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Abstract—Existing deep learning based remote sensing im-
ages semantic segmentation methods require large-scale labeled
datasets. However, the annotation of segmentation datasets is
often too time-consuming and expensive. To ease the burden of
data annotation, self-supervised representation learning meth-
ods have emerged recently. However, the semantic segmentation
methods need to learn both high-level and low-level features,
but most of the existing self-supervised representation learning
methods usually focus on one level, which affects the perfor-
mance of semantic segmentation for remote sensing images.
In order to solve this problem, we propose a self-supervised
multi-task representation learning method to capture effective
visual representations of remote sensing images. We design
three different pretext tasks and a triplet Siamese network to
learn the high-level and low-level image features at the same
time. The network can be trained without any labeled data,
and the trained model can be fine-tuned with the annotated
segmentation dataset. We conduct experiments on Potsdam,
Vaihingen dataset and cloud / snow detection dataset Levir_CS
to verify the effectiveness of our methods. Experimental results
show that our proposed method can effectively reduce the
demand of labeled datasets and improve the performance of re-
mote sensing semantic segmentation. Compared with the recent
state-of-the-art self-supervised representation learning methods
and the mostly used initialization methods (such as random
initialization and ImageNet pre-training), our proposed method
has achieved the best results in most experiments, especially in
the case of few training data. With only 10% to 50% labeled
data, our method can achieve the comparable performance
compared with random initialization. Codes are available in
https://github.com/flyakon/SSL.RemoteSensing.

Index Terms—Remote sensing images, Self-supervised rep-
resentation learning, Semantic segmentation, Cloud detection

I. INTRODUCTION

HE rapid development of remote sensing technology
has greatly widened the scope of exploring the earth.
Satellite images have been widely used in resource explo-
ration, land census, natural disaster monitoring and etc. The
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semantic segmentation [1-3] (also called pixel level classi-
fication) plays a key role in the analysis of remote sensing
images and the fully convolutional neural networks (FCN)
[4-6] based methods have brought a great breakthrough to
the semantic segmentation [7—12] of remote sensing images.

Despite the great success, recent FCN based semantic
segmentation methods for remote sensing images still rely
on training with a large number of manually annotated data.
Although there are some annotated datasets available, most
of remote sensing data from the Internet are not labeled
that adapts to semantic segmentation task. These unlabeled
data have no effect on improving the semantic segmentation
of remote sensing images. The purpose of this paper is
to design an effective pre-training method with unlabeled
data to improve the effect of remote sensing semantic
segmentation.

The most commonly used pre-training paradigm is Ima-
geNet [13] pre-training. However, it is time-consuming and
laborious to construct such a large-scale remote sensing
dataset like ImageNet to pre-train networks as the annotation
of remote sensing data may rely heavily on professional
domain knowledge. In addition, considering that remote
sensing images are increasingly showing the characteristics
of multi-sources and multi-resolutions, even if there is a
large-scale remote sensing dataset, it can not meet the
requirements of downstream tasks for all remote sensing
images obtained from various satellites.

Self-supervised representation learning is the other re-
cently emerged research topic that learns effective visual
representations of images by taking advantage of self-
supervised learning ideas [14-16]. It is an elegant subset
of unsupervised learning, which can obtain supervision
information from data itself during training. Therefore, it
does not need any labeled data for training and can possibly
learn from any scale of unlabeled data. In self-supervised
representation learning, a set of pretext tasks are usually
designed to explore the relationships between image patches
or image transformations. Through the pretext tasks, the
networks can be trained with unlabeled data and a pre-
training model can be obtained. Then the downstream tasks
such as semantic segmentation can be fine-tuned on this pre-
training model to obtain better results. According to the type
of supervision acquired, the pretext tasks in previous self-
supervised representation learning methods can be divided
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into three categories: 1) image level pretext tasks [17-35], 2)
patch level pretext tasks [36—40], and 3) pixel level pretext
tasks [41-47]. However, remote sensing images have random
viewing angle and no specific salient area but more complex
hierarchical structure and more abundant background in-
formation. The above self-supervised methods designed for
natural images do not consider the characteristics of remote
sensing images and may not work properly.

Moreover, considering remote sensing images usually
show more high-frequency details and hierarchical structure
compared to natural images, the pre-training methods should
extract the high-level and low-level features. Especially for
the semantic segmentation, it requires that the networks
should take these two aspects into account at the same time.
However, the current methods for natural images and remote
sensing images only consider one of them. In order to solve
this problem, this paper proposes a novel self-supervised
representation learning method for remote sensing semantic
segmentation. Our method is designed to focus on both
high-level and low-level features. In our method, we design
three different pretext tasks for pre-training, including an
image inpainting task, an Augmentation Transform Predic-
tion (ATP) task and a contrastive learning task. We design
a triplet-Siamese network with three output branches. The
backbone network shares the same set of image features
and network parameters. Each output branch corresponds
to a different pretext task and is trained with its own loss
function. The total loss for training the whole network is a
multi-task loss function which combines losses of the three
pretext tasks.

By designing the image inpainting task, we aim to help
networks to learn low-level representations. We propose a
moderate approach to construct occluded areas by randomly
transform the in-box areas with image rotation, flip, color
transformation and etc. By designing ATP task and con-
trastive learning task, we aim to help networks to learn
high-level representations. For ATP task, according to the
problem that remote sensing image has no obvious imaging
perspective, we build the Siamese networks, and take the
image and its transformation as the input to predict the type
of transformation.

