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Abstract—Spatial resolution and spectral resolution both play
an important role in the recognition of objects in hyperspectral
remote sensing. However, the imaging characteristics of hyper-
spectral images (HSI) result in a mutually restrictive relationship
between the spatial and spectral resolutions. Generative adver-
sarial networks (GAN) have achieved significant success in image
generation. The introduce of the discriminators plays a key role in
improving the reality. In this paper, we propose an RGB To multi-
band Hyperspectral imagery (150 bands) generation method
based on GAN (R2HGAN). The method solves the high ill-posed
problem and introduces high spectral resolution into RGB images
by learning from multiple scenes of HSI. In R2HGAN, we extend
the adversarial learning from spatial to spectral dimensions and
joint discrimination is designed to generate HSIs closer to the
real ones, where two discriminators (the conditional D and the
spectral D) are put forward to supervise the spectral similarity
and the conditional reality of the HSI jointly. In detail, the
conditional discriminator comprehensively judges the quality of
each area in the reconstructed HSI. At the same time, to ensure
that the generated spectra are close to the real ones, a spectral
discriminator based on Multilayer Perceptron (MLP) is designed.
Through the experiments on GF-5 imagery, the method has
significantly improved the quality of the generated images over
other state-of-the-art methods.

Index Terms—Hyperspectral image, remote sensing, Genera-
tion Adversarial Network (GAN), spectral super-resolution (SSR)

I. INTRODUCTION

THE hyperspectral image (HSI) is a 3D-cube, which
contains spatial and spectral information at the same

time. Compared with RGB and multi-spectral remote sensing
images (MSI), HSIs’ high spectral resolution is of great
significance for identifying the diagnostic spectrum of ground
objects. Therefore, HSIs have been widely applied on precision
agriculture [1], ecological sciences [2], mineralogy [3] and
other fields. In the past 30 years, HSI processing technology
has made great progress, including HSI classification [4–7],
target detection [8, 9], anomaly detection [10], hyperspec-
tral unmixing [11–13] and so on [14]. Among the above
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techniques, spatial information is widely used and plays an
important role. Therefore, we hope to get imagery with both
high spatial and spectral resolutions.

In remote sensing imaging, the spectral and spatial resolu-
tions restrict each other under the same imaging time due to
the architectural constraints of the imaging system [15]. Many
RGB or MSI images with high spatial resolution usually lack
spectral information. For example, Chinese Gaofen-1 (GF-1)
with spatial resolution of 8m/pixel has 4 bands covering wave-
length 0.45−0.89µm [16] and Gaofen-2 provides 4 band MSI
with spatial resolution of 4m/pixel. Landsat 8 has 7 bands with
spatial resolution of 30m/pixel covering the wavelegnth range
of 0.433−2.3µm [17]. Besides, hyperspectral imagery mainly
with a low spatial resolution. For satellite HSI, the spatial
resolution is even lower than 20m/pixel, such as the resolution
of Chinese GaoFen-5 (GF5) [18] and Earth observation (EO)
-1 Hyperion [19] are both 30m/pixel. At present, it is difficult
to obtain remote sensing images with high spatial and spectral
resolution at the same time.

Since the spatial resolution and the spectral resolution are
very important for hyperspectral images, and the imaging
equipment limits the simultaneous acquisition of good spatial
and spectral resolutions, some post-acquisition methods are
widely used [19, 20]. That is, through enhancement techniques
to improve the spatial resolution [20] of HSI or to increase the
spectral resolution of images with a higher spatial resolution
[19] (such as RGB and MSI).

A typical way to improve the spatial resolution of HSI
is hyperspectral super-resolution (HSI SR) [20, 21]. The SR
methods can be classified into two representative categories,
one is SR only use the low-resolution HSI (LR-HSI) [22, 23],
another contains the methods that enhance the spatial reso-
lution of HSI with the spatial information in high-resolution
RGB or multispectral images (MSI) [24, 25]. The HSI SR can
improve the spatial resolution on the basis of existing HSI.

Unlike HSI super-resolution, spectral super-resolution (SS-
R) promotes the spectral resolution of the image, which has
attracted significant attention in recent years. SSR can provide
high spatial resolution HSI only from a multispectral or RGB
image without the use of hyperspectral sensors, which saves
a lot of imaging hardware. Some SSR methods are designed
to increase the channels of the multi-spectral image [26, 27].
Besides, a typical SSR application is spectral reconstruction
from RGB images [28, 29].

