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Abstract

The spatial resolution of hyperspectral image is often low due to the limitation of
the imaging spectrometer. Fusing the original hyperspectral image with high-spatial-
resolution panchromatic image is an effective approach to enhance the resolution
of hyperspectral image. However, it is hard to preserve the spectral information at
the same time of enhancing the resolution by the traditional fusion methods. In
this paper, we proposed a fusion method based on the spectral unmixing model
called sparse constraint nonnegative matrix factorization (SCNMF). This method
has a superior balance of the spectral preservation and the spatial enhancement
over some traditional fusion methods. In addition, the added sparse prior and NMF
based unmixing model make the fusion more stable and physically reasonable. This
method first decomposes the hyperspectral image into an endmember-matrix and
an abundance-matrix, then sharpens the abundance-matrix with the panchromatic
image, finally obtains the fused image by solving the spectral constraint optimization
problem. The experiments on both synthetic and real data show the effectiveness
of the proposed method.
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1 Introduction

Hyperspectral remote sensing technology has been successfully applied in
areas such as anomaly detection, target recognition and background charac-
terization due to its high resolution spectral dimension [25]. However, for the
limitation of the imaging spectrometer, the spatial resolution of hyperspectral
image (HSI) is often low, which hinders the further improvement of many ap-
plications [4]. Compared with HSI, panchromatic image (PI) has much higher
spatial resolution in the same scene. So many scholars have been proposing
various methods to fuse the HSI and PI to obtain one high-spatial-and-spectral
resolution image.

In general, the most common fusion algorithms can be separated into three
categories [4]. The most classical one is the projection and substitution based
methods, which assume that the PI is equivalent to the structural component
of the HSI when translated the HSI into a new space [16]. Algorithms like
Intensity-Hue-Saturation (IHS) [3, 7, 27], Principal Component Substitution
(PCS) [6] and Gram Schmidt Transformation (GST) [15] are all this kind of
methods. Another kind of methods are based on band ratio and arithmetic
combinations, such as Synthetic Variable Ratio (SVR) [20], which performs
well and time-consuming is small. The last category is the wavelet based meth-
ods, such as Discrete Wavelet Transform (DWT) [13,22], which use the DWT
to extract the high frequencies of the PI and then inject them into the HSI
to get the fused image. Of course, in resent years, there are many other algo-
rithms like Fast Fourier Transform enhanced IHS [14] are proposed to improve
the existing methods. What’s more, Li et al. [16] introduce the compressed
sensing technique into the fusion of multispectral image (MSI) and PI, which
gives a new approach to image fusion.

As we will see latter, all of the methods mentioned before have their short-
comings for the fusion of HSI and PI. HSI, compared with MSI and PI, has
much more abundant spectral information, and many applications such as
classification are base on this fact. Therefore, it is worth nothing that on the
processing of image fusion, we must preserve the spectral information and
enhance the spatial resolution at the same time. Unfortunately, most of the
fusion methods like PCS and DWT, which perform well for the fusion of MSI
and PI, can not achieve this directly. It is clear that one hyperspectral image
only contains several materials, which we call each of them endmember in the
field of hyperspectral image processing. Form this point of view, the fused
high-spatial-resolution image must have the same endmembers with the orig-
inal low-spatial-resolution image. However, none of the methods mentioned
before has the theoretically guarantee. Some researchers address this prob-
lem from the perspective of spectral unmixing [9,24,28–31], which we named
them as spectral unmixing based fusion methods. These methods share the
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same fundamental steps, that is, first unmix the low-spatial-resolution HSI into
a endmember-matrix and abundance-matrix, then fuse the abundance-matrix
with the high-spatial-resolution PI using constrained optimization techniques.
With the constant development of hyperspectral unmixing technique, the idea
of using unmixing model for the fusion of HSI and PI is not only easy to im-
plement but also physically reasonable.

