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Abstract—Synthesizing high-resolution remote sensing images
based on the given text descriptions has great potential in
expanding the image data set to release the power of deep
learning in the remote sensing image processing field. However,
there has been no efficient research carried out on this formidable
task yet. Given a remote sensing image, the structural rationality
of ground objects is critical to judge it whether real or fake,
e.g., real bridges are always straight while a sinuous one can
be easily judged as fake. Inspired by this, we propose a multi-
stage structured generative adversarial network (StrucGAN) to
synthesize remote sensing images in a structured way given
the text descriptions. StrucGAN utilizes structural information
extracted by an unsupervised segmentation module to enable the
discriminators to distinguish the image in a structured way. The
generators of StrucGAN are thus forced to synthesize structural
reasonable image contents which could enhance the image au-
thenticity. The multi-stage framework enables the StrucGAN to
generate remote sensing images with increasing resolution stage
by stage. The quantitative and qualitative experiments results
show that the proposed StrucGAN achieves better performance
compared with the baseline, and it could synthesize high resolu-
tion, realistic, structural reasonable remote sensing images which
are semantically consistent with the given text descriptions.

Index Terms—Remote Sensing Image Synthesize, Text Descrip-
tion, Generative Adversarial Networks, Structural Rationality.

I. INTRODUCTION

DEEP learning technology greatly drives research progress
in remote sensing image processing. Massive data is

the cornerstone of high-performance deep learning algorithms,
while the high-cost imaging platforms (e.g., airborne, space-
borne) impose restrictions on the scale of the remote sensing
data set. This limits the deep learning technology to exert its
full potential in the remote sensing field.

Recently, Generative Adversarial Networks (GANs) [1]
have drawn great attention in a variety of research fields.
The interesting but challenging task which needs to generate
image according to the given natural language descriptions,
namely text to image generation, is active one of them. The
success of GANs in this task shed light on the possibility of
controllably generating images that can be passed for genuine
ones. If GANs can generate sufficiently realistic remote sens-
ing images, then we can construct large-scale remote sensing
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(a) A bridge is built over the river.
(b) A playground is surrounded by some buildings.

Fig. 1. Two cases of fake images generated by AttnGAN given the text
descriptions and real images that correspond to the same text descriptions.
The image (a+) is the real image that corresponds to the caption (a), while the
image (a-) is the generated fake image given the caption (a). Since bridges
are always straight or of low curvature, the sinuous bridge in (a-) can be
easily told the fake. The synthetic playground in (b-), which is in the shape
of a square, is also easily judged as fake. These two cases suggest that the
structure of the synthesized object is an important feature that affects whether
the synthesis is realistic.

image data sets in a controllable and low-cost manner. This
will unlock the potential of deep learning in remote sensing
image processing tasks.

Great progress has been achieved in the text to natural
image generation. Reed et al. [2] proposed a deep architec-
ture and GAN formulation to effectively synthesis plausible
images given the text descriptions. Their follow-up work [3]
synthesizes images conditioned on more specific instructions
(e.g., object locations). Zhang et al. [4], [5] proposed Stacked
Generative Adversarial Networks (StackGANs) which stacked
several different scale GANs to generate photo-realistic images
given text descriptions. Xu et al. [6] proposed an attentional
generative network (AttnGAN) to pay attention to the rele-
vant words in descriptions and the image sub-regions when
synthesizing the image. Qiao et al. [7] proposed a semantic-
preserving text-to-image-to-text framework to guarantee se-
mantic consistency between the text description and visual
content.

Despite the recent success in the text to natural image
generation, the text to high-resolution remote sensing image
generation remains challenging. Bejiga et al. proposed the first
work [8] that dealt with the text to remote sensing image
generation. In which, a conditional GAN is applied to generate
very low spatial resolution grayscale remote sensing images
from ancient text descriptions of geographical areas. In their
following works [9], [10], Bejiga et al. improved the text
encoding by using a pre-trained Doc2Vec encoder [11], which
could utilize different levels of information available from the
input text. However, these works generated grayscale remote
sensing images with a very low spatial resolution which missed
many details. Zheng et al. [12] proposed a reranking audio-
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Fig. 2. The overview of the proposed structured generative adversarial network for text to remote sensing image generation.

image translation method to retrieved remote sensing images
given the audio descriptions. In this work, remote sensing
images were real data retrieved from the existing database, and
the input was audio description rather than text description.
Other researches focus on the inverse task, namely image
caption generation [13], which generates text descriptions
based on the input remote sensing images.

The main challenge in the text to high-resolution remote
sensing image generation task is that the contents of remote
sensing images have strong structure characteristics (e.g.,
bridge, playground). The unnatural structure of the synthetic
contents will make people spot the fake. For example, since
bridges always are straight or have small curvature, the syn-
thetic sinuous bridges will be easily judged as fake. Another
example is that playgrounds are always elliptical, while the
synthetic square one would be judged fake, as shown in Fig.
1.

