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Can a Machine Generate Human-like Language
Descriptions for a Remote Sensing Image?

Zhenwei Shi, Member IEEE and Zhengxia Zou∗

Abstract—This paper investigates a very intriguing question
of remote sensing field: “can a machine generate human-like
language descriptions for a remote sensing image?” Automatic
description of a remote sensing image (namely remote sensing
image captioning) is an important but rarely studied AI task. It is
even more challenging since the description must not only capture
the ground elements of different scales, but also express their
attributes as well as how these elements interact with each other.
Despite its difficulties, we have proposed a remote sensing image
captioning framework by leveraging the techniques of recent fast
development of deep learning and Fully Convolutional Networks.
Experimental results on a set of high resolution optical images
including Google Earth images and GaoFen-2 satellite images
demonstrate that the proposed method is able to generate robust
and comprehensive sentence description with desirable speed
performance. Our Code and trained models are available at:
http://levir.buaa.edu.cn/Code.htm.

Index Terms—Remote sensing image captioning, Image un-
derstanding, High resolution optical remote sensing image, Fully
convolutional networks.

I. INTRODUCTION

WHEN does a machine “understand” an image? One
definition might be when it can generate sentences that

summarize the image content [1]. Nowadays, remote sensing
imaging techniques have opened a door for people to observe
the earth [2]. Many researchers are making efforts to let
machines better understand the remote sensing image. Since
language is one of the most common information carrier that is
close to human cognition, a natural question then arises: “can a
machine generate human-like language description for remote
sensing image?” In this paper, we try to find the answer.

Automatic remote sensing image description (or called
remote sensing image captioning) aims to let machine describe
the content of a remote sensing image in human languages
and better present useful information to users. Although there
have been many previous works such as remote sensing image
labeling [3], remote sensing target detection [4–8] and scene
classification [9, 10], remote sensing image captioning differs
from all these tasks in that it aims to generate comprehensive
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sentences rather than predicting individual tags or words. To
generate concise and meaningful sentence description, one
must well recognize the ground elements under different
levels, analyze their attributes, exploit their class dependency
and spatial relationships from the “view of God”.

Despite its difficulties, there lies extensively potential appli-
cations of remote sensing image captioning for both civil and
military use. Here we present two scenarios:

• Image retrieval. The automation of this process can be
very helpful for remote sensing image retrieval where
users can go beyond keyword search to describe their
information needs and improve the accessibility of col-
lecting useful images.

• Military intelligence generation. At war time, battlefield
images captured by spy drone or satellite can be auto-
matically transformed to text or voice messages. These
messages can be further sent to the front-line combat
soldiers or command centre.

Automatically generating descriptions of image has long
been a difficult and fundamental AI problem. Thanks to the
fast development of computer vision and natural language
processing technologies, it is now becoming a real possibility
for intelligent systems to talk about natural images [1, 11–
15]. Although an image may contain a vast amount of visually
discernible information that is difficult to be completely char-
acterized by limited natural languages, nonetheless, the recent
progress on automatic generation of natural image captions
has greatly disrupted the well-known adage that a picture is
worth a thousand words [13]. During the past one or two years,
many image captioning systems have shown that it is possible
to describe the most salient information conveyed by images
with accurate and conscious sentences.

For most natural image captioning methods, their algorithm
flow can be divided into the following two stages: 1) image
understanding and 2) language generation. In the first stage,
the algorithm aims to recognize the objects in an image,
analyze their attributes and determine how the objects interact
with each other. Some frequently used methods can be grouped
into two categories: region feature based methods [1, 11–
13] and global feature based methods [14, 15], where the
former ones extract features individually and analyze the
image content based on multiple visual regions, while the later
ones extract global features directly from the whole image.
In the second stage, words are arranged to form meaningful
sentences based on the image content. A classical approach of
this stage is to use pre-defined templates to generate sentences
by filling detected visual elements [16–20]. Image retrieval
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Fig. 1. Semantic decomposition of ground elements with different scales.

based methods [21, 22] are also frequently used. These meth-
ods are first to search for similar images and corresponding
annotated sentences in the dataset, and then create a new
sentence based on the retrieval result. But sentences generated
by these methods are relatively fixed and limited. Recent
works aim to automatically decode words learnt from data into
natural language sentences by training deep Recurrent Neural
Networks (RNN) [12–15] to generate more creative and more
flexible sentences.

Although noticeable progress has been made in natural
image captioning, similar problem has rarely been studies yet
in remote sensing field. Compared to natural image captioning,
there are two main differences for remote sensing image
captioning task:

1) Multi-level Semantics. For remote sensing images, the
same ground elements may present totally different semantics
under different geographical scales. For example, consider a
remote sensing image of an airport, where the pixel level
semantics may correspond to the ground material features,
such as metal, concrete and soil, the target level semantics
may correspond to the objects itself and its attributes, such as
airplane, terminal building and runway, while the environmen-
tal level semantics may correspond to a wider range of ground
areas, such as airport, harbor, ocean or city. A remote sensing
image captioning task should be established on multiple level
of geographical scales.