After the pre-training, the networks can be easily applied
to semantic segmentation by fine-tuning on their labeled
datasets. In the experimental part, we use the Potsdam
dataset and Vaihingen dataset [48] to verify the effectiveness
of our method. In addition, the cloud / snow detection task
can also be regarded as a semantic segmentation task, so we
select Levir_CS dataset [49] to verify our method in cloud /
snow detection task. The results show that our method out-
performs other recent self-supervised representation learning
methods [24, 32, 33] in the semantic segmentation task. Our
method achieves better results than ImageNet pre-trained
models, and the best results with limited training data. In
addition, with only 10% to 50% labeled data, our method can
achieve the comparable performance compared with random
initialization, which shows that our method can effectively

reduce the demand on annotated data.
The contributions of this paper are summarized as follows:

« We propose a self-supervised representation learning
method for remote sensing semantic segmentation. A
multi-task loss function is designed to guide the net-
works to learn both high-level and low-level features at
the same time. A large number of unlabeled remote
sensing images can be effectively used to train the
networks and improve the performance of the semantic
segmentation task.

« In the remote sensing semantic segmentation task, we
achieve better results than models with ImageNet pre-
training and other recent self-supervised pre-training
methods.

e Our method can achieve the comparable performance
with only 50% labeled data on Vaihingen dataset and
20% labeled data on Potsdam dataset compared with
random initialization, while only 20% labeled data for
cloud detection and 10% labeled data for snow detec-
tion are needed to achieve the comparable performance.

The rest of this paper is organized as follows. In section
III, we give a detailed introduction of our proposed method,
including network configuration, multi-task loss function
and implementation details. In section IV, the experimental
datasets and experimental results are introduced. Discussion
and conclusions are drawn in section V and VI

II. RELATED WORK
A. Self-supervised Representation Learning

Self-supervised representation learning is a recently
emerged research topic that learns effective visual repre-
sentations of images by taking advantage of self-supervised
learning ideas [14—16]. Self-supervised representation learn-
ing obtains supervision information from data itself and train
the networks without using manual annotations by designing
a series of pretext tasks. The trained models can be used to
improve the performance of downstream tasks. According
to the type of supervision acquired, the pretext tasks in
previous self-supervised representation learning methods can
be divided into three categories: 1) image level pretext tasks
[17-35], 2) patch level pretext tasks [36—40], and 3) pixel
level pretext tasks [41-47].

« Image Level Pretext Task

The image level pretext tasks in self-supervised repre-
sentation learning explore the intrinsic properties or the
relationship of images. For example, data augmentation can
be used to generate transformed images and corresponding
labels from the original image [17, 18, 22, 24, 26, 29, 35],
and their correspondence can be thus explored during train-
ing. Such a group of methods can also benefit from the
adversarial training [50] and the training of networks can
be guided at the image level by building adversarial losses
[19, 31]. In addition to augmentation methods, we can also
use clustering methods to divide the images into different
groups roughly. The inputs of cluster methods are features
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extracted from neural networks and clustering results are
integrated into the loss function to guide networks training
[20, 21, 23, 27, 30, 34]. Another popular way to define image
level pretext tasks is to design contrastive loss functions.
These methods encourage the networks to learn similar rep-
resentations from similar images (typically the image and its
random transformations) and learn different representations
from different ones. The contrastive loss functions can also
be used to help networks obtain higher robustness to image
rotation and scaling, and therefore improve the generaliza-
tion of their feature representations [25, 28, 32, 33].

o Patch Level Pretext Task

The key to patch level pretext tasks is that if we divide
an image into several patches, then we can construct self-
supervised loss functions by simply exploring the location or
semantic relationship between them. The networks thus can
be trained to learn from the patches and their surroundings.
Doersch et al. [36] propose to evenly divide an image into
nine patches and train the networks to predict the position
of a certain patch relative to the center patch. However,
this method can only learn the relationship between adjacent
patches, and is hard to learn the overall arrangement of the
content in an image. The pretext task based on the “jigsaw”
solves this problem [39, 40]. The jigsaw based methods di-
vide an image into patches and shuffle them. Then networks
are trained to predict orders of the patches to recover the
input image. During this process, the networks need to fully
understand the content and relationship between each patch,
and show better performance in downstream tasks [37, 38].

o Pixel Level Pretext Task

The goal of pixel level pretext tasks is to make networks
understand semantic information. Compared with image
level tasks, pixel level pretext tasks focus more on the
learning of semantic level information. However, they may
also force the networks to learn too many details or shortcuts
between the input and output, which is sometimes mean-
ingless for downstream tasks [43]. Therefore, pixel level
pretext tasks usually need some skills to prevent overfitting
during training. Auto-encoder is a group of commonly used
unsupervised/self-supervised representation learning meth-
ods [41, 42, 47]. However, if auto-encoder is directly used
to reconstruct the input images, it will easily overfit to raw
pixels rather than fully “understand” the image. Pathak et
al. [42] propose to combine auto-encoder with the image
inpainting task to alleviate this problem. In their method,
they train an auto-encoder to recover the input image, but at
the same time a region in the input image will be randomly
discarded. Then they train a discriminator with the recovered
images and some real ones to further improve the features.
Zhang et al. [41] combine the ideas of auto-encoder and
contrastive learning. They switch the input of auto-encoder
to the transformed images. The split-brain auto-encoder
[47] modifies the one-way calculation of an auto-encoder
and proposes a two-way reversible auto-encoder structure.
Through a group of reversible operations, the self-supervised
model can be trained with pair-wise losses. Besides, the tasks

of image colorization [43—45] and image inpainting [46] are
also widely used in self-supervised representation learning
where a network has to learn to recognize objects and make
a full understanding of the details of the images (e.g., sky
is blue and trees are green) before achieving such goals.

