+1

]
(35)

Then its inverse is calculated as follows:

C−1
Φ =

[
C s
sT sL+1

]−1

= K

[
C−1

K +C−1ssTC−1 −C−1s
−sTC−1 1

]
where K = (sL+1 − sTC−1s)−1. So the quadratic form of

JΦ could be obtained as:

dT
ΦC

−1
Φ dΦ

= K

[
d

dL+1

]T [ C−1

K +C−1ssTC−1 −C−1s
−sTC−1 1

] [
d

dL+1

]
= K(d

TC−1d
K + dTC−1ssTC−1d

−dL+1s
TC−1d− dL+1d

TC−1s+ d2L+1)

=dTC−1d+ (dL+1−sTC−1d)
2

sL+1−sTC−1s

Calculate the difference between J(w) and JΦ, we have

J(w)− J(Φ)
= 1

2 (d
T
ΦC

−1
Φ dΦ − dTC−1d)

= 1
2 ((d

TC−1d+ (dL+1−sTC−1d)
2

sL+1−sTC−1s
)− dTC−1d)

= 1
2
(dL+1−sTC−1d)

2

sL+1−sTC−1s

(36)

Since the numerator in equation (36) is a square form,
(dL+1 − sTC−1d)

2 ≥ 0 holds. Meanwhile, according to the
rule of the partitioned matrix determinant, we have

|CΦ| =
∣∣∣∣[ C s

sT sL+1

]∣∣∣∣
= |C|

∣∣sL+1 − sTC−1s
∣∣ = (sL+1 − sTC−1s) |C|

where | · | is the determinant operator. Note that both CΦ and
C are symmetric positive-definite matrices. If |C| is invertible,
then we have

|CΦ|
|C|

= (sL+1 − sTC−1s) > 0

Thus,

J(w)− J(Φ)=
1

2

(dL+1 − sTC−1d)
2

sL+1 − sTC−1s
≥ 0

and the equality sign holds while dL+1 = sTC−1d. The proof
of Theorem 1 is thus completed.
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Fig. 13. Detection results using different training images. (a)-(b) Two training images and their ground truths. (c) Two testing images. (d) Ground truths of
testing images. (e) Failed detection results using only one training image. (f) Successful detection results using the two training images.
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