2) Semantic Ambiguity. There may be some “gray zones”
between different geographical semantic classes, especially for
those large scale regions with multiple semantical attributes.
Sometimes it is hard to characterize a particular area of remote
sensing image by a single semantic label. For example, for
those urban-rural area (an area with both urban and rural
characteristics), or the junction area of the harbor and land
structures, the image content may present ambiguous semantic
characteristics.

In this paper, we propose an effective method for remote
sensing image captioning task in response to all above charac-
teristics. The motivation of our research lies in three aspects: 1)

a fundamental AI problem, 2) an important but rarely studied
task and 3) potential remote sensing applications. In order to
obtain a comprehensive and detailed description of the remote
sensing images, some typical ground elements are decomposed
as the following three levels in our framework (see Fig. 1)

• Key-Instance: airplane, oilpot and ship.
• Envi-Element: airport, harbor, buildings and farmland.
• Landscape: city, suburbs, ocean and mountain.
Arguably, the starting point for automatic remote sensing

image description is to understand the image. In recent years,
Convolutional Neural Network (CNN) has played a very
important role in tasks like image classification [23, 24], object
recognition [25, 27] and natural image captioning [11, 13]. C-
NN constructs multiple layers of neural networks to learn high
level image features with better discrimination and robustness,
as opposed to that in traditional methods, where features
have to be handcrafted designed. The rapid development of
CNN gave birth to a new technology: Fully Convolutional
Networks (FCN) [28, 30]. FCN is specifically designed to
predict a 2-D label map rather than a single label as CNN
for an arbitrary sized input image, which greatly increases
the processing flexibility and computational efficiency. The
powerful representation ability and structural flexibility of an
FCN model make it suitable for many computer vision tasks,
such as natural image object detection [26, 27, 29] and sematic
segmentation [28, 30], which has shown greater potential than
traditional CNN based methods.

By leveraging the recent popular FCN technology, our
method consists of two stages: 1) a multi-level image un-
derstanding stage, where ground elements of different levels
are detected and identified by a single FCN model, 2) a
language generation stage, where the language descriptions
are generated by integrating the results of the previous stage.
Fig. 2 shows the algorithm flow of the proposed method,
where the multi-level image understanding stage is further
subdivided into three subtasks: key instance detection, envi-
element analysis and landscape analysis. The lower-left corner
of this figure shows the auto-generated description of the
proposed method.

The rest of this paper is organized as follows. In Section II
and Section III, we will introduce our FCN model for multi-
level image understanding. In Section IV, we will introduce our
method for language generation. Some experimental results are
given in section V, and the conclusions are drawn in Section
VI.

II. MULTI-LEVEL IMAGE UNDERSTANDING

In this section, we will give a detailed introduction to our
FCN model and explain how it works in the multi-level image
understanding stage.

A. Fully Convolutional Networks

We deal with the three subtasks including key instance
detection, envi-element analysis and landscape analysis in the
a unified FCN model. In previous remote sensing literatures,
these problems are often separated into divided tasks despite
the high correlations between them.
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Fig. 2. Algorithmic flow of the proposed method. The dialog box in the lower left corner shows the auto-generated description of the proposed method.

Fig. 3. Typical structures of a CNN and an FCN.

FCN shares similar structural units to CNN. A typical FCN
can be constructed by stacking with a series of convolutional
layers, pooling layers and activation layers. Concretely, a con-
volution layer is designed to capture the basic local image pat-
tern and is invariant to translation. The convolutional output is
called a feature map as the output represents the corresponding
feature of each image pixel. A pooling layer, acting as a down-
sampled filter, is designed to increase the scale invariance
and also to decrease the computational cost of the subsequent
layers. A typical form of pooling operation is “max-pooling”,
where each element of its output corresponds to the maximum
value of the local area of the input. An activation layer is
designed to add nonlinearty to the networks and to enhance
its representation ability. An activation layer is often inserted
behind a convolutional layer, with the operation of making
pixel-wise nonlinear transformation of the feature maps. The
commonly used activation functions include sigmoid function,
tanh function and recent-popular ReLU function [23]. At the
end of an FCN, a loss layer (also called a decision layer) is
designed according to a specific task such as classification
or regression, by replacing the traditional fully-connected
layer of CNN with 1 × 1 convolutional layers. There are no
full-connected layers in an FCN and all the parameters are
embedded in convolutional layers. Since convolution operation
would not limit the input image size, FCN allows arbitrary

sized input image, while in classical CNN models [23, 24], the
input image size must be fixed. FCN is designed in this way to
predict a pixel-wise output label map rather than a single class
label for an arbitrary sized input image. FCNs pixel-to-pixel
output map naturally keeps the spatial information of a remote
sensing image, which makes it suitable for our needs. Fig. 3,
modified from in [28], illustrates how a typical FCN differs
from a typical CNN model in this problem. In the next two
subsections, we will give a detailed description of the propose
networks.