Although self-supervised representation learning has made
great progress in recent years, it still falls behind ImageNet
pre-training in most downstream tasks. Self-supervised rep-
resentation learning outperforms ImageNet pre-trained mod-
els only on a few tasks such as object detection [51-53]. In
addition, most of the above methods are designed for natural
image tasks without considering the characteristics of remote
sensing images.

B. Self-supervised Representation Learning for Remote
Sensing Images

Although researches of self-supervised representation
learning for natural images are developing rapidly, methods
for remote sensing images are relatively less. Compared with
natural images, remote sensing images usually consists of
more than three bands. Vincenzi et al [54] propose to use
high-dimensional data to reconstruct image color for pre-
training, which can help networks learn image represen-
tations. But for hyperspectral image processing task [55—
58], this method may not work well. Some self-supervised
learning methods [59-61] are proposed for hyperspectral
images, and have achieved good results.

In addition, the longitude and latitude information of re-
mote sense images and multi temporal data [62] can also be
used for self supervised learning. The SauMoCo [63] method
utilize the spatial information of remote sensing images,
and achieved good results. Researches [64, 65] combine
images with spatial information and multi temporal images
to the contrastive learning, and improve the performance of
downstream tasks.

Howeyver, the above methods still follow ideas for natural
images, trying to extract the supervised information from
remote sensing images by designing pretext tasks just like
natural images, but it does not take advantage of the char-
acteristics of remote sensing images. In addition to the self-
supervised learning methods, some early researches usually
focus on the representation learning for specific tasks. In
[66, 67], a feature learning method for the scene classi-
fication task of remote sensing images is designed, which
can effectively improve the effect of scene classification. In
order to solve the problem of multiple remote sensing image
data sources, neumann et al. [68] proposes a feature learning
method between different datasets. However, these methods
are designed for a only single task and lack of generality.

III. METHODS

Given a backbone convolutional network (e.g. VGGI16
[69], ResNet50 [70]), we start by designing a triplet Siamese
network on top of the backbone. The triplet Siamese network
consists of three input branches, three output branches, and
the backbone as a feature extraction network. In this section,
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Fig. 1. Overview of the proposed method. Given a backbone convolutional neural network, we build three branches on its output - an inpainting branch,
an ATP branch, and a contrastive learning branch (from top to bottom in this figure). The inpainting branch takes in a randomly occluded image and is
trained to repair the occluded area. The ATP branch and the contrastive learning branch share a same pair of input images, where the former is trained
to predict the transformation type and the latter ensures that the backbone produces similar features for similar input and vice versa.

we introduce the detailed configuration of our network
architecture and pretext tasks.

A. Overview of the Proposed Method

Fig. 1 shows an overall architecture of our method. For
different tasks, weights are shared among input branches
and the backbone networks. Different pretext tasks are
implemented by adding different heads and loss functions
on top of the backbone networks.

For the inpainting branch, the input is a randomly oc-
cluded image. The branch repairs the occluded area by
adding several transposed convolution layers on top of the
backbone networks. To increase the details of texture and
edge, we also fuse the global and local information by
introducing skip connections between different convolution
layers and transposed convolution layers. For the ATP branch
and the contrastive learning branch, their inputs are the
images before and after random transformation. Their fea-
tures produced by the backbone networks are concatenated
along their channel dimension. We then construct two fully-
connected networks - one takes in the features and predicts
the transformation type as the output of ATP branch, and the
other one maps the features to the latent space to calculate
the contrastive loss function.

B. Pretext Tasks and Loss Functions

We define three pretext tasks for self-supervised training
- an inpainting task that helps the backbone networks learn
low-level features, and an ATP task + a contrastive task that
are responsible for learning high-level features.

« Inpainting Task

The inpainting branch helps networks to learn useful
features by repairing occluded areas of the input image.
Suppose I represents an original input image. We randomly

occlude I with an S x S pixels square box B, and suppose
I’ represents the occluded image.

In conventional image inpainting tasks, the pixel values of
the occluded area are set to 0 or 255. However, the strategy
of filling with 0 or 255 will cause the loss of information
in the occluded area, thereby increasing the difficulty and
instability of network training. Current researches [43, 46]
usually utilize generative adversarial networks to improve
this problem. But the use of generative adversarial networks
will increase the difficulty of network design and training
too. Therefore, we use a more moderate approach to con-
struct occluded areas by randomly transform the in-box areas
with image rotation, flip, color transformation and etc. In this
way, the backbone can use the information both inside and
outside occluded area for the restoration. To further improve
the generalization ability of the pre-trained model, we also
perform random clipping and color jittering on the input
image I'.

We define the following loss function to train the back-
bone and the inpainting branch:

~

Ly =181 = D (1

where T is outputs of the networks. 8 = |I — I| is a pre-

defined weighting map, which guides the networks to pay
more attention to the areas with bigger changes. || - |1 is the
pixel-wise [-1 function.

« Augmentation Transform Prediction (ATP) Task

Given [ as an original input image, in the ATP branch, we
define a series of image transformation operations (image
rotation, flip and etc.) T = {t1,t2,...,tas} and transform
I by using a randomly selected one operation ¢ from 7.
Suppose I’ represents the transformed image in the ATP
branch. We feed I’ to the networks and train it to recognize
which type of transformation is applied. The ATP thus can be
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essentially formulated as a standard classification problem.