In the past few decades, researchers have proposed a large number of algo-
rithms for hyperspectral unmixing based on linear mixing model (LMM) [19].
Among these methods, nonnegative matrix factorization (NMF) [18] has be-
come a fairly useful hyperspectral unmixing method, for its mathematical
form and constraints are in accordance with the physically meaning of hy-
perspectral unmixing. NMF, which is reported as simulating how the brain
identify objects, originally attempts to learn a parts-based representation of
data. In brief, given a nonnegative data matrix V, NMF algorithm seeks t-
wo nonnegative matrix W and H, which satisfy the equation V ≈ WH.
When NMF is introduced to hyperspectral unmixing, the matrix V, W and
H represent the original low-spatial-resolution HSI, endmember-matrix and
abundance-matrix, respectively. As the nonconvexity of the objective function
derived from the NMF decomposition model, there are a large number of local
minima. So it is impossible to obtain a global optimal solution. However, we
can introduce some priori information to make the solution more reasonable.
Hoyer [10,11] introduces the sparse priori into NMF and gets a combination of
sparse coding and NMF. Noticing that for every pixel of HSI, it contains only
a few of endmembers extracted form the whole image, that is, the abundance
fraction for each pixel is sparse. inspired by this, Qian et al. [23] extend the
NMF method by incorporating the L1/2 sparsity constraint, which named as
L1/2 −NMF, and successfully apply it to hyperspectral unmixing.

Among these spectral unmixing based fusion methods, [9, 24] require a
proper spectral library or some prior about the content of the image, which lim-
it their application. What’s more, on the sharpening process, they also require
solve a underdetermined problem, which leads the abundance fractions’ map-
ping error, and further the spectral distortion of the fused HSI. [28,29] use Cou-
pled Nonnegative Matrix Factorization (CNMF) to unmixing the original low-
spatial-resolution HSI and the original high-spatial-resolution MSI to obtain
two couple of endmember-matrixes and abundance-matrixes. Then by combin-
ing the endmember-matrix obtained from HSI and the high-spatial-resolution
abundance-matrix obtained from MSI, the fused high-spatial-resolution HSI
can be generated. However, as the point spread function (PSF) and spectral
response function (SRF), which are used to model the spatial resolution degra-
dation from the original source MSI to the original source HSI and the spectral
resolution degradation from latent HSI (in fact, it can also be substituted by
original source HSI) to original source MSI, respectively, are hard to estimated
in the real data, CNMF method is hard to apply to real HSI. Furthermore,
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if PI is used as the high-spatial-resolution source for HSI fusion, it is hard
to use NMF to decompose a endmember-matrix and abundance-matrix from
it. [30, 31] have introduced a spectral preservation constraint to the NMF-
based fusion model, however, it does not explore the inherent sparse priori of
the hyperspectral data’s abundance-matrix during the decomposition process.

Inspired by the recently hyperspectral unmixing methods and the spec-
tral unmixing based fusion model, we proposed a sparse constrained non-
negative matrix factorization (SCNMF) fusion method. This method first uses
the recently well performed unmixing algorithm to give a better hyperspec-
tral endmember-matrix and abundance-matrix, then sharpens the abundance-
matrix with the PI, finally produces the fused HSI with the spectral preser-
vation constraint. The proposed method has three advantages compared with
other HSI fusion methods: (1) it preserves the original HSI endmembers and
gives a more reasonable physical explanation; (2) it presents a direct spec-
tral preservation constraint that make sure the fused HSI has little spectral
distortion; (3) it does not need PSF and SRF estimation, which makes the
application to real HSI become possible.

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction of sparse NMF and explain its meaning in the fusion model.
Section 3 describes the proposed method for the fusion of HSI and PI, and
derives the updata algorithm. Section 4 presents the experimental results on
synthetic data and real data, and gives the corresponding discussion. At last,
section 5 concludes this paper.