B. Network Structure

The input of our FCN model consists of three parts,
corresponding to the three subtasks: key instance detection,
envi-element analysis and landscape analysis.

For key instance detection, a whole test image I of H×W
pixels and D channels is fed into the FCN model to produce
a set of probability maps, where the probability value of
each pixel indicates how likely a convolutional window covers
a certain type of instance (oilpot, ship or airplane). In the
feed-forward process, the data passes through a series of
convolutional layers, activation layers and pooling layers,
finally forming a d-dimensional feature cube CI , whose each
“pixel” xi ∈ Rd×1 refers to a feature representation of the
corresponding convolutional window. At the end of the net,
a linear decision layer is used to highlight the desired key
instances, meanwhile, to suppress those undesired background
regions. For instances of a certain class k, hk(xi) represents
the output probability of xi

hk(xi) = P (+1|xi;w
kT
KI))

= 1/(1 + exp(−wkT
KIxi)),

(1)

namely, how likely the corresponding image window frames an
instance, where wk

KI ∈ Rd×1 is the discriminative coefficients
for the key instances of class k, k ∈ {1, 2, 3}. Since the
element-wise inner product operation in (1) at each location
is identical to the 3D convolution on the feature cube CI with
a reshaped 1× 1× d filter, the decision layer can be reformed
as a convolutional layer followed by an additional activation
layer. The label of each output pixel depends on the class-id
with the maximum probability value. To detect the instances
of different sizes, we down-sample the original image several
times while keep all the FCN filters as fixed.
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Fig. 4. An illustration of the proposed network for multi-level remote sensing image understanding.

TABLE I
DETAILED CONFIGURATIONS OF VGG-F AND THE PROPOSED FCN MODEL

Arch. Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Layer7 Layer8

VGG-f

64×11×11 256×5×5 256×3×3 256×3×3 256×3×3 4096×6×6
Step = 4 Step = 1 Step = 1 Step = 1 Step = 1 Step = 1 Fully-Connected Fully-Connected
Pad = 0 Pad = 2 Pad = 1 Pad = 1 Pad = 1 Pad = 0 4096→4096 4096→1000
×2 Pool. ×2 Pool - - ×2 Pool -

Ours

64×11×11 256×5×5 256×3×3 256×3×3 256×3×3 4096×6×6 Convolution
Step = 4 Step = 1 Step = 1 Step = 1 Step = 1 Step = 1 Convolution 4×1×1
Pad = 5 Pad = 2 Pad = 1 Pad = 1 Pad = 1 Pad = 3 4096×1×1 Fully-Connected
×2 Pool ×1 Pool - - ×1 Pool - 2×(4096→4)

For envi-element analysis, we should focus on regions of
larger scales. Considering the semantic ambiguity that some
large scale regions may share multiple semantics at different
locations, the input image are randomly cropped into a set
of image patches P1,P2, . . . ,PM at random locations. One
can easily notice that if the patch size is controlled within a
suitable range (e.g. the size of the network’s perceptive field,
which we will talk about later), the output can just become a
probability vector h(Pi) with 1×1 spatial range rather than a
probability map, which turns out to be the same output form of
a traditional CNN. By this way, each patch is individually fed
into the network and is treated as a multi-class classification
process by a softmax layer at the end of the net

hk(Pi) = P (k|Pi;WEE) =
exp(wkT

EEpi)∑4
j=1 exp(w

jT
EEpi)

(2)

where pi ∈ Rd×1 is the feature representation of the patch Pi,
hk(Pi) is the probability of the patch Pi being specified to
the class k, and WEE = [w1

EE , . . . ,w
4
EE ] ∈ Rd×4 are their

discriminative projective coefficients. The final results of the
test image can be obtained by an averaging of the results of
all patches at different locations

h(I) = 1

M

M∑
i=1

h(Pi). (3)

For landscape analysis, the probability vector of each patch
can be obtained in similar manner, while the only difference is
to replace WEE of (2) with the landscape coefficients WLS ∈
Rd×4.