The loss function of the ATP branch is defined as follows:
M

L,=— Z Ay log Py,

m=1

2

where fl(m) = {0, 1} represents the one-hot encoding of the
ground truth class label. P represents the predicted class-
probability of M different transformations. The number of
categories is six. The used data augmentations include, ro-
tating 90 degrees, rotating 180 degrees, rotating 270 degrees,
horizontal flip, vertical flip and no augmentation.

o Contrastive Learning Task

We follow the paper [28] to build a contrastive loss
function to guide networks to learn high-level features of
remote sensing images. The contrastive branch and ATP
branch share the same group of input images.

Given a pair of input image I and its transformation I,
we suppose ¢(I) and ¢(I') represent their image features
produced by the backbone networks respectively. We calcu-
late the similarity between ¢(I) and ¢(I’) as follows:

/ ¢T (Do)
SIT)= ——— 3
D) = oo ®
where || - ||2 represents the [-2 norm.

We further assume that a mini-batch during the training
consists of N image pairs, and (I;, I]) represents the i-th
image pair. We define the contrastive loss function I(1;, I})
of the ¢-th input pair as follows:

L(1;, I;) =U(1;, I;) + 11}, I;)
exp(S(1;, I}))
S ep exp(S(T 1)

exp(S(1i; 1))

Zk;ﬁi exp(S(I}, Ix))’

where (I;, I!) is a positive pair and (I;, I};) is a negative pair.
Minimizing the above contrastive loss function can ensure
that the feature similarity of a positive image pair is larger
than any other negative combinations.

For all image pairs in a training batch, the total contrastive
loss function of this branch is written as follows:

N
L, = ZL(Ii,If).

i=1

= —log

“4)

— log

®)

The final loss function of the three pretext tasks is defined
as the linear combination of their losses:

L= 'Vpr +YaLla + veLe, (6)

where vy, v, and . are positive coefficients to balance the
losses of the above three tasks.

C. Implementation Details

We experiment on two widely used convolutional neural
networks architechtures - VGG16 [69] and Resnet50 [70],
and use them as our backbone networks. To improve the

TABLE I
DETAILED CONFIGURATION OF OUR NETWORKS (VGG16-BACKBONE
AS AN EXAMPLE)

\ Name Layer Input Ker S #Ker
® C1 conv_pool image 3x3 2 64
g Cc2 conv_pool C1 3x3 2 128
= C3  conv_pool C2 3x3 2 256
S C4 conv_pool C3 33 2 512
B | c5  conv_pool c4 33 2 512
a. Catl concat C5 - - -
> C6 conv_pool Catl 3x3 8 512
< | Fcl MLP c6 - - 6
2 | Pooll  avg pool layer5 88 1 512
& FC2 MLP pooll - - 1024
& | Fa3 MLP fcl - - 512
UP1 deconv layer5 3x3 2 512
2| up2 deconv UP14+4C4 3x3 2 256
s | up3 deconv.  UP2+C3 3x3 2 128
'g UP4 deconv UP3+C2 3x3 2 64
] UP5 deconv UP4+C1 3x3 2 32
Pred conv UP5 3x3 1 3

training stability, we add Batch Normalization (BN) [71]
layers to the three prediction branches after each convolution
and transposed convolution layer. We also use data augmen-
tation on input images to avoid overfitting. We augment
the input images by using random image rotation ([0, 90,
180, 270] degrees), horizontal flip and vertical flip. We
add color jittering and random clipping to the transformed
image, which makes the pretext tasks more difficult. The
input image is converted into a gray image with a certain
probability to avoid learning too much color information.

To balance the loss functions of the three tasks nu-
merically, especially at the beginning of training, We set
Yp = 20.0, 7, = 1.0, and . = 1.0. For self-supervised
training stage, we set batch size as 8. The network training
lasts 13 epochs in total, and 242,300 steps are carried out.
The input image size is 256 x 256. The training of the
network takes approximately 27 hours. We use pytorch-1.5
to build our codes. The learning rate is set to Se-4 and is
reduced to its 95% after every two training epochs. Codes are
available in https://github.com/flyakon/SSLRemoteSensing.

In Table I, we take VGG16 [69] as an example to show the
detailed structure of our prediction branches. The columns
“Ker”, “S” and “#Ker” denote the size, stride, and channel
number of the convolution layers respectively. “conv” and
“deconv” denote convolution and transposed convolution
operations respectively. The pseudo code of training process
is shown in Algorithm 1.

IV. RESULTS
A. Dataset for Experiments

« Dataset for pre-training

Since there are still few researches in remote sensing
focusing on self-supervised pre-training, no such benchmark



JOURNAL OF I5TgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 1 Training process of our method

1: Input: Training data X, backbone f, different pretext
tasks heads g, gq, g.. Transforms for tasks: ¢,,t,, t..

2: function TRAINLOOP(X)

3: for all I € X do

4: L,=INPAINTING(J)

5: Lo=ATP(])

6: L.=CONSTRASTIVE(])
7. L= ’Ypr + YaLa + vele
8: update networks to minimize L
9: end for

10: end function

11: function INPAINTING(/)

122 I'«t,(I)

13: h « f()

14: I+ gp(h) R

15 L= |81~ D)

16: return L,

17: end function

18: function ATP(J)

190 I, At (D)

20: o« f(I')

21: h + f(I)

22: P+ gy(h', h)

23: L, =—F{Alog P}

24: return L,

25: end function

26: function CONSTRASTIVE([)
27 I' +t.(I)

28: o f(I')

29: h+ f(I)

30: 2+ g.(W, h)

31 z + ge(hyh)

32: compute constrastive losss with z, 2’
33: return L.