2 Sparse NMF

Since Lee et al. [18] proposed NMF, it has attracted many researchers’
interests and has been applied to kinds of fields because of its simplicity of
mathematical form and easy to implement. For a standard NMF problem,
given a nonnegative data matrix V ∈ RL×K , NMF algorithm seeks two non-
negative matrix W ∈ RL×S and H ∈ RS×K which satisfy:

V ≈WH (1)

To obtain the decomposed matrix W and H, standard NMF algorithm
simply minimizes the difference betweenV andWH using Euclidean distance.
We display the cost function as follows:
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C(W,H) =
1

2

K∑
j=1

∥Vj −WHj∥22 =
1

2
∥V −WH∥2F (2)

However, as discussed in section 1, because of the nonconvexity of the cost
function C(W,H) with respect to both W and H, it is impossible to obtain
the global optimal solution. In order to make the solution more stable, we can
add some reasonable prior to the cost function depending on the problem. As
for HSI decomposition, sparsity is a reasonable constraint.

When NMF based method has been applied to hyperspectral image fusion,
the mathematical symbol in equation (2) is explained as follows: V denotes
the original low-spatial-resolution HSI which contains L bands and K pixels,
that is, each column of V, denoted as {Vj}Kj=1 ∈ RL, stands for one pixel with
L bands. W is the endmember-matrix, each column of which represents one
endmember spectrum (the spectrum of a pure material, such as water, tree,
soil, etc). H is the so called abundance-matrix, each column of which denoted
as {Hj}Kj=1 ∈ RS, and represents the fractions of all the endmembers in the
W for one pixel in V. As the endmembers W is extracted from the whole
HSI, for any pixel Vj, its fractions Hj should be sparse. In other words, we
can reconstruct each pixel in HSI efficiently with only a few of endmembers in
W. For this reason, we add the sparse constraint to (2) to obtain the following
sparse NNF objective fuction:

C(W,H) =
1

2
∥V −WH∥2F + α

K∑
j=1

∥Hj∥1 (3)

where

∥Hj∥1 =
S∑

i=1

|Hij| (4)

is the vector 1-norm which is used to measure the sparsity of vector Hj. Based
on the multiplicative rule described in [18], Hoyer [10] proposed a update
method for solving the sparse NMF described in (3) as follows:

W←W. ∗VHT ./WHHT (5)

H← H. ∗WTV./(WTWH+ α1) (6)

where 1 denotes a matrix whose elements are all 1, (.*) and (./) denote
the elementwise multiplication and division, respectively. (△)T denotes the
transpose of the matrix △ . Of course, some researches [23] use the so called
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L1/2 sparse measure in lieu of the L1, however, in fact, they share the same
fundamental idea.

3 Fusion model base on SCNMF

3.1 The proposed model

As mentioned earlier, in order to obtain a fused high-spatial-resolution HSI
with a little spectral distortion, the fusion model must satisfy the following two
conditions: (1) the sharpening information (or high-frequency information)
extracted from PI must be injected into the original low-spatial-resolution
HSI properly; (2) there should be some apparent spectral preservation measure
to guarantee the fused image’s spectrum approximates the original HSI’s as
much as possible for every pixel. From the aspect of fusing image based on the
unmixing model, we discuss the proposed SCNMF fusion method in detail as
follows:

According to the condition (1), the original low-spatial-resolution HSI V
can be decomposed into the endmember-matrix W and abundance-matrix H,
which has been discussed in detail in section 2. It is obvious that H contains
the low-resolution information of V. Therefore, it is reasonable to obtain a
high-spatial-resolution HSI by the way of sharping H with the high-resolution
details in PI. The proposed fusion process is illustrated in Fig. 1. Thus, we
can express it as this optimization problem:

min C(W,H) =
1

2
∥V −WH∥2F + α

K∑
j=1

∥Hj∥1

s.t. W ≥ 0,H ≥ 0

(7)

And then we have the fused HSI Vf :

Vf = W(βH+ (1− β)P) (8)

where P ∈ RS×K , each of whose row denoted as {Pi}Si=1 ∈ RK is the vectorized
PI, represents the replication of the PI. Parameter β balances the abundance
preservation of the original HSI and the degree of sharpening.

However, if we simply have the fused HSI from formula (8) after solving
the optimization problem (7), it is obvious that this manipulation will lead
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to serious spectral distortion. According to the condition (2), we derive a
apparent spectral preservation term in this paper.