To address the above challenge, we propose a structured
generative adversarial network (StrucGAN) to generate remote
sensing images in a structured way given the text descriptions.
The proposed StrucGAN uses AttnGAN as the backbone to
achieve the multi-stage refinement text to image generation.
Novelly, to synthesize structural reasonable image content,
StrucGAN utilizes an unsupervised segmentation module to
extract structured information of the remote sensing image
contents and construct structured discriminators to distinguish
authenticity based on the structured information. Since the
discriminators can distinguish images in a structured way, the
generators are forced to generate structural reasonable image
content. The experiments on the RSICD dataset [14] show that
the proposed StrucGAN can generate more realistic remote
sensing images compared with the baseline.

Our work mainly has the following two contributions:

• We shed light on the possibility of improving the struc-
tural rationality of contents to synthesize realistic remote
sensing images.

• The structured generative adversarial network is proposed
to synthesize realistic high-resolution remote sensing
images that are semantically consistent with the given
text description.

II. METHODOLOGY

In the text to image generation task, the existing architec-
tures [2], [3], [8]–[10] are essentially conditional GANs, the
architectures [4], [5] are stacked conditional GANs, and the
architecture AttnGAN [6] are stacked conditional GANs with
attention mechanism. We reimplement the AttnGAN as the
backbone and add novel branches based on our proposed struc-
tured mechanism. Each branch consists of a region proposal
module and a structured discriminator.

The overview of the proposed StrucGAN is shown in Fig. 2.
We briefly review the structure of the backbone in section II-A
and detailedly introduce the proposed structured mechanism in
section II-B. Then we introduce the modified loss functions in
section II-C.

A. Overall Structure

A bi-directional Long Short-Term Memory (LSTM) [15] is
used as the text encoder to extract semantic features from the
text description. The output word features matrix is indicated
by w ∈ RM×Nw , where M is the dimension of the word
feature vector and Nw is the number of words. The sentence
feature vector, s ∈ RM , is the concatenated last hidden states
of the bi-directional LSTM. The conditioning augmentation
module [4] converts the sentence vector s to the conditioning
vector s̄, which is a latent variable randomly sampled from an
independent Gaussian distribution N (µ(s)),Σ(s)).

The huge gap between semantics and image contents makes
it difficult to generate high-resolution images based on the text
descriptions in one step. To tackle this challenge, the stacked
generative adversarial networks are used to gradually generate
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images of small-to-large scales. The stage-i generator Gi, takes
the hidden state hi as input and generate image x̂i, namely

x̂i = Gi(hi). (1)

The hidden state hi is generated by the up-sampling module
Fi, which is defined as follows.

hi =

{
Fi(z, s̄), i = 1,

Fi(hi−1, F
att
i (w, hi−1)), i = 2, 3, ...,m,

(2)

where z is a vector sampled from a standard normal distri-
bution. The up-sampling module Fi increases the spatial size
of the hidden state by twice. Namely, the length and width of
the image generated in each stage are twice that of the image
generated in the previous stage. F att

i is the attention module
that uses two fully connected layers to map word features
w and previous hidden state hi−1 into the same space, takes
their product, and normalize the product through the softmax
function as attention weight which is then used to weight
word features to generates the word-context vector. Finally,
the previous hidden state and the corresponding word-context
features are added together to input the up-sampling module.

For each generator Gi, one pixel-level discriminator Di is
constructed using downsampling blocks and fully connected
layers. The pixel-level discriminator takes the generated image
and the sentence feature vector as input and produces the
decision score.

A convolutional neural network (CNN) with two followed
perceptron layers is used to map the image to semantic vector
v ∈ RM×Np and global semantic vector v̄ ∈ RM , where Np

denotes the spatial size of the feature map extracted by the last
convolutional layer. The similarity module, namely the deep
attentional multimodal similarity model (DAMSM) proposed
in [6], measures similarity between the semantic vectors and
the word features through the local and global matching scores.
The local matching score is defined as follows,

R(x, y) = log(

T−1∑
i=1

exp(γ
(
∑

j αi,jvj)
Twi

‖
∑

j αi,jvj‖‖wi‖
))

1
γ , (3)

where x denotes the text description, y denotes the image, wi

denotes the ith word feature and α = softmax(wT v) denotes
the attention weights. The γ is a smoothing factor set to 5. The
global matching score is defined as

R′(x, y) =
v̄T s

‖v̄‖‖s‖
. (4)

B. Structured Mechanism

For each stage of generating images of the small-to-large
scale, besides the pixel-level discriminator, we further con-
struct a branch based on the proposed structured mechanism
to force the generator to produce structural reasonable images.
Each branch consists of a region proposal module and a
structured discriminator.