34: end function

TABLE II
DATASETS FOR DOWNSTREAM TASKS AND THEIR STATISTICS.

Dataset #Classes Split

Training Set: 8,096
Validation Set: 4,176
Testing Set: 4,400

Training Set: 12,672
Validation Set: 4,608
Testing Set: 4,608

Training Set: 1,584
Validation Set: 572
Testing Set: 682

Levir_CS 2

Potsdam 6

Vaihingen 6

data is publicly available. Therefore, we construct a large
unlabeled dataset by combining several well-known remote
sensing datasets, including DIOR [72], DOTA [73] and Levir
[74]. To increase the versatility of the dataset, the images
are selected with different resolutions. We use the method in
[75] remove some low contrast images, and the final number
of images for pre-training is 186,486.

« Datasets for semantic segmentation

We use three datasets: Levir CS [49], Potsdam and
Vaihingen [48] to verify the effectiveness of our method
for semantic segmentation of remote sensing images. The
Potsdam and Vaihigen datasets are commonly used dataset
for remote sensing semantic segmentation. Levir_CS dataset
is a large scale dataset for cloud / snow detection task
that is in essence a pixel classification task. The detailed
information of all the above datasets are shown in Table
II. The Potsdam and Vaihingen [48] datasets both have six
categories in each dataset. We crop the images into patches
with size of 256 x 256, and randomly divide them into a
training set (60%), a validation set (20%) and a testing set
(20%). The Levir_CS dataset consists of two categories with
cloud and snow. We also crop the images into patches with
size of 256 x 256, and randomly divide them into a training
set (60%), a validation set (20%) and a testing set (20%).

B. Experimental Setup

In the pre-training stage, we do not use the validation set,
but used all the data for network training. Because even if
we set the validation set, we cannot reasonably infer the
performance of the pre-trained model on the semantic seg-
mentation task through the validation set. We infer whether
the pre-training process is completed according to the loss
function during the training process.

We compare four different network initialization methods:
1) from scratch (random initialization), 2) from ImageNet
pre-training, 3) from our self-supervised pre-training, and 4)
from ImageNet pre-training + self-supervised pre-training
(by continuing to pretrain the networks with self-supervised
losses on top of the ImageNet pre-training).

We compare our method with three state of the art
methods for self-supervised representation learning, which
are NPID [24], MoCo [32] and MoCo v2 [33]. All methods
are trained and evaluated using the datasets described above.

For the semantic segmentation task, we add five trans-
posed convolution layers on top of the backbone model with
each layer followed by a BN layer (the same architecture
as our inpainting branch). We compute the accuracy on
validation set every 20 epoch and save the model with the
highest accuracy. We stop training after 200 epochs. The
learning rate is set to 0.005. We adjust the learning rate to
its 90% every 10 epochs. For the cloud / snow detection
task, we adopt the same network structure and training
strategy with those for semantic segmentation, except that
the learning rate is 0.001.
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TABLE III
SEMANTIC SEGMENTATION RESULTS ON VAIHINGEN DATASET. IOU IS USED AS THE METRIC. THE HIGHEST SCORES ARE MARKED IN BOLD. OURS*
REPRESENTS IMAGENET PRE-TRAINING + SELF-SUPERVISED PRE-TRAINING OF OUR METHOD.

| 025%  0.33% 0.5% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 0.3600 0.3207 0.3540 0.3810 0.4041 0.4596 0.4770 0.5024 0.6313  0.6521
Resnet50 Random 0.3054 0.3439 03369 03846 03757 0.4194 04727 05106 0.6309  0.6448
VGG16 ImageNet 0.3218 0.3430 03777 03866 0.3855 0.4731 0.4807 0.5028 0.6293  0.6753
Resnet50 ImageNet | 0.2974  0.3424  0.3575 03470 0.4050 0.4640 0.4455 0.5177 0.6611  0.7015

NPID [24] 0.3633  0.3366 0.3967 0.4096 0.4140 0.4737 0.5007 0.5162 0.6620 0.6878
MoCo [32] 0.3444  0.3528 03736 0.4143 0.4228 0.4551 0.5054 0.5057 0.6197 0.6584
MoCo v2 [33] 0.3534 0.3518 03686 0.3922 0.4136 0.4614 0.4863 0.5028 0.6496  0.6777

Ours (VGG16) 0.3489  0.3520 0.3810 0.4073 0.4019 0.5035 0.5276 0.5556  0.6897  0.7400
Ours (Resnet50) 02931 0.3487 0.3508 03686 0.4195 0.4687 0.4995 0.6054 0.6887 0.7274
Ours* (VGG16) 0.3805 0.3591 0.3888 0.4232 0.4157 0.4878 0.5898 0.5745 0.7102 0.7413
Ours* (Resnet50) 0.3102 0.3341 03245 0.3852 0.4088 0.4904 0.5205 0.5669 0.6833  0.7222

TABLE IV
SEMANTIC SEGMENTATION RESULTS ON POTSDAM DATASET. IOU IS USED AS THE METRIC. THE HIGHEST SCORES ARE MARKED IN BOLD. OURS*
REPRESENTS IMAGENET PRE-TRAINING + SELF-SUPERVISED PRE-TRAINING OF OUR METHOD.