We build our FCN model based on VGG-f [24, 31], a
classical CNN model which has shown state of the art per-
formance in natural image tasks such as image classification
[24] and object detection [32]. In our FCN model, the 1st to
7th convolutional layers use shared weights for all the three
subtasks, while the weights of the final decision layer are
specifically trained for different subtasks. Table I shows the
detailed configurations of our model and VGG-f. We have
made some changes in VGG-f so that it can be better adapted
to our task. Specific changes (emphasized in italics in Table
I) lie in the following three aspects:

• The fully connected layers are replaced by the 1 × 1
convolutional layers to accept arbitrary sized input image
and keep the spatial information of the output.

• We choose smaller pooling step to adjust the size of the
receptive field.

• We use appropriate padding size for each convolutional
layer and each pooling layer so that a instance window
would not go out of the border of feature maps through
the feed-forward process.
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Fig. 5. An illustration of the reception field for an FCN.

C. Receptive Field Analysis
The receptive field is an important biologically-inspired

concept that derivatives from animals visual cortex. In FCN,
a receptive field refers to the spatial range of input pixels
that contribute to the calculation of a single pixel of the
output. A network with a larger receptive field tends to catch
the structural information of larger scale such as the envi-
element and landscape, while that with a smaller one may
concentrate more on the local details such as the appearance
of key instances.

The radius of receptive field R of our networks is related to
the convolutional filter radius rci , convolutional step size sci ,
pooling radius rpi , pooling step size spi and number of layers
n, i, j ∈ {1, 2, . . . , n}. It can be calculated by accumulating
each layers’ receptive radius ri as 1

R =
n∑

i=1

ri =
n∑

i=1

(rci r
p
i

i∏
j=1

scjs
p
j ). (4)

The size of output map can be calculated as

[h,w] = [H,W ]/(
n∏

i=1

scjs
p
j ), (5)

where [h,w] and [H,W ] are sizes of input image and output
maps. It is clear that using a larger radius or step size can
increase the receptive field and decrease the resolution of the
output maps. An appropriate choice of receptive field should
be considered as a trade-off between different target scales.

Let’s take an image of 1m/pxl for example, by adjusting
the network structure as that shown in Table I, the receptive
field can reduce to 171m × 171m, which well captures the
appearance and scale of oilpot, ship and airplane. To further
enlarge the receptive field for envi-element, we can down-
sample the input image while ignoring some local details.
For example, by setting the down-sampled factor as 3.0, the
receptive field can be roughly scaled up into 500m × 500m,
which can well cover the scale of an airport or a harbor. For
landscape analysis, we do not use larger receptive field since
it may exceed the limit of the input image size.

1Eqt. (4) and (5) can be only applied to those networks with odd-sized
units.

Fig. 6. We assign a score m(ωi|Φ) for each training window ωi in our loss
function indicating that how much this window contributes to the loss.

III. LOSS LAYER DESIGN

We simply follow the idea of “transfer learning” of some
previous detection and classification literatures [33, 34]. Dur-
ing the training process, all the filters of 1st − 7th layers
are fixed as feature extractor. The reason is that previous
researches have shown the high level features extracted from
the activation of a deep convolutional network trained on a
large fixed set of object recognition tasks, such as ImageNet
[35], can be repurposed to novel generic tasks. The features
even show a clear advantage for remote sensing image tasks
without fine tuning, such as oil tank detection [5] and remote
sensing scene classification [34], despite of their big differ-
ences from the originally trained tasks. In our model, the filters
are transferred from vgg-f [31], which is well trained in a fully
supervised fashion on ImageNet.

The loss of a network is usually task-related. A loss layer
takes in data both from previous layers and ground-truth labels
so that the filters of networks can be iteratively adjusted by
comparing them by a loss function during the training process.
Typical loss functions of FCN are designed based on pixel-by-
pixel ground-truth maps [23, 24], where the ground-truth map
has to be labeled manually. In an image captioning task, since
it is not necessary to obtain accurate contour information of an
instance, we redesign the loss of our model based on ground-
truth bounding-boxes rather than pixel-by-pixel ground-truth
maps.

Let Ω be a space of locations for each window within an
image, and {ω1, ω2, . . . , ωN} ∈ Ω could specify N training
windows with corresponding positions and scales. Let Φ be a
space of each ground-truth bounding-box within an image,
and {β1, β2, . . . , βM} ∈ Φ could specify M ground-truth
bounding-boxes of a certain class. In our training process,
the training data are randomly sampled at different positions
and scales from a number of labeled images. Apart from
the training data and the corresponding class label itself,
the loss function is also designed to be related to a weight
assigned to each training window, as is shown in Fig. 6. Let
m(ωi|Φ) ∈ [0, 1] be the weight for a training window at
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location ωi

m(ωi|Φ) =

{
0 if ωi

∩
βj = ∅, ∀βj ∈ Φ

C(ωi

∩
βj)

C(ωi
∪

βj)
if ωi

∩
βj ̸= ∅, ∃βj ∈ Φ

(6)

where C(ωi

∩
βj) denotes the intersection area of two win-

dows ωi and βj , C(ωi

∪
βj) denotes the total area covered

by the two windows. m(ωi|Φ) can be understood as the
Intersection-Over-Union (IOU) of two sets. It should be noted
that although a window is not strictly equivalent to a “set” of
pixels, here we still follow some concepts such as “intersec-
tion”, “union” and “cardinality” to simplify notation.

