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Abstract—A tropical cyclone is a robust weather system that
affects human daily life. Accurate and rapid tropical cyclone
forecast can guide human disaster prevention and mitigation
work against tropical cyclones. The mainstream tropical cyclone
forecasting method is numerical forecasting, which requires
abundant prior knowledge and luxurious calculation. Nowadays,
machine learning methods have received increasing attention
for they can overcome these disadvantages. However, existing
machine learning methods usually ignored some potential factors
due to they mainly concentrated on one aspect of the tropical cy-
clone forecast. This letter proposes a multitask machine learning
framework to forecast tropical cyclone path and intensity, which
possesses two modules: one is the prediction module, the other is
the estimate module. We use an improved generative adversarial
network as the prediction module to predict the tropical cyclone
spatial data at a certain moment in the future. Then, we use
two different deep neural networks as the estimation module to
extract the position and intensity from the generated prediction
data. The method we propose is a general and relatively accurate
tropical cyclone forecast method. We reach a 24h path forecast
error of 116km and a 24h intensity forecast error of 13.06kt.

Index Terms—Tropical Cyclone Forecast, Generative Adver-
sarial Network, Wasserstein Distance.

I. INTRODUCTION

TROPICAL cyclones are cyclonic circulations that occur
over the sea in tropical and subtropical regions. It is a

complicated and severe weather system. The power release of
a mature tropical cyclone can reach the level of one hundred
terawatts, which will bring a series of meteorological disasters
such as gale, storm surge, and heavy rain. Therefore, accurate
and rapid forecasting of tropical cyclone indicators can help
guide human disaster prevention and mitigation work against
tropical cyclones. It also has important implications in the
scientific use of tropical cyclones. Among all the indicators,
position and intensity are the most crucial indicators.

The forecast of tropical cyclone path movement is usually
based on a general and accurate understanding of tropical
cyclone motion. This law is affected by many complex factors,
such as large-scale weather patterns, sea level, and atmospheric
temperature, land topographic characteristics, the structure
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and intensity of tropical cyclones, so it is very difficult to
accurately describe it with existing models [1]. Furthermore,
forecasting the intensity of tropical cyclones is more difficult
than forecasting the path. Researchers believe that this is
because the physical process that causes the intensity change-
ment of tropical cyclones is so complicated that we process
little knowledge of it [2]. These two factors affect each other
during tropical cyclone development, so it’s challenging but
significant work to combine these two tasks together.

In this letter, we proposed a framework that can give
a quick and reliable forecast of tropical cyclone path and
intensity based on the infrared image. The framework has a
prediction module to predict the future spatial data of tropical
cyclones and an estimation module to determine the value of
the indicator from the predicted result. We set a retrospective
CycleGAN [3] using Wasserstein loss [4] in the prediction
module. Then in the estimation module, we build a new model
called TIENet to predict the intensity and use TCLNet to
predict position. Our work achieves an average 6-hour path
forecast error of 61km and an average 24-hour path forecast
error of 116km, while our 6-hour intensity error and 24-hour
intensity forecast error respectively reach 14.20kt and 13.06kt.
These results are produced with the last 24 hours data within
less than 10 seconds. In addition, the path forecast error is 10%
better than Rüttgers’ work [5], which has the best precision
in existing models. It is also a flexible framework. On one
hand, the input can be not only the infrared images but also
satellite images, meteorological reanalysis data. On the other
hand, the output can be diverse with different tropical cyclone
data analyse models. The overview of the forecast framework
is shown in Fig 1. Briefly, our work has several distinct
contributions as follows:
• First, the framework consisting of three networks provides

a one-step solution which can forecast the path and
intensity of tropical cyclones at the same time.

• Second, we combine retrospective CycleGAN [3] with
Wasserstein loss [4], which strengthens the adversariness
between the generator and discriminator. This helps ob-
tain high-similar results to the ground truth. This new
network can also be used in the area of predicting video
frames.

• Third, the TIENet can be a new tool for tropical cyclone
image interpretation.

II. RELATED WORK
We survey the development of neural network methods

used in the tropical cyclone forecast and generative adversarial
networks. Here are some details.
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Fig. 1. An overview of the forecast framework. WCycleGAN generates the predicted data from historical data, next TCLNet and TIENet extract the position
and intensity information from it. The green point shows the forecast location, besides the blue point shows the ground truth location.