| 025%  0.33% 0.5% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 03620 0.3026  0.3534  0.4007 04240 0.4864 0.5407 0.5814 0.6748 0.6810
ResNet50 Random 0.3253 0.3673  0.3495 0.4098 0.4435 0.5340 0.5364 0.5624 0.6522 0.6768
VGG16 ImageNet 03764 03303 04066 0.4568 0.5132 0.5414 0.6282 0.6175 0.6662 0.6656

ResNet50 ImageNet | 0.3225 0.3864 0.3884 04211 04637 0.5514 0.5651 0.6088 0.6281 0.6828

NPID [24] 04115 03401 03683 04606 0.4929 0.4959 0.5646 0.5801 0.6478 0.6714
MoCo [32] 0.3984 03135 04210 04409 05057 0.5134 0.6155 0.5948 0.6457 0.6726
MoCo v2 [33] 0.3854 03305 0.3908 04636 04774 05034 0.5994 0.5809 0.6564 0.6696

Ours (VGG16) 0.3817 03803 04606 0.5314 05646 0.6126 0.6419 0.6618 0.6790 0.7031
Ours (Resnet50) 03662 0.4104 04175 04646 05099 0.6050 0.6110 0.6538  0.6922 0.6942
Ours* (VGG16) 0.3933  0.4004 04672 0.5150 0.5696 0.6385 0.6468  0.6823 0.6869  0.7065

Ours* (Resnet50) 0.4043 03555 0.4788 0.5187 05617 0.6292 0.6463 0.6697 0.6817  0.7039

(a) Segmentation loU of Vaihingen (b) Segmentation loU of Potsdam
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Fig. 2. Semantic segmentation results. (a) Results on Vaihingen dataset. (b) Results on Potsdam dataset. The dotted line shows the result of our method.
Ours* represents ImageNet pre-training + self-supervised pre-training of our method.
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Fig. 3. (Better viewed in color) Some examples of the semantic segmentation results of comparison methods on the Potsdam (the first three rows) and
Vaihingen dataset [48] (the last two rows). The first column shows the input images, and the second column shows the label image. The third to seventh
columns are the results of the comparison methods. The last column is the result of our method (VGG16*).

We use the Intersection-over-Union (IoU) as the evalua-
tion accuracy. The IoU can be computed as follows:
- @

+FP +FN
where TP is the number of true positive pixels, and FP and
FN are the number of false positive and false negative pixels.
All of these values are calculated from the confusion matrix
of categories. Finally, after getting the IoU of each category,
we compute mloU - the averaged accuracy of all categories
as the final evaluation accuracy.

ToU

C. Semantic Segmentation Results

We verify the performance of our method on remote
sensing image semantic segmentation task on Potsdam and
Vaihingen datasets [48]. The results are shown in Table
III, Table IV and Fig. 2. Considering humans are able to
recognize novel instances with very few training examples,
we also show the performance of our method with very
limited training data. The columns in the tables and the

abscissa in the figure represent the proportion of training data
in the total training set. ”100%” means that all training data
are used to train the segmentation network, while 70.25%”
means that only 0.25% of training data are used to train
the segmentation network. The number of training images
represented by different proportions can be calculated as
follows: N, = floor(N % r), where r represents the
proportion listed in the tables and N means the total number
of training data. floor represents rounding operation and
N, means the number of training data under proportion
r. In addition, we have counted the number of training
data for each class under different proportions to ensure
that even at the ratio of 0.25% and 0.33%, each category
has corresponding training data. It can be seen that our
method achieves the best results in above two datasets and
obtain the best segmentation results in almost every scale
of training set. As semantic segmentation usually requires a
large number of effective low-level features to supplement
the details of outputs, the results suggest that our method
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can extract better low-level features than other methods.
Therefore, we can use a sufficiently large unlabeled dataset
which can be obtained easily to pretrain any segmentation
model before fine-tuning on target datasets even with every
limited labels. The results show that our method is qualified
to be an alternative or even a better replacement for the
ImageNet pre-training on standard remote sensing image
segmentation tasks.

In addition, it can been seen from Fig. 2 that the seg-
mentation performance has a positive correlation with the
scale of training data for every method. With the increase
of training data, the segmentation performance has been
improved. The performance improvement of our method is
more obvious when the amount of training data is limited.
When the training data increases to 100%, the advantages
of our method that that of other methods begin to decrease.
We can reasonably speculate that if the training data is large
enough, the advantages of our method will eventually be
wiped out. However, due to the difficulty of segmentation
data annotation in reality, we can hardly get enough training
data, and we can not know what scale of labeled data is
enough for network training. Therefore, our method can
effectively improve the accuracy of segmentation, and reduce
the workload of data annotation.

Fig. 3 shows some examples of the semantic segmentation
results of comparison methods on the Potsdam (the first three
rows) and Vaihingen dataset [48] (the last three rows). The
first column shows the input images, and the second column
shows the label image. The third to seventh columns are the
results of the comparison methods. The last column shows
the results of our method. All the models are trained with
100% training data. It can be seen that our method can ef-
fectively improve the performance of semantic segmentation,
and can reduce the false alarms.

D. Cloud / Snow Detection

The cloud / snow detection is in essence a pixel classi-
fication task, so it can be regarded as a special semantic
segmentation problem. Cloud / snow detection task consists
of two sub tasks: cloud detection and snow detection. The
difficulty of cloud / snow detection lies in the high similarity
between cloud and snow. In addition, the cloud samples are
widely distributed and easy to obtain, but the snow samples
are limited by terrain and season so that they are relative
rare. The cloud / snow detection results are shown in Table
V, VI and Fig. 4. Considering that the snow samples are
relatively rare, We start from 0.5% of the training data to
verify the effect of our method on different scale of training
data, rather than from 0.25% as in the semantic segmentation
experiment. It can be seen that our methods have achieved
the best results both on cloud and snow detection.