If the weight between a training window and any ground-
truth bounding-boxes is greater than 0.5, we see this window
as a positive window, else, we see this window as a negative
one. Suppose we have collected N training windows, including
Nt positive windows and Nt negative windows, then the log-
likelihood of all windows can be represented as

log(L(wk
KI) = log(

N∏
i=1

P (yi|xi;w
k
KI)), (7)

where yi = {+1,−1} represents the label of the training
window for a certain instance class k. By dividing the above
formulation into “positive part” and “negative part”, substitut-
ing P (yi|xi;wKI) by (1) and further introducing the weight
m(ωi|Φ), we have

log(L(wk
KI ;m(ωi|Φ)))

=Ep(x+){m(ωi|Φ)log(P (+1|xi;w
k
KI))}

Ep(x−){log(P (−1|xi;w
k
KI))}

=− Ep(x+){m(ωi|Φ)log(1 + exp(−wkT
KIxi))}

− Ep(x−){log(1 + exp(wkT
KIxi))}.

(8)

The advantages of the above operation are as follows:
1) Data balance. It is crucial to balance the samples during

the training process. Since key instances only occupy a small
group of pixels in a remote sensing image, training with like-
lihood of all samples randomly sampled from the image may
suffer from unbalanced training data between key instances
and backgrounds. By separating the log likelihood of positive
and negative samples into the sum of their self-expectations,
the networks can equally learn preferences toward different
classes.

2) Adaptive weights. While collecting training samples
by traditional approaches, boundaries between positive and
negative samples are usually not clear. By introducing the
adaptive weight for each training sample, the appearance of
positive samples that partly shift out of the window can also
be well captured by the network. This also can be considered
as an adaptive way of data augmentation.

The filters of the loss layer can be easily learned by
Maximum Likelihood Estimation (MLE). Since maximizing
the log-likelihood log(L(·)) is just equivalent to minimizing
the negative log-likelihood −log(L(·)), the learning process
for key instance can be finally represented by solving the
following unconstrained optimization problem

min
wk

KI

J(wk
KI) = −log(L(wk

KI ;m(ωi|Φ))) + α∥wk
KI∥22, (9)

where α is a positive parameter for regularization term to
increase the model’s generalization ability, k ∈ {1, 2, 3}.
The problem (9) can be efficiently solved by the Stochastic
Gradient Descent (SGD) algorithm [36], which has been
commonly used for large scale optimization problems. SGD
is very similar to traditional batch gradient descent algorithm,
except that the gradient is randomly estimated in each round
of the update. The gradient of (9) with two small batches of
n+ positive samples from positive set S+ and n− negative
samples from negative set S− can be calculated as

∇J(wk
KI)

.
= − 1

n+

∑
i∈S+

m(ωi|Φ)exp(−wkT
KIx

+
i )

1 + exp(−wkT
KIx

+
i )

wkT
KI

+
1

n−

∑
i∈S−

exp(wkT
KIx

−
i )

1 + exp(wkT
KIx

−
i )

wkT
KI + 2αw.

(10)

In this way, wk
KI can be updated with a learning rate µ

wk
KI ← wk

KI − µ∇J(wk
KI), (11)

until it converges to a constant.
For envi-element and landscape analysis, WEE and WLS

can be solved by optimizing their softmax functions. Similar
approaches [23, 36] have been widely used and introduced in
other literatures thus will not be discussed here.

IV. LANGUAGE GENERATION

In language generation stage, words are arranged into
sentences by integrating information of previous results. Our
model is designed based on a template-based approach with
linguistic constraints, a technique that has been used for
various practical applications such as summarization [37]
and dialogue systems [38]. Some recent works aims to gen-
erate sentences with language models automatically learnt
from image data, such as Long Short-Term Memory (LSTM)
[12, 13, 15]. Although some of these learning based methods
have achieved the state of the art results of generating sentence
for natural image, in this paper, we still follow the classical
paradigm. There are two main reasons for our choice. For the
first reason, those learning based models are trained based on
a large number of annotated sentences (usually by millions of
corpus), while we do not have such corpus for remote sensing
images at present. For the second reason, by using predefine
templates, one can easily design new template and generate
new rules according to the characteristic of remote sensing
images and our specific needs.