The research of neural network methods used in the tropical
cyclone forecast started at the end of the last century. Until
the 2010s, MLP and BP network were the mainstream neural
network methods for forecasting the intensity and path of
tropical cyclones [6] [7]. Since the mid-2010s, due to the
development of deep learning, more new methods have been
introduced into the forecast of tropical cyclones. Recurrent
neural network(RNN) is a class of neural networks that exhibit
temporal dynamic behavior, Moradi Kordmahalleh et al. [8]
and Alemany et al. [9] used this method to forecast the path
of tropical cyclones in 2016 and 2019, while Pan et al. [10]
used this method to forecast the intensity of tropical cyclones
in 2019. Rüttgers et al. [5] introduced GAN into the tropical
cyclone path forecast field in 2018. The LSTM network also
plays an important role in tropical cyclone forecast, Kim et
al. [11] used convLSTM to forecast the tropical cyclone path.
Meanwhile, Chen et al. [12] combined LSTM with CNN
to forecast the intensity. These methods mainly concentrated
on one aspect of the tropical cyclone forecast, so they were
inclined to use specialized data. Furthermore, they ignored
some potential factors due to this operation. Meanwhile, it
means we have to call several different models to obtain our
expected results.

Since the generative adversarial network was proposed in
2014, it has become a research hotspot these years. Re-
searchers have made a lot of effort to improve its performance.
On one hand, researchers changed the network’s structure,
for example, DCGAN [13], LAPGAN [14], and CycleGAN
[15], to help the network fit more tasks. On the other hand,
researchers adjusted the loss function of the network, for
example, LSGAN [16] and WGAN [4], to help strengthen
the adversariness between generator and discriminator, which
can lead into a higher-quality result. These high-performance
models are of great help to meteorological research. Among
all these works, the CycleGAN is widely applied in computer
vision as a result of its ability to build connections among
unpaired pictures, while others mainly handle paired data.
However, Zhu et al. used the LSGAN’s loss function; hence,
it may be difficult to get a perfect result in some situations.

III. METHODOLOGY
This method can be regarded as a simple application of

the framework that we proposed. We only use two networks

to accomplish the path and intensity forecast although this
framework can complete more tasks. In this section, we will
talk about the details of the three networks in the two modules
that compose our framework.

A. Prediction module

This module consists of one network which we call WCy-
cleGAN. The network is inspired by Kwon et al. [3] in predict-
ing future frames. We use the same retrospective method as
they did, and we adopt their network architecture and change
the input and output layers to adapt the grayscale image. This
GAN has two discriminators, one is the frame discriminator
likes others own, the other one is the sequence discriminator
that we use to enhance the relationship between the inputs
and outputs. We improved the loss function with the idea of
Wasserstein distance [17], for the original discriminator loss so
rapidly converges to zero that it can’t provide instructions for
the generator. We apply Wasserstein distance by using gradient
penalty [4]. It successfully solves this problem and provides
a better result. We also believe the Wasserstein loss can help
find out the connection between long interval sequence data
such as the image of tropical cyclones. The generator loss can
be formulated as follows:

LG = Limage + λ1LLoG + λ2L f rame
Gadv + λ3Lseq

Gadv (1)

where λ1, λ2, λ3 are parameters. We call the first two items
in the formula as reconstruction losses and the last two
adversarial losses. The reconstruction losses can be formulated
as follows:
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where xm is the first picture in a sample, xn+1 is the last
picture in a sample, x

′

and x
′′

respectively represent the two
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generated results in a loop. The adversarial losses can be
formulated as follows:

L f rame
Gadv =

1
4
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Here are two kinds of discriminator losses, one is the
frame loss, the other one is the sequence loss. The frame
discriminator loss can be formulated as follows:

L f rame
D =

1
4
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where Pm,n is same with Pm,n in L f rame
Gadv , λ4 is a parameter,

Qm,n = {xm, xn+1}, E
[(
‖∇x̃∈Pm,n D f rame (x̃) ‖2 − 1

)2
]

is the gradi-
ent penalty, which is used to ensure the Lipschitz continuity.
The sequence discriminator loss can be formulated as follows:

Lseq
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where Mm,n is same with Mm,n in Lseq
Gadv, λ5 is a parameter,

Nm,n = (xm, · · · , xn+1), E
[(
‖∇x̃∈Pm,n Dseq (x̃) ‖2 − 1

)2
]

is also the
gradient penalty.

B. Estimation module

This module consists of two networks, one is the TIENet,
the other is the TCLNet. We propose a novel network termed
as TIENet to determine the intensity, whose output is a
predicted Beaufort scale when input is the predicted image
out from the WCycleGAN. Unlike other methods predicting
the specific wind speed of the tropical cyclone, this trick
can reduce the calculation amount while evaluating the effect
well. We stress the importance of the detailed structure of
tropical cyclones, so we choose 5 convolutional layers with
convolution kernels doubling and a stride of 1. This network
has far fewer parameters than the ResNet50 but provides
similar performance. We choose the cross-entropy among the
predicted Beaufort scales and the real intensity labels as its
loss function. The structure of TIENet is illustrated in Fig 2.