When the scale of training data is limited, almost all the
methods can achieve a good cloud detection performance,
but under the same scale of training data, the performance
of snow detection is pretty low. This is because even if
some clouds are difficult to distinguish, cloud detection

is still a relatively easy task. Most clouds have similar
texture information, and a small amount of annotation data
is enough for relatively simple cloud detection. But for snow
detection, most of snow samples are similar with cloud ones
and the scale of snow samples is usually small, which leads
to the networks tends to label snow as cloud, resulting in the
performance degradation of snow detection. As can be seen
from the Table V, VI and Fig. 4, our method is superior to
other methods in cloud detection results, but the advantage
is not particularly great. For snow detection, our method is
significantly better than other methods, especially in the case
of less labeled data.

Fig. 5 shows some examples of the cloud detection results
of comparison methods on the Levir_CS [49] dataset. The
first column shows the input cloud images, and the second
column shows the label image. The third to seventh columns
are the results of the comparison methods. The last column
is the predicted cloud result of our method. The parts marked
in gray correspond to the cloud in the input image, and the
parts marked in black and white correspond background and
snow separately. For the cloud detection, the performance of
our method is comparable with other methods, but for the
snow detection, we can obviously see that our method has
achieved better snow detection results.

E. Ablation Studies

We design the following ablation analysis to analyze the
importance of each pretext task in our method, including 1)
the inpainting task, 2) the ATP task, and 3) the contrastive
learning task. We first start from a baseline approach where
we directly train the networks on downstream tasks from
scratch. Then the above pretext tasks are added one by one to
pre-train the networks with self-supervised losses. Finally we
fine-tune the pre-trained networks on the Vaihingen dataset
and their mloUs are recorded. Results are shown in Table
VII. The results show that each task achieves a noticeable
improvement on the semantic segmentation task, where the
“ATP” and “Contrasitive” tasks improve the segmentation
accuracy by about 2%, while the “Inpainting” task further
improves the segmentation accuracy by 4%. As the inpaint-
ing task pays more attention to the low-level features, it
improves the semantic segmentation more significantly. In
addition, although ATP and contrastive tasks are both for
learning high-level features, they can continue to improve
the accuracy of segmentation from the results. The features
they focus on and the effects they produce are not exactly
the same. The ATP task may make the network pay more
attention to the changes in the texture and position of objects,
while the contrastive learning task may help networks pay
attention to the semantic information of images.

F. Experimental Results Analysis

In this part, we analysis the performance of our method in
the face of different task with various difficulty and training
data scale. In terms of the scale of training data, our method
can significantly reduce the demand for training data, which
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TABLE V
CLOUD DETECTION RESULTS. IOU IS USED AS THE METRIC. THE HIGHEST SCORES ARE MARKED IN BOLD. OURS* REPRESENTS IMAGENET
PRE-TRAINING + SELF-SUPERVISED PRE-TRAINING OF OUR METHOD.

| 05% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 0.6546  0.6402 0.6290 0.6975 0.6705 0.6924 0.6977 0.7148
ResNet50 Random | 0.6582  0.6364 0.6198 0.6905 0.6764 0.6889  0.7093  0.7320
VGG16 ImageNet 0.6683 0.6705 0.6965 0.6726 0.7325 0.7405 0.7351  0.7601

ResNet50 ImageNet | 0.6892 0.6586 0.7077 0.6817 0.6618 0.7219  0.7026  0.7344

NPID [24] 0.6444  0.6418 0.5999 0.6893 0.6583 0.7047 0.7203  0.7175
MoCo [32] 0.6567 0.6318 0.6503 0.5748 0.6715 0.6850 0.6776  0.6754
MoCo v2 [33] 0.6487 0.6439  0.6567 0.6566 0.6801 0.7111 0.7114  0.7405

Ours (VGG16) 0.6748 0.6874 0.6913  0.6960 0.7034 0.7219 0.7366  0.7486
Ours (Resnet50) 0.6847 0.6651 0.6988 0.7183  0.7432  0.7430 0.7574  0.7652
Ours* (VGG16) 0.6839  0.6906 0.7033 0.7027 0.7117 0.7184 0.7391  0.7551

Ours* (Resnet50) 0.6728 0.6861 0.6855 0.7130 0.7377  0.7524  0.7597 0.7603

TABLE VI
SNOW DETECTION RESULTS. IOU IS USED AS THE METRIC. THE HIGHEST SCORES ARE MARKED IN BOLD. OURS* REPRESENTS IMAGENET
PRE-TRAINING + SELF-SUPERVISED PRE-TRAINING OF OUR METHOD.

| 05% 1% 2% 5% 10% 20% 50% 100%

VGG16 Random 0.0502 0.2039 0.2518 0.3308 0.3290 0.3882  0.3996 0.4302
ResNet50 Random 0.0057 0.1578  0.2513  0.2928 0.3190 04154 04012  0.4447
VGG16 ImageNet 0.2147 0.2494  0.3447 03273 0.4240 04772 04662 0.5580

ResNet50 ImageNet | 0.2326  0.2743 03425 0.2911 03115 0.3670 0.4060  0.4700

NPID [24] 0.2290 0.3088  0.1832 03146 0.2961 0.3983  0.4143  0.4248
MoCo [32] 02112 0.2138  0.2858 0.2125 03754 0.3381 0.3992 0.3112
MoCo v2 [33] 0.2045 0.2294 0.2822 03110 0.3377 04171 03733 0.4624