The region proposal module (RPM) takes the image as input
and produces the region map.

ri = RPM(xi). (5)

Specifically, we first apply the guided image filter [16] to
smooth the generated image while keeping its edges and
structures. Then we use a pre-defined method “Selective
Search” [17] as the region proposal module to segment the
input image to a set of class-agnostic segmentation proposals
based on the color and texture features. Then the region map
is generated by replacing the pixel value in image xi with the
mean value of the image pixels in each corresponding pro-
posal. To make the selective search method adapt to the remote
sensing images, we specifically tune three key parameters to
make sure that segmentation proposals are not too fragmented
while retaining as many detailed regions as possible. These
parameters include a smooth parameter τ of the Gaussian filter,
a parameter msize which controls the minimum bounding box
size of the proposals, and a scale parameter sscale which
controls the initial segmentation scales. These parameters are
set as τ = 0.8, msize = 100, and sscale = 100.

The structured discriminator is constructed using down-
sampling blocks and fully connected layers. Besides the sen-
tence feature, the structured discriminator takes the region map
generated by the region proposal module as input. The stage-
i structured discriminator Ds

i computes the decision score as
follows,

Ds
i (ri, s̄) = F d([F r

i (ri), F
s(s̄)]), (6)

where F r
i is the down-sampling module, F s is a fully con-

nected layer followed by a spatially replicate operation, and
F d is the decision score computing module constructed by
a 1 × 1 convolutional layer followed by a fully connected
layer. The square brackets denote channel dimension wise
concatenation.

Since the structural information is extracted by the selective
search module and transferred to the structured discriminator,
the structured discriminator can distinguish the generated
structural unreasonable image from the real one. This forces
the generator to produce structural reasonable images.

C. Loss Functions

We proposed the structural loss to train the generators and
discriminators in a structured way. The total loss functions of
the proposed method contain adversarial loss, structural loss,
and image-text matching loss. During the training, minimizing
adversarial loss forces the model to generate realistic images,
minimizing structural loss forces the model to generate struc-
tural reasonable images, and minimizing image-text matching
loss forces the model to generate images that are semantically
consistent with the input text description.

The adversarial loss function for each generator Gi is
defined as

LGi = −Ex̂i∼pGi [logDi(x̂i)]− Ex̂i∼pGi [logDi(x̂i, s̄)], (7)

while the adversarial loss function for each discriminator Di
is defined as

LDi = −Exi∼pdatai
[logDi(xi)]− Ex̂i∼pGi

[log(1−Di(x̂i))]

−Exi∼pdatai
[logDi(xi, s̄)]− Ex̂i∼pGi

[log(1−Di(x̂i, s̄))].
(8)
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The structural loss function for each generator Gi is defined
as

LGsi
= −Er̂i∼pGi [logDs

i (r̂i)]− Er̂i∼pGi [logDs
i (r̂i, s̄)], (9)

while the structural loss function for each discriminator Di is
defined as
LDsi

= −Eri∼pdatai
[logDs

i (ri)]− Er̂i∼pGi
[log(1−Ds

i (r̂i))]

−Eri∼pdatai
[logDs

i (ri, s̄)]− Er̂i∼pGi
[log(1−Ds

i (r̂i, s̄))],
(10)

where ri denotes the region map corresponding to the real
image xi, while r̂i denotes the region map corresponding to
the generated image x̂i

The image-text matching loss is defined as

Lm = −
K∑
i

log(σ{R(x̂i, yj)}Kj=1)−
K∑
i

log(σ{R(x̂j , yi)}Kj=1)

−
K∑
i

log(σ{R′(x̂i, yj)}Kj=1)−
K∑
i

log(σ{R′(x̂j , yi)}Kj=1),

(11)

where σ is the softmax function and K is the size of a batch
of generated image and text description pairs. Taking one of
the softmax items, for example, it is defined as

σ{R(x̂i, yj)}Kj=1 =
exp(R(x̂i, yi))∑K
j exp(R(x̂i, yj))

. (12)

The total loss function of generator is defined as

LG =

m∑
i

(LGi + LGsi
) + λLm, (13)

where λ denotes a weight factor, which is set to 5.

III. EXPERIMENTS

In the experiments, we implemented the model with three
stages of generators, pixel-level discriminators, and struc-
tured discriminators. These three generators synthesize three-
channel remote sensing images with the spatial size of 64×64
pixels, 128× 128 pixels, 256× 256 pixels, respectively.

A. Dataset and Metrics

Experiments are conducted on the remote sensing caption-
ing dataset named RSICD which is constructed by Lu et al.
[14]. It contains a total of 10921 high-resolution remote sens-
ing images, of which the training set contains 8004 images,
the validation set, and the test set contains 2187 images. Each
image is labeled with 5 description sentences and there are
3323 different label words in the label file altogether.