The TCLNet comes from Tan C.’s work [18] Its output
is a heatmap when input is the predicted image out from
the WCycleGAN. It uses an improved MSE loss to describe
the difference between the generated heatmap and the real
heatmap and is trained to narrow this difference. The co-
ordinate which has the highest pixel value of the generated
heatmap represents the location of the tropical cyclone center.

Fig. 2. The structure of TIENet. It has 5 convolution layers and 2 liner layers.

IV. EXPERIMENTS AND RESULT

A. Datasets

1) Tropical cyclone infrared time series dataset: This
dataset comes from the infrared window channel in the US
grid satellite dataset (GridSat) [19]. We intercept a tropical
cyclone at a certain time t according to BST dataset [20]
with a resolution of 256 x 256 pixels (20 latitudes multiply
20 longitudes) and 6h, whose center is ensured to locate in
the center of the picture. Afterward, keep the position of this
window in the GridSat global image unchanged, and intercept
the images at time t − 24, t − 18, t − 12, t − 6, t, t + 6, t + 12,
t + 18, t + 24 under this window in turn. All these images
compose a sequence consisting of 9 pictures, and one example
is shown in Fig 3. Next, we extract 5 continuous images from
each tropical cyclone sequence as training samples, and each
sequence provides 5 training samples.

2) Estimation dataset: This dataset uses the results ob-
tained by the WCycleGAN as the input image. The 6h
prediction results are the direct outputs of the network while
the 24h prediction results are the 4-step outputs. We get the
coordinate(u,v) of the tropical cyclone center in the image
according to the BST dataset, and the intensity label comes
from the maximum wind speed near the tropical cyclone center
extracted from the BST dataset, which is divided into 13
categories according to Beaufort scale, corresponding to 7-
17+ levels. The heatmap can be produced as the formula:

H(x, y) = exp
(

(x − u)2 + (y − v)2

−2σ2

)
(11)

where H (x, y) means the pixel value at (x,y) in the heatmap,
σ is a parameter, which takes 15 here. An example of a set
of images in location and intensity determination dataset is
shown in Fig 4.

B. Training Details

To train our networks, we use 4,930 training samples from
986 tropical cyclone sequences. In WCycleGAN, we set λ1 =

0.005, λ2 = λ3 = 0.003, λ4 = λ5 = 10 according to Kwon et
al.’s work [3] and Gulrajani et al.’s work [4]. We use adam
optimizers [21] with β1 = 0.5, β2 = 0.999 and the learning rate
is set as follows: for WCycleGAN, first, we use the learning
rate of 0.0001 to train for 20 epochs, then reduce it to 0.00005
for 30 epochs, finally to 0.00001 for 40 epochs; for TCLNet,
after 4 epochs of training with a learning rate of 0.001, it
is reduced to 0.00005 for 1 epoch; for TIENet, we train 10



4

Fig. 3. An example of the sequence in the tropical cyclone infrared time series dataset.

Fig. 4. An example of a set of images in location and intensity determination
dataset.

epochs with a learning rate of 0.1, then reduce it to 0.01 for
20 epochs, finally to 0.001 for 30 epochs.

C. Metrics

We use PSNR, SSIM, and MSE (we multiplied the original
MSE by a factor of 100 to show the difference) to measure
the quality of the result of WCycleGAN. We use path forecast
error(LD) to measure the quality of the result of TLCNet. Here
is its calculating formula:

LD = PD ÷ 256 × 20 × 1.852 × 60 × 0.866 (12)

the PD in LD is the pixel distance between the ground truth
and predicted position. We calculate 0.866 based on there are
0.866 nautical miles for each change in latitude and longitude
in the mid-latitude area. We use intensity forecast error(S E)
of intensity forecast to measure the quality of the result of
TIENet. Here is its calculating formula:

S E =
1
N
× |WS p −WS gt | (13)

the WS here means wind speed. We use the middle wind
speed of each Beaufort scale as the predicted wind speed.

D. Results

1) Overall result: We test our method on 10 tropical
cyclones in the western Pacific. Our forecast method has
an average path forecast error of 116km and an intensity
forecast error of 13.06kt under the forecast time limit of 24
hours. In terms of path prediction, we set expected errors of
60km and 110km for 6h and 24h path forecast. Accordingly,
the eligibility rates are 60% and 40%, which need to be
further improved. As to intensity prediction, we consider the
predicted tropical cyclones scale matching the ground-truth as
a successful forecast. Based on this, the accuracy rates of 6h
and 24h intensity forecasts are 36% and 40%. The intensity
forecast results ignore the changes during a short time interval.
This may be solved by using a more efficient intensity estimate
model. More details are shown in Table I.