On the process of HSI fusion, we always hope that the fused HSI have the
same spectral characteristics with the original HSI, that is, for every pixel, the
fused one and the original one have the same trend of spectral curve. Suppose
{Vj}Kj=1 ∈ RL and {Vfj}Kj=1 ∈ RL denote the original HSI and fused HSI
pixel, respectively. We can simply minimize the following formula to preserve
the spectral characteristics:

S(V,Vf ) =
K∑
i=1

(∥Vi∥2∥Vfi∥2 − (< Vi,Vfi >)2) (9)

where ∥△∥ and < △ > denote the Euclidian L2 norm and the inner product.
Borrowing the representation of matrix and some matrix simplification tricks,
we can simply (9) to (10)

S(V,Vf ) = tr((VT
f Vf ). ∗ (VTV))− tr((VT

f V). ∗ (VT
f V)) (10)

where tr(△) denotes the trace of the matrix △. From formula (9) or (10), it is
clear that the better the spectral preserved, the smaller the value will be. In
the ideal case, that is, there is no spectral distortion form V to Vf , the value
in formula (10) will be 0.

When we add the spectral preservation formula (10) to the spectral un-
mixing based model expressed in formula (7), we obtain the final fusion model
as follows:

min F (W,H) =
1

2
∥V −WH∥2F + α

K∑
j=1

∥Hj∥1 + γS(V,Vf )

s.t. W ≥ 0,H ≥ 0

(11)

where γ is a parameter that balance the spectral quality and the spatial quality
of the fused HSI. Finally, we have our fused HSI Vf expressed in the earlier
mentioned formula (8).

3.2 Updating rules

Compared with the solution of the standard NMF or sparse NMF model
described in [18] and [10], respectively, the result of the proposed SCNMF
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Fig. 1. The proposed fusion process

fusion model in formula (11) is much more stable. However, it can’t change
the fact that the cost function F (W,H) in formula (11) is still not convex with
respect to both W and H, which leads that finding the global minimum is still
not realistic. Here, we derive a new multiplicative update rule to minimize the
objective cost function F (W,H) .

In order to obtain the multiplication factors with respective to W and H,
we first take the partial derivative with respect to W and H and get:

∂F (W,H)

∂W
=(WH−V)HT + 2γWH0diag(V

TV)HT
0−

2γVdiag(HT
0W

TV)HT
0

(12)

∂F (W,H)

∂H
=WT (WH−V) + 2γβ2WTWHdiag(VTV)+

2γβ(1− β)WTWPdiag(VTV)−
2γβ2WTVdiag(HTWTV)−
2γ(1− β)2WTVdiag(PTWTV) + α1

(13)

where H0 = βH + (1 − β)P and diag(△) is a diagonal matrix whose diag-
onal elements are the corresponding diagonal ones from matrix △. Then we
can easily get the multiplication factor with respect to W by taking positive
and negative terms in formula (12) (the partial derivative of F (W,H) with
respect to W) as its denominator and numerator respectively, and so does the
multiplication factor with respect to H. Following this principle, the updating
rules can be acquired as:
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W←W. ∗ (VHT + 2γVdiag(HT
0W

TV)HT
0 )./

(WHHT + 2γWH0diag(V
TV)HT

0 )
(14)

H← H.∗(WTV + 2γβ2WTWPdiag(VTV)+

2γβ2WTVdiag(HTWTV)+

2γ(1− β2)WTVdiag(PTWTV))./

(WTWH+ 2γβ2WTWHdiag(VTV)+

2γβWTWPdiag(VTV) + α1)

(15)

3.3 Implementation issues

There are several important implementation issues that should call our
attention. The first one is about the initialization methods of the endmember-
matrix W and the abundance-matrix H. Since Solving the optimization prob-
lem described by (11) often results in a local minimum, different initialization
methods not only affect the convergence rate of the algorithm, but result d-
ifferent solutions. We can simply choose values between 0 and 1 randomly
as the entries of W and H, however, in this paper, vertex component anal-
ysis (VCA) [21] are selected to make the initialization of the SCNMF fusion
algorithm.