We use the inception score [18] and R-precision [6] as the
quantitative evaluation metrics. The inception score is defined
as

Inception Score = exp(ExDKL(p(y|x)‖p(y))), (14)

where x denotes the generated image, and y is the class label
predicted by the inception model. Inception score is based
on the intuition that a good model should generate diverse
and meaningful images. That is, the KL divergence between

TABLE I
EVALUATION SCORES OF DIFFERENT METHODS ON THE RSICD

DATASET [14].

Method / Data Inception Score R-precision(%)
k=1 k=3 k=5 k=10

real data 7.32 ± .10 2.47 6.22 9.97 16.83

AttnGAN [6] 5.33 ± .14 1.85 4.17 7.31 14.81
StrucGAN(ours) 5.84 ± .04 2.50 6.20 8.15 16.20

the marginal distribution p(y) and the conditional distribution
p(y|x) should be large.

Since the inception score can not measure whether the
generated images are semantically consistent with the input
text description, we further use the R-precision to evaluate
in this respect. Specifically, for each generated image, we
use it to query the corresponding text description from a
candidate description set consist of one ground truth ti and
99 randomly selected mismatching descriptions. Using the
DAMSM to measure the similarity between the image and
candidate descriptions, we rank the retrieval results and select
top k results Y k

i = {y1, y2, ..., yk}. The R-precision is defined
as follows,

R-precisionk =
1

n

∑
n

I(ti ∈ Y k
i ), (15)

where I is the indicator function and k = 1, 3, 5, 10 in pur
experiments.

The higher inception score means that the images generated
by the model are more meaningful and diverse, while the
higher R-precision means that the generated images have
stronger semantic consistency with the text descriptions.

B. Quantitative Results

We compare our StrucGAN with the previous state-of-the-
art AttnGAN model, which is borrowed from the field of
natural image processing field, for text-to-image generation on
the RSICD test set. Table. I shows the comparison results on
quantitative evaluation metrics including the inception score
and R-precision. The first row shows the scores of real data,
which means we directly compute the metric scores using real
images in the test set and the labeled text descriptions. The
metric scores of real data can reflect the diversity of images
in the data set and the difficulty of synthesizing these images.

Compared with AttnGAN as the baseline, the proposed
StucGAN achieves state-of-the-art performance. StucGAN has
a higher mean (5.84 compared with 5.33) and lower variance
(0.04 compared with 0.14) on the inception score, which shows
that it could generate more diverse and meaningful images.
The R-precision scores improvements show that, compared
with AttnGAN, StucGAN can generate images that have
stronger semantic consistency with the input text descriptions.

C. Qualitative results

Fig. 3 shows the generated images byAttnGAN (second
column) and StrucGAN (third column) based on the 5 different
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Real Data AttnGAN StrucGAN

(a)

(b)

(c)

(d)

(a) A bridge is built over the river.
(b) A green football field is in the gym.
(c) The river flows through the wide land.
(d) Many buildings are in a commercial area.

Fig. 3. Example results of generated images by AttnGAN (second column)
and generated images by the proposed StrucGAN (third column) based on the
input text description (a-d). These results all have a spatial size of 256×256
pixels. The real images are in the first column.

input text descriptions. The results in the second column would
be easily identified as fake images, while the third column
images look more realistic. In the first row, for example, the
generated bridge by StrucGAN is long and straight, which
is much more realistic than that one generated by AttnGAN.
In the remaining examples, the playground generated by
StrucGAN is elliptical, the generated river is winding, and the
generated building is square, all of which are more realistic
than those produced by AttnGAN.

The results in Fig. 3 show that the proposed StrucGAN
could generate high-resolution images that are more structural
reasonable than those generated by AttnGAN. These results
also show that StrucGAN can generate semantically consistent
images based on the input text descriptions.

IV. CONCLUSION

A structured generative adversarial network, namely Struc-
GAN, is proposed to synthesize high-resolution remote sensing
images given the text description. The proposed StrucGAN
extracts structured information of images with the selective
search method to enable the discriminators to distinguish the

image vraisemblance in a structured way. In this way, the
generators are forced to synthesize more structural reasonable
contents. The structural rationality of ground objects is critical
to judge whether remote sensing images are real or not.
Since StrucGAN utilizes structured information effectively, it
achieves synthesizing high realistic remote sensing images.
The quantitative and qualitative experiments results show that
StrucGAN can synthesize high resolution, realistic, structural
reasonable remote sensing images and these images are se-
mantically consistent with the given text descriptions. The
comparison experiment with AttnGAN shows that StrucGAN
achieves better performance.
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