Ours (VGG16) 02173  0.2674 0.3282  0.3720 0.4198 0.4267 04857 0.5058
Ours (Resnet50) 0.2031  0.2761 0.3566  0.4201 0.4739 04720 0.5431 0.5390
Ours* (VGG16) 0.2631 0.2860 0.3720 0.3729 0.4046 0.3987 0.5160 0.5529

Ours* (Resnet50) 0.1732 03159 0.3181 04039 04910 0.5270 0.5311 0.5640

(a) loU of Cloud Detection (b) loU of Snow Detection
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Fig. 4. Cloud / snow detection results. (a) Cloud detection results . (b) Snow detection results. The dotted line shows the result of our method. Ours*
represents ImageNet pre-training + self-supervised pre-training of our method.
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Fig. 5. (Better viewed in color) Some examples of the cloud / snow detection results of comparison methods on the Levir_CS [49] dataset. The first
column shows the input cloud images, and the second column shows the label image. The third to seventh columns are the results of the comparison
methods. The last column is the predicted cloud result of our method (VGG16*). The parts marked in gray correspond to the cloud in the input image,
and the parts marked in black and white correspond background and snow separately.

is manifested in two aspects. On the one hand, it can be
seen from Table III and Table IV that the performance of
our method is limited when the training data is extremely
small (0.25%, 0.33%). But with the increase of training data,
our method first shows a leap in performance. Compared
with our method with the most commonly used ImageNet
pre-training method, our method can save almost half of
the training data, i.e, our method with only half of the
training data can achieve the performance that ImageNet
pre-training method can achieve with all data. compared
with random initialization, our method can achieve the
comparable performance with only 50% labeled data on
Vaihingen dataset and 20% labeled data on Potsdam dataset.
On the other hand, when using all the training data, our
method can still improve the segmentation mloU by 4%.
Without changing the network structure, the most effective
way to improve the performance is to increase the training
data. But the segmentation data annotation is very time-

consuming and laborious, our method provides a new way
to continue to improve the performance.

In addition, the experiment results of cloud / snow de-
tection shows performance of different methods for seg-
mentation tasks with various difficulty. From Fig. 4, we
can see that the curve of cloud detection performance is
relatively flat. Although our method is still better than other
methods in most cases, the improvement of cloud detection
is not particularly great. But for the snow detection task,
our method has brought great performance improvement to
the snow detection. The reason for the difference between
cloud detection and snow detection is that cloud detection
is a relatively simple task. In most cases, cloud and ground
objects are easy to distinguish. However, snow and cloud
have similar characteristics, and usually the cloud samples
are more than twice as large as the snow samples, which
leads to the network tends to label snow as cloud and makes
it difficult to improve the performance of snow detection.
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TABLE VII
ABLATION STUDIES OF MULTI-TASK SELF-SUPERVISED
REPRESENTATION LEARNING. ABLATIONS ARE PERFORMED ON 1) ATP,
2) CONTRASTIVE AND 3) INPAINTING.

. _ Resnet50 VGG16
ATP  Contrastive  Inpainting Vaihingen ~ Vaihingen
X X X 0.6448 0.6521
v X X 0.6631 0.6672
v v X 0.6803 0.7092
v v v 0.7274 0.7400

The experimental results on snow detection shows that our
method is more effective in the face of complex tasks.
Compared with random initialization, only 20% labeled data
for cloud detection and 10% labeled data for snow detection
are needed to achieve the comparable performance.

V. DISCUSSION AND FUTURE WORK

The self-supervised representation learning method pro-
vides an effective way to utilize large amount of unlabeled
data. Up to now, most deep learning methods rely on a large
number of labeled data, but for remote sensing images, the
vast majority of available data are not labeled. How to use
these remote sensing images effectively is a great challenge
to be solved. In order to improve the utilization efficiency of
large-scale unlabeled remote sensing data via self-supervised
representation learning method, the following three issues
need to be considered in the future:

« Since self supervised representation learning needs to
cooperate with large-scale datasets to give full play
to its advantages, future work will consider building
a large-scale remote sensing representation learning
dataset. The dataset needs to fully consider the charac-
teristics of multi-source and multi-resolution of remote
sensing images, and try to cover the main data sources
of remote sensing images.

o As the great difference between remote sensing images
and natural images, the method which performs well for
natural images may not be effective for remote sensing
images. Therefore, we will systematically study and
compare the differences of different methods in these
two images in the future, so as to provide reference
that help self supervised representation learning to play
a greater role in the field of remote sensing.

« In addition to the image itself, remote sensing images
also contains a lot of geographic information. We will
consider how to apply this geographic information into
the self-supervised representation learning method of
remote sensing images, so as to greatly improve the
performance of networks for remote sensing images.

VI. CONCLUSIONS

This paper proposes a self-supervised representation
learning method for remote sensing semantic segmentation.
Considering the characteristics of remote sensing images,
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we design multiple pretext tasks (inpainting, augmentation
transform prediction and contrastive learning) to guide net-
works to learn both low-level and high-level features at
the same time. The pre-trained models can be applied to
various downstream tasks as an alternative of the ImageNet
pre-trained models. The experimental results show that our
method outperforms random initialization, ImageNet pre-
training and other self-supervised methods in remote sensing
the semantic segmentation task. Our method has achieved
better results especially with limited training data. This
proves that the model trained by our methods can be
considered as an effective initialization for various remote
sensing image semantic segmentation tasks and can be also
used to improve the performance of semantic segmentation
for remote sensing images.
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