The second important issue is how to use the PI to sharpen the abundance-
matrix H. We can directly use the PI to generate the sharpening matrix P
and substitute into formula (8) to obtain the fused image. However, if we do
so, the sharpening matrix P wil contain much low frequency information of
PI, which will lead to serious spectral distortion at the same time of sharpen
the abundance-matrix H. Thus, in the actual implementation, we employ high
frequency filter to process PI before we use it to generate matrix P.

The third one is about the parameters we choose for the algorithm. There
are three parameters in SCNMF: α, β and γ are the controller for the de-
gree of sparse, sharpening and spectral preservation, respectively. Differen-
t parameters selection scheme will have a different result. In the simulated
and real experiments carried out in the next section, we both set them as
α = 0.01, β = 0.4, γ = 0.01.

The stopping criteria what we choose is also a key issue. Here, a predefined
value, denoted as tol, is set as the relative error tolerance. If the relative error
(Rerror) of the cost function F (W,H) defined as follows less than tol or
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the number of iteration exceeds the maximum iteration number, the iteration
ends.

Rerror = |F (W,H)new − F (W,H)old
F (W,H)old

| ≤ tol (16)

where F (W,H)old and F (W,H)new denotes the cost function’s value of
the last and current iteration, respectively.

The proposed SCNMF fusion approach for HSI is summarized in Algorithm
1.

SCNMF for fusion of HSI and PI

1. Input: HSI data V ∈ RL×K and sharpen matrix P ∈ RS×K generated
form PI.

2. Initialize W and H by VCA.

3. Repeat until convergence:
a) Update W by (14)
b) Update H by (15)

4. Output: obtain the fused HSI by (8).

4 Experiments

In this section, we first give some common evaluation criteria to measure
the results of fusion objectively. Then we move on to carry out experiments
on both synthetic HSI and real HSI, which we get from the internet [12], to
demonstrate the proposed SCNMF fusion method.
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4.1 Evaluation criteria

To demonstrate the effectiveness of the proposed SCNMF fusion method,
we need to compare the fusion result with other fusion methods quantitatively.
However, quality assessment of the fused image is a much-debated problem
since a unique, reliable image quality index is unavailable today yet [4]. There-
fore, it requires computation of a number of different indices with the fused
HSI, the original HSI and the reference HSI [2]. In this paper, the following
typical evaluation metrics are used.

(1) the Spectral Angle Mapper (SAM) denotes the absolute value of the
spectral angle which reflects the degree of the spectral distortion from the
original HSI V to the fused HSI Vf . Let column vector Vi and Vfi denote
the spectral vector of a pixel of V and Vf respectively. Then the SAM of this
pixel can be define as:

SAM = arccos(
< Vi,Vf i >

∥Vi∥2∥Vfi∥2
) (17)

The final SAM is averaged over the whole image to yield a global mea-
surement of spectral distortion [2]. In the ideal case, the SAM would be 0,
that is, there is no spectral distortion.

(2) the Average Gradient (AG) can be used to measure the sharpness of
the image, that is, the richer of the details in the image, the greater AG will
be. It is defined as:

AG =
1

(M − 1)(N − 1)

M∑
i=1

N∑
j=1

√
(∇x)2 + (∇y)2

2
(18)

where M and N are the height and width of the image, ∇x and ∇y are the
gradient of the x and y directions.

(3) the Correction Coefficient (CC) can be calculated by:

CC =

∑M
i=1

∑N
j=1[H(i, j)−H][Hf (i, j)−Hf ]√∑M

i=1

∑N
j=1[H(i, j)−H]

∑M
i=1

∑N
j=1[Hf (i, j)−Hf ]

(19)

where H and Hf denote one band of the original HSI and the fused HSI with
size M × N , respectively. H and Hf denote the average of one band of the
original HSI and the fused HSI, respectively. We get the final CC by average
over the whole HSI spectral axis. CC reflects the correlation between the
original HSI and the fused HSI.
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(4) the Spectral Information Divergence (SID) is a spectral similarity mea-
sure to capture the spectral correlation between the original HSI pixel and the
fused HSI pixel [5]. Assume that x=(x1, . . . , xL) and x=(x1, . . . , xL) are pixels
taken from the original HSI and the fused HSI. Then it can be defined as:

SID(x,y) = D(x∥y) +D(y∥x) (20)

where D(x∥y) is the so called cross-entropy that means the relative entropy
of y with respect to x and is given by:

D(y∥x) =
L∑
l=1

pl log2(
pl
ql
) (21)

where pl and ql are calculated by:

pl =
xl∑L
i=1 xi

(22)

ql =
yl∑L
i=1 yi

(23)

The final SID is also given by averaging over the total pixels from the HSI.