The SSR methods from RGB images can provide HSI only
with the RGB input, which makes SSR unique advantages in
acquiring hyperspectral images with high spatial and spectral
resolution at the same time. However, there are two main short-
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comings of the existing remote sensing HSI reconstruction
methods:

1) The methods are usually training and testing on a single
scene, lacking a large amount of data support, and cannot
reflect the universal mapping between RGB and spectrum
of different ground objects. Besides, they usually recover
HSI from more than 4 bands. For example, Mei et al.
recover HSI from 4 or 6 bands [26] use the 3D-CNN
on PaviaU or Cuprite dataset which only in one scene.
In [27], several standard benchmark datasets which are
single scene images or their subsets are adopted.

2) Most methods use CNN and other structures to constrain
the pixel-wise distance between the generated image and
the real image, MSE or L1 loss is usually adopted.
Mei et al. adopt L1 loss to train networks [26]. Arun
et al. use multi-loss functions including MSE loss and
SAM loss [27]. In [30], Gewali et al. use 1D-CNN for
single-pixel SSR and propose a new spectral loss function
to constrain the Euclidean distances and first, second
derivatives between the generated HSI and the real one. It
is easy to cause over-smoothing or even some generation
that does not meet the actual situation. The framework
affects diversity and reality of the spectra.

To overcome these problems, we propose a Generative Ad-
versarial Networks (GAN)-based framework to generate HSI
from RGB. The model can export 150 bands HSI with RGB
input without the need for any HSI. It is trained on multiple
scenes GF-5 HSI, thus it provides the non-linear mapping
of RGB to spectrum. In addition to the traditional minimize
pixel-wise error and keep fitting, a GAN-based framework
and joint discrimination by two discriminators are devised.
One is the conditional discriminator based on PatchGAN [31]
to distinguish whether true or false of multiple regions in
the HSI. Another is spectral discriminator based on MLP
to determine whether the spectra sampled from HSI is true.
Meanwhile, the Random Global Uniform Sampling (RGUS)
technique is applied for sampling a limited number of spectra
from HSI as the overall expression of it. The experimental
results show that R2HGAN outperforms other state-of-the-
art methods on various indicators. Codes of R2HGAN are
available at http://levir.buaa.edu.cn/Code.htm.

In summary, the main contributions can be summarized as
follows.

1) We provide a general framework for RGB to HSI
(R2HGAN) and experiment it on multiple scenes. The
framework reveals the general mapping between RGB
values of each pixel and its corresponding spectrum in
large amounts of data. Meanwhile, it is based on GAN
to avoid overfitting and abnormal generation.

2) We extend the adversarial learning from spatial to spectral
dimensions. In addition to the traditional existing condi-
tional discriminator, we design a spectral discriminator
based on MLP together with the conditional discriminator
to generate HSIs closer to the real ones by joint dis-
crimination. Two discriminators separately supervise the
conditional and spectral reality of the generated HSI, and
the generator can export more realistic HSI on spectral

and spatial.
The paper is organized as follows. Section 2 introduces

the related works on HSI reconstruction and GAN, Section 3
details the proposed method. Section 4 provides experimental
evaluations of the proposed method on the dataset and Section
5 concludes the paper.

II. RELATED WORK

In this section, we introduce the two hyperspectral image
reconstruction methods including HSI Super-Resolution (SR)
and Spectral Super-resolution (SSR) from RGB images. Mean-
while, a brief introduction of GAN and its use on image gen-
eration, remote sensing image processing is exhibited. Various
indicators used for evaluating on the quality of reconstruction
is demonstrated at last.

A. Hyperspectral Image Super-Resolution

The HSI SR mainly includes two types of methods: super-
resolution from low-resolution HSI (LR-HSI) only and fusion
of high spatial resolution RGB/MSI and low spatial resolution
HSI.

Akgun et al. represent different wavelengths as weighted
linear combinations of a small number of aliased and blurred
basis image planes and solve the SR problem by a set-
theoretic method [20]. Similarly, many researches use the
inter-band information for SR [22, 32]. In [32], Hu et al. use
very deep CNN (VDSR) for key-bands, SDCNN for other
bands, and spatial-error-correction (SEC) model to correct the
spatial error. Intrafusion Network [22] utilizes spatial-spectral
information and reconstructs high-resolution HSI (HR-HSI)
directly. Hu et al. propose a 3D-CNN-based method that inte-
grates multiscale features for SR. Many GAN-based methods
introduce the discriminator to judge the reality of HR-HSI
[23]. Li et al. adopt band attention to promote the consistency
of generated spectra [23]. In addition, Bayes based single
image super-resolution method proposed by [33] transforms
the problem of ill-posed SR reconstruction in the frequency
domain into a quadratic optimization problem of abundance
mapping and solves it by energy minimization (EM) method
based on MRF. These methods require LR-HSI without need
of corresponding MSI/RGB images.