TABLE I
Overall result. 50 6h-test samples. 10 24h-test samples. PSNR, SSIM are
the larger the better, whileMSE, LD and S E are the smaller the better.

Metrics 6h 24h

Average PSNR 22.46 19.77

Average SSIM 0.65 0.64

Average MSE 5.89 11.10

Average LD 61 km 116 km

Max LD 122 km 192 km

Average S E 14.20 kt 13.06 kt

Max S E 38.49 kt 38.49 kt

Fig. 5. The output of WCycleGAN of Typhoon Trami.

2) Sample result: Here are the forecast results of Typhoon
Trami, the No. 24 in 2018. The output of WCycleGAN is
shown in Fig 5, the result of TCLNet is shown in Fig 6, the
6h forecast result of the TIENet is shown in Table II and the
24h forecast result of the TIENet only exists at 2018.09.26
00:00, when Beaufort scale is 14 and tropical cyclone scale is
STY. It can be seen from the above chart that concerning path
forecasting, whether it is a 6h forecast or a 24h forecast, it can
have a good forecast effect; concerning intensity forecast, the
accuracy rate needs to be further improved, but for tropical
cyclone level judgment is basically accurate.

3) Horizontal comparison: We also comprise our work
with other methods, the result is shown in Table III. It can be
seen that the path prediction results of this method have the

Fig. 6. The output of TCLNet of Typhoon Trami.
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TABLE II
The 6h forecast results from the output of the TIENet of Typhoon Trami in

2018.

Time 6h forecast intensity True forecast intensity

09.25 06:00 Beaufort scale: 14 Tropical cyclone scale: STY Beaufort scale: 17 tropical cyclone scale: SuperTY

09.25 12:00 Beaufort scale: 14 Tropical cyclone scale: STY Beaufort scale: 17 Tropical cyclone scale: SuperTY

09.25 18:00 Beaufort scale: 14 Tropical cyclone scale: STY Beaufort scale: 16 Tropical cyclone scale: SuperTY

09.26 00:00 Beaufort scale: 14 Tropical cyclone scale: STY Beaufort scale: 15 Tropical cyclone scale: STY

09.26 06:00 Beaufort scale: 14 Tropical cyclone scale: STY Beaufort scale: 15 Tropical cyclone scale: STY

TABLE III
Horizontal comparison. The last two methods are the numerical models, the
others are machine learning models. The LD is a path forecast index, which
is the smaller the better. The S E is an intensity forecast index, which is the

larger the better.

Methods 6h Average LD 24h Average LD 6h Average S E 24h Average S E

OURS 61 km 116 km 14.20 kt 13.06 kt

RNN [8] 72 km - - -

ConvLSTM [11] 141 km - - -

CNN-LSTM [12] - - - 7.4 kt

GAN [5] 67.2 km - - -

ECMWF-IFS - 62 km - 14.3 kt

NCEP-GFS - - - 12.9 kt

smallest average path forecast error among the neural network
methods listed in the table, but it is near twice the error of the
best numerical method. Besides, the intensity forecast level is
close to the numerical method; the gap between CNN-LSTM
and ours may lie in: we choose to give a range of the predicted
wind speed while they give the specific numerical value.

E. Ablation study

We also study the impact of Wasserstein loss and LoG loss
on the forecast, the results are shown in Table IV. It can be
seen that Wasserstein loss and LoG loss significantly improve
the quality of predicted spatial data, significantly reduce the
error of the path forecast results, and remarkably improve the
accuracy of the intensity forecast results.

TABLE IV
Ablation study. PSNR, SSIM are the larger the better, whileMSE, LD, S E

are the smaller the better.

Metrics
OURS Without Wasserstein loss Without LoG loss Without both

6h 24h 6h 24h 6h 24h 6h 24h

Average PSNR 22.46 19.77 22.39 18.99 22.41 18.53 22.20 17.95

Average SSIM 0.65 0.64 0.64 0.63 0.64 0.62 0.64 0.62

Average MSE 5.89 11.10 5.94 12.48 5.95 13.27 6.22 15.43

Average LD 61 km 116 km 68 km 135 km 73 km 147 km 77 km 161 km

Average S E 14.20 kt 13.06 kt 18.37 kt 18.96 kt 22.50 kt 23.71 kt 34.80 kt 38.22 kt

V. CONCLUSION

In this letter, we propose a flexible and reliable tropical
cyclone forecasting framework, which can simultaneously
forecast the path and intensity of tropical cyclones through a
set of data. This method can handle multiple tasks at the same

time with good scalability. Furthermore, the WCycleGAN is
a more effective new model that handles unpaired images,
and the TIENet is a specialized model for predicted tropical
cyclone image interpretation. In the situation of lacking com-
puting resources or professional meteorological knowledge, it
is of great significance.
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