(5) the Root Mean Square Error (RMSE) is a common index to measure
the error between two images. one band of HSI’s RMSEk is defined as:

RMSEk =

√√√√√ 1

MN

M∑
i=1

N∑
j=1

[Hf (i, j)−Hr(i, j)]2 (24)

where Hf and Hr represent one band of the fused HSI and the reference HSI,
respectively. We get the final RMSE by averaging over the whole band of the
HSI.

(6) the relative global synthesis error (ERGAS) is defined as:

ERGAS = 100
h

l

√√√√ 1

L

L∑
k=1

RMSE2
k

MEAN2
k

(25)

where h and l denote as the spatial resolution of PI and HSI, respectively. L is
the number of band of the original HSI. MEANk is the mean value of the kth
band of the reference HSI. RMSEk is the RMSE of the kth band between
the fused HSI and the reference HSI , which is defined by formula (24). It is
obvious that smaller ERGAS suggest the better fusion result.
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Fig. 2. the schematic diagram of the Synthetic HSI and PI

4.2 Experiment on Synthetic Data

As we know, we have to carry out registration between HSI and PI before
we fused them. However, misregistration of the source images (HSI and PI)
can cause the generation of mismatched fused image [17], which will have
some effect on the evaluation of the performance of different methods. In
addition, some indices such as ERGAS need the reference HSI to give the
objective evaluation. For these reason, we download the HSI of the Northwest
Tippecanoe County, Indiana from [12] and use it to carry out a simulated
experiment.

The HSI from [12] contains 220 bands with the size of 307×306, which
comes from the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
built by JPL. We first remove the low-SNR bands and then randomly select
100 bands to generate the reference HSI and one band to simulate the high-
spatial-resolution PI. Next, we simulate the original low-spatial-resolution HSI
by downsampling the reference HSI with the factor of 4 and resizing (bicubic
interpolation) it to the same size as before. Thus, we get the source images
which have been geometricly registrated with high accuracy, which are shown
in Fig 2.

The original HSI, the reference HSI and the fused results obtained form
different methods shown in Fig 3 are composed of three bands from the cor-
responding HSI. From the aspect of visual analysis, we mainly focus on two
important issues, that is, the spectral preservation and the spatial enhance-
ment. It is clear that in Fig 3, Compared with the fusion result obtained from
the proposed fusion method, the fusion results from DWT and GST have much
more serious color distortion (In the HSI, we often call them spectral distor-
tion) based on the reference HSI. The result form Ehlers [8] has a obvious
blur effects. It is seem that in visual effects, high-pass filtering (HPF) [1] and
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Fig. 3. The fused results from different methods in simulated experiment. (a)The
resampled low-spatial-resolution HSI; (b)-(g) are the fused results from DWT, HPF,
GST, Ehlers, SPNMF and the proposed method; (h)the reference HSI.

SPNMF [30] have the same fusion result with the proposed method (in fact,
if you observe carefully, HPF has more color distortion and SPNMF has more
blur effects). In order to give a more convincing comparative result, we show
the objective indices for these methods in table 1.

From table 1, we can see that whether form the aspect of spectral preser-
vation or the spatial enhancement, the proposed fusion method has a better
performance than DWT, Ehlers and SPNMF. However, the proposed method’s
AG is smaller than those of HPF and GST (but very close). This result sug-
gest that the degree of spatial enhancement of the proposed method is not
as good as that of HPF and GST. But as for other indices, such as SAM,
the proposed method’s are much better than GST’s. What’s more, the fusion
result of GST in Fig. 3 show that it has a serious spectral distortion. Now let
us analyse the comparison of HPF and the proposed method. Though HPF
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Table 1
Evaluation results of the simulated experiment

DWT HPF Ehlers GST SPNMF The proposed SCNMF method

SAM 11.7628 5.5081 6.7069 26.5828 6.0229 1.4754

AG 0.0214 0.0276 0.0214 0.0275 0.0197 0.0271

CC 0.8976 0.8854 0.9359 0.6652 0.8978 0.9383

RMSE 0.9634 1.2707 6.9038 1.4881 4.1634 0.0614

ERGAS 11.6152 7.915 42.0151 8.4659 26.9675 0.4036

SID 0.0841 0.0624 0.0146 0.2217 0.0252 0.0013

Fig. 4. the schematic diagram of the real HSI and PI.

show a better sharpening than the proposed method, the larger indices such as
SAM and SID suggest that the distortion of HPF is more serious than that
of the proposed method, which has a important effect in many hyperspectral
applications. In addition, the smaller RMSE and ERGAS suggests that the
fusion result of the proposed method approximates the reference HSI much
more better. The phenomenon of larger AG but larger RMSE and ERGAS
implies that HPF may introduce some artifacts in the fused HSI. So in gener-
al, the propose method do a better balance between spatial enhancement and
spectral preservation.

4.3 Experiment on real Data

We also carry out the fusion experiment on the real data. We first download
the HSI and PI (the spatial resolution is twice higher than HSI) of Washington
DC Mall from [12] and google map, respectively. After removing low-SNR
bands, We then carry out registration with them and finally get the PI and
the original low-spatial-resolution HSI with 64 bands and the size of 150×250.
The image used to fuse are shown in Fig. 4.

The original low-spatial-resolution HSI and the fused results obtained for-
m different methods shown in Fig. 5 are composed of three bands from the
corresponding HSI. It shows that in the original low-spatial-resolution HSI,
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Fig. 5. The fused results from different methods in real experiment. (a)The low-s-
patial-resolution HSI; (b)-(g) are the fused results from DWT, HPF, GST, Ehlers,
SPNMF and the proposed method; (h)the high-spatial-resolution PI.

Table 2
Evaluation results of the real experiment

DWT HPF Ehlers GST SPNMF The proposed SCNMF method

SAM 14.5275 20.2814 13.8341 30.6976 12.9038 8.9042

AG 0.0363 0.0358 0.0221 0.0203 0.0308 0.0297

CC 0.7333 0.7117 0.7977 0.7947 0.7583 0.8868

SID 0.082 0.1036 0.0659 0.0882 0.074 0.0423

many details, such as some roofs and roads, have been disappeared. However,
after fusion, these details have been added to the fused image in some de-
gree. The DWT and HPF enhance the spatial resolution better than other
methods, however, both of DWT and HPF have serious spectral distortion.
Relatively speaking, the SPNMF and the proposed methods have the best re-
sult. Compared with the SPNMF, since the sparse prior have been added, the
proposed method makes the spectral unmixing more stable and reasonable,
further makes the spectral distortion much less. In this HSI fusion, the AG of
the propose method is a little less than that of SPNMF, however, the proposed
method makes a much progress in the aspect of spectral preservation. These
results suggest that the proposed method can also do a better balance between
the spectral preservation and the spatial enhancement in the real data.

5 Conclusions

In this paper, a new hyperspectral image fusion algorithm called sparse
constraint nonnegative matrix factorization (SCNMF) has been proposed.
This method is based on spectral unmixing model. The algorithm first u-
tilizes the sparse NMF to decompose the original hyperspectral image to an
endermember-matrix and an abundance-matrix, then sharpens the abundance-
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matrix by the high-spatial-resolution panchromatic image, and finally produce
the sharpened hyperspectral image with the spectral preservation constraint.
Unlike some spectral unmixing based methods, such as CNMF, can not apply
to the fusion of real hyperspectral image and panchromatic image, the pro-
posed method need not any prior knowledge about the content of the image
or PSF and SRF. Thus it can be applied to the synthetic or real hyperspectral
fusion of both multispectral image and panchromatic image. Our experiment
show that the proposed method can do a better balance between the spectral
preservation and resolution enhancement than some traditional methods.
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