In addition to the previous means, more HSI SR methods
use other images with high spatial resolution and make full
use of the spatial information [34, 35]. On this basis, some
research base on the sparsity of HSI [21, 24, 35–38] to
reconstruct the HR-HSI; some authors study on the self-
similarity between local and nonlocal patches [25, 34–36]
and the low rank of them [38–40]; some literatures have use
or model the imaging principles and degradation process for
super-resolution [24, 41, 42]. From the perspective of the
solution process: dictionary-based methods are common such
as [25, 38, 39]. Since HSI is a 3D-tensor, Xu et al. provide
a t-product [35] to establish the relationship between HR-HSI
and LR-HSI and constraint nonlocal similarity, Li et al. [37]
propose a fusion method based on Coupled Sparse Tensor
Decomposition (CSTF), Dian et al. compose 4D-Tensor with
similar HSI patches [40], and transform HSI SR problem into
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LTTR regularization constraint by using low-rank property.
In [41, 42], CNN is used to fit the reconstruction process,
and in [41] GAN [43] is adopted for SR. Kwon and Tai
[21] guide the up-sampling process of LR-HSI by RGB and
spectrum substitution to refine the upsampled spectra. Borsoi
et al. [44] adopt spectral unmixing and model the spectral
variability to study the SR problem of seasonal variation.
The fusion methods of HSI and MSI (or RGB) make use of
spatial information to achieve more accurate super-resolution.
Compared with HSI only methods, they need to corresponding
other images in the scene, which is difficult to obtain in many
cases.

The two kinds of HSI HR methods all need HSI with low
resolution, which still need hyperspectral sensors. Usually, the
cost of hyperspectral sensors is expensive due to complicated
optics and electronics [45]. Therefore, many times the acqui-
sition of LR-HSI is hard to satisfy.

B. Spectral Super-resolution

Different from HSI SR needs HSI input, the spectral super-
resolution (SSR) reduces requirements on the spectral resolu-
tion of input images. SSR restores HSI with the high spatial
resolution images, such as multi-spectral images (MSI) or
RGB images.

To our knowledge, SSR methods for remote sensing mainly
recover HSI from MSI and most methods work on one scene
which lack applicability. For example, Mei et al. use 3D-
CNN for simultaneous spatial and spectral super-resolution
[26] and experiment on datasets for classification to select
a patch for testing while others for training. Besides, many
CNN based methods are adopted [27, 30]. In [30], a 1D-CNN
is designed with tunable spectral sub-sampling layer and in
loss function not only the Euclidean distances are constrained
but also the first and second derivatives. [15, 19, 46] enhance
spectral resolution by dictionary learning and spectral sparse.
In [15], the authors adopt coupled dictionary learning along
with sparse representations based on the assumption that the
sparse codes in MSI and HSI are the same. Yi et al. use
both the spectral improvement and the spatial preservation
strategies to enhance the spectral information while retaining
the spatial one for HSI reconstruction [19]. Meanwhile, Arun
et al. and Sun et al. extract endmembers from MSI and
reconstruct HSI from the abundance map [27, 47]. Arun et
al. combines the collaborative unmixing process and correct
the pixel-level reconstruction results [27], where 3D-CNN is
used to combine spatial information.

Comparing to MSI, RGB imaging is simpler and requires
less hardware. Many methods generate HSI from RGB images
in natural scene. Some methods use image priors such as Yan
et al. introduce category and location information into the
network [48]. In [49], the authors adopt dictionary learning
and in [50] manifold learning is used for the HSI generating.
The most common RGB to HSI reconstruction methods are
based on CNN [51, 52]. Pixel and channel attention are
adopted in methods [53, 54] to expand the receptive field or
focus on key channels. Li et al. provide 3D-RAN to extract
contextual information between bands [53] and attention is

adopted to weight different channels. Zhao et al. propose a
four-layer hierarchical regression network [54] and increase
the receptive field by establishing an attention mechanism
for the residual global module. In [28, 55], the authors take
the imaging mechanism and physically plausible into account
to constrain the SSR process. Nie et al. [55] learn spectral
response functions (SRF) using modern filmfilter techniques.
Shi et al. [56] upsample the bands and learn residuals to
achieve accurate spectral recovery. Several methods [57, 58]
use a GAN discriminator to ensure the reality of generated
HSI. These methods