In our model, the representation space of a remote sensing
image can be arranged by the triplets of

{ELM,ATR,RLT}, (12)

where ELM refers to the ground elements of different levels.
ATR refers to the attributes, such as quantity, size and
location. RLT refers to the relationship of different elements.
Fig. 7 shows an example image and the representation space of
the triplets. Some commonly used corpus for remote sensing
image captioning task are also shown in Fig. 7. Based on this
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Fig. 7. We represent the representation space by triplets of {ELM, ATR, RLT}. The bolded text corresponds to the content of the example image.

paradigm, different sentence templates can be designed. For
example, a possible sentence template can be defined as:

{Prefix, ⟨#E1, E1⟩, P rep, ⟨#E2, E2⟩}, (13)

where Ei is the name of a ground element, e.g. “ship”. #Ei
is the number of instances of Ei, e.g. “one”. Prep defines the
set of interactions {“by”, “on the left side of”, . . . }. Prefix
defines the set of prefix of a sentence {“This is a picture
of”, “This image shows”, . . . }. Afterwards, the generated
sentences are checked by grammar rule and some language
mistakes are corrected.

For prefix design, there has been two common viewpoints
in natural image captioning filed. The first one tends to
neglect prefix of sentence [18, 19] since it does not provide
extra information for machine learning applications such as
content-based image retrieval. The second one holds that
adding prefix is sometimes meaningful [17, 20] and should be
added especially for some human-oriented applications such as
voice military intelligence generation since prefix of sentence
provides complete and user-friendly language description for
human. As it is the first time we explore such problem
in remote sensing field, we follow a relatively conservative
approach, to retain the prefix of the sentence.

There are several critical issues that should be noticed in
language generation stage. Firstly, a comprehensive analysis of
the interaction and relationship between the ground elements
is necessary to generate meaningful sentence. The main differ-
ence between the remote sensing image and the natural image
lies in their projection relationship: one is taken from the
perspective of human eyes in daily life, while another one is
taken above the head. In natural image, people tend to focus on
the interaction of 3D space, such as “front and back”, “above
and below”. However, in remote sensing image, we should
pay more attention to the ground distance and orientation2,
such as “near and far”, “left and right”. Secondly, determining
the attributes of key instances is equally important, such as
the quantity and the size. This process highly depends on the

2Here we only consider the most general cases, that the image does not
have elevation information.

correct location of each instance. To extract the bounding box
location of each instance, we use the non-maximal suppression
[39] based on the detection map of each scale. It also should
be noticed that attribute of ground element such as “near and
far”, “big and small” is closely related to image resolution and
their specific class. For example, an airplane with the size of
80 pixels under 1m/pxl resolution should be referred as “a
big” airplane, while that a ship with that size under 2m/pxl
resolution could be referred as a “medium” one. Lastly, on the
basis of all above mentions, the description should be concise,
because human tends to describe the most significant objects
or events of an image. In our method, we only selectively
describe the top-one or top-two elements with the highest
scores of each semantic level, while other details are omitted.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, some high resolution optical images, in-
cluding Google Earth images and GaoFen-2 (GF-2) satellite
images are used to demonstrate the effectiveness and transfer
ability of the proposed method. Since there is no previous
research on remote sensing image captioning task and no
public dataset, we do not directly compare with other image
captioning methods.

A. Experiment Setup

Our experimental dataset consists of a number of Google
Earth images (RGB image) and GF-2 images (multi-spectral
image). The resolution of Google Earth image is 0.5m/pxl.
The resolutions of GF-2 spectral-fused images are 0.8m/pxl.
To verify the algorithm’s performance under different scales,
the images are cropped into some slices with different sizes
and a fixed resolution. For large slices, their sizes range from
1000 to 8000 pixels. For small slices, their sizes are fixed
to 640 × 480 pixels. These image slices cover most type of
ground features of human living environment. Regions such as
glacier, desert, gobi and etc., are not considered in our dataset
at this time. Detailed information of these image slices are
listed in table II.
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Fig. 8. Example image slices and sentences generated by our method for Google Earth images (a)-(c) and GF-2 images (d)-(f).

TABLE II
DETAILED INFORMATION OF THE EXPERIMENTAL IMAGE SLICES

Source Size Training Testing Resolution

Google Earth 1000∼8000 pxl 310 10 0.5m/pxl480×640 pxl 0 100

GF-2 (fused) 1000∼3000 pxl 0 10 0.8m/pxl480×640 pxl 0 100

Before the whole captioning process, the three visible bands
of a GF-2 fused image slice are extracted and stacked into
a pseudo RGB image. Since the raw pixel data of GF-2 is
10-bit depth, all images have been converted to 8-bit images
by ENVI software. It should be noticed that although our
experiments are made on 3-channel RGB images, our model
itself does not restrict the data type. In fact, the change on

data format (including the number of band and the number
of quantization bits) only affects the configuration of the
first layer, or saying more precisely, only affects the channel
number of its convolutional filters. To work on different image
types, we only need some slight changes on the channel
number of the first layers convolutional filter to match the
image band number.

In our dataset, we only use a part of Google Earth image
slices for training, and all the rest (including all GF-2 images)
are used for testing (see Table II for more details). In the
training set, the large slices with ground-truth bounding-box
labels are used to train the key instance detection model, while
for training the envi-element and landscape analysis model,
the slices are further cut and resized into a set of smaller
slices with the same size as the network’s perceptive field. For
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Google Earth images, all key instances’ bounding-boxes and
the class label of the ground elements such as airport, harbor,
ocean, city and etc., have been annotated manually. Some
ambiguous instances are not labeled and are excluded from our
dataset. These ones refer to those ships and airplanes whose
length is smaller than 20 pixels and those oilpots whose radius
is smaller than 10 pixels. Those instances whose bounding-
boxes are partially outside the image are also excluded. The
key instances detected in these regions will not be taken into
account neither as a “false positive” nor as a “true positive”.
Eliminating all these invalid instances, a total of 2772 oilpots,
2244 ships and 1853 airplanes are labeled for experiments.

To detect instances with different directions, each positive
training window is rotated for several times. The negative
training samples are a set of instance-free randomly sampled
windows from the dataset. In this way, more than 40k positive
windows and 400k negative windows are finally used for
training. To detect the instances of different sizes, each image
slice is down-sampled at 4 scales with the unified down-
sampled rate 1.2 at the very beginning of key instances
detection process. For envi-element and landscape analysis,
each image slice is down-sampled at a ratio of 3.0 to obtain
larger perceptive field, and finally 180k and 167k patches are
used for training their softmax weights. The weights of three
subtasks are re-trained for several times using the augmented
dataset (initial data + hard examples) to produce the final
training results. In (11), we set learning rate µ = 0.001,
regularization coefficient α = 0.01. The batch number of (10)
is set to n+ = n− = 10. Our learning algorithm shows high
time efficiency. The objective function value (10) of the three
corresponding instance classes only takes several minutes to
converge to a constant.

B. Overall Results Statistics

Fig. 8 shows some typical image slices of the test set and
the corresponding descriptions automatically generated by our
method. All slices have been resized to a suitable size for
display. To quantitatively evaluate the descriptions generated
by our method, we follow the subjective evaluation criterion
introduced in [15], where the accuracy of the description is
divided into four levels: “without errors”, “with minor errors”,
“related to the image” and “unrelated to the image”. An
example of this criterion is shown in Fig. 9. For each test
image slice, the evaluation process is made by 10 different
persons by specifying the image to one of the four levels.
The evaluation results’ statistics are shown in Table III.
The results suggest strong knowledge-transfer ability of our
method. Despite the fact that we do not use any GF-2 images
for training, satisfactory results for GF-2 test images are still
obtained.

It should be noticed that we do not use any objective
evaluation methods such as BLUE [40] or ROUGE [41], which
have been commonly used in current natural image captioning
literatures. This is because that BLUE and ROUGE are all
base on words’ matched relevance between generated sentence
and ground-truth sentence. Their score may strongly relate to
the annotators’ expression style, such as degree of simplicity,

Fig. 9. Examples of the subjective evaluation criterion introduced in [15].

different tense, voice, and mood. Supervised method such as
LSTM can learn similar expression style of annotators by
training large number of annotated sentences. Although it is
true that learning based method may have more advantages
in generating more flexible sentences with higher score than
template-based method, especially for description of natural
images, nevertheless, in some particular application scenarios
where the template-based language generation method are
more frequently used, the above criteria may have large bias.

TABLE III
SUBJECTIVE EVALUATION RESULTS BY USING THE CRITERION

INTRODUCED IN [15].

Source Google Dataset GF-2 Dataset
without errors 63% 48%

with minor errors 22% 23%
related to the image 10% 19%

unrelated to the image 5% 10%

Fig. 10 shows two typical failure examples of our method.
Actually, the problem lies in the image understanding stage.
There are no airplanes in Fig. 10 (a), but our algorithm gives
some related descriptions since the detector produces a number
of false alarms. Fig. 10 (b) is miss-identified as a coastal area
since the scene texture of some regions resembles the ocean
waves. One possible solution to this problem is to make use
of the context information. For example, a ship is unlikely to
appear on a piece of farmland, and an airplane is also unlikely
standing on the sea. In this way, the output of the detector and
classifier can be calibrated by integrating the information of
different levels. This will be part of our future works.

Since the quality of the final description can be highly
affected by the performance of the first stage, to make a deeper
insights of the description failure, some objective evaluation
criteria of the first stage are introduced, such as the precision-
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Fig. 10. Two typical failure examples of the generated sentences. The errors
are highlighted in red color.

recall curves and confusion matrix. Fig. 11 shows some key
instances’ detection results. Detection maps for oilpot, ship
and airplane are marked as red, yellow and blue, and are
overlaid on the original image for display. All slices have
been resized to a suitable size for display. Although there
are some hard-instances such as ships adjacent with the land
and airplane adjacent with the terminal building, we can still
see the network has successfully highlighted most of these
instances and suppressed the undesired backgrounds. In Fig.
11 (b), a small piece of region between the airplanes is falsely
detected as an oilpot. The precision and recall rate of all test
images are counted as follows

precision = Ntp/(Ntp +Nfp),

recall = Ntp/(Ntp +Nfn),
(14)

where Ntp represents number of true-positives, Nfp represents
number of false-positives and Nfn represents number of false-
negatives. The precision and recall rate of the Google Earth
test images are shown in Fig. 12. When computing precision
and recall, the exact target bounding-box should be generated
to compare with the ground-truth. Since our work focuses on
captioning, rather than detection, we did not draw the exact
bounding-box for each detected target, instead, only original
responses on feature map are overlaid on the input image.
There are two steps going from the score maps of a certain
scale to the target bounding-boxes. In the first step, each pixel
of score map whose response larger than a certain threshold is
compared with its neighbors. If the current pixel value equals
the max value in its neighbors, it is then identified as the center
of a candidate with the corresponding window size. To further
reduce the number of overlapped bounding-boxes, only the
bounding-box with the largest score is retained, while other
overlapped bounding-boxes are deleted.

For envi-elements and landscape analysis, their confusion
matrix of Google Earth images is shown in Fig. 13. The ground
element of the highest accuracy is “ocean” (99%) while that of
the lowest accuracy is “harbor” (79%). This is mainly because
the training samples of “harbor” are slightly insufficient than
others, which can be further improved by adding more samples
to its training set. Table 12 and Fig. 13 suggest an overall
high accuracy of our method. Although the analysis process
can not be simply seen as a classification process since some

Fig. 12. Overall detection result statistics on Google Earth test images.

Fig. 13. Confusion matrix of envi-element and landscape for Google Earth
image.

of these slices have multiple geographical semantics, as we
have emphasized in Section I, here we still take the confusion
matrix with the most salient semantic class as a reference of
their performance.

C. Computational Efficiency

We test our method on an Intel i7 PC with 16G RAM and
Nvidia Taitan Z graphics card. The programming platform is
matlab 2015a + matconvnet-1.0 beta20 [42]. We use the GPU
to accelerate the whole FCN model, which makes the program
run 5∼20 times faster than in a single CPU thread. The average
computational time of each stage of our method is counted.

For a 640× 480 sized input image, our method only takes
about only 1s to finish the whole captioning process. For a
2400 × 1600 image, the execution time is less than 6s. By
building our model based on a unified FCN structure, our
method shows high computational efficiency. This is mainly
because FCN is able to reduce the computational redundancy
at overlapping windows by computing a whole convolutional
feature map for the entire input image and then deal with
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Fig. 11. Some key instance detection results of Google Earth image slices (a)-(f) and GF-2 image slices (g)-(j).

TABLE IV
DETAILED EXECUTION TIME OF THE PROPOSED METHOD

Image Size (pxl) GPU Time (s) CPU Time (s)

640× 480
stage1 time = 1.25 stage1 time = 8.12
stage2 time = 0.01 stage2 time = 0.01
total time = 1.26 total time = 8.13

2400× 1600
stage1 time = 5.71 stage1 time = 139.10
stage2 time = 0.13 stage2 time = 0.13
total time = 5.84 total time = 139.22

each feature vector extracted from the shared feature map.
For larger sized remote sensing image, e.g. 10000 × 10000
pixels, we suggest dividing the image into discrete blocks due
to the limited graphics memory. Table IV shows the detailed
execution time of different stages.

VI. CONCLUSION AND FUTURE WORKS

We investigate an interesting question if a machine can
automatically generate human-like language description of
remote sensing image. Our preliminary conclusion on this
question is optimistic and we have proposed a remote sensing
image captioning framework where the experimental results on
Google Earth and GF-2 images have demonstrated the supe-
riority and transfer ability of the proposed method. Although

there are still some spaces to improve our method, we still
consider it as a novel and promising framework, which is fast,
robust and structurally compact. Our future works will focus
on calibrating semantics of different geographical levels and
integrating more types of ground features in order to generate
language descriptions with richer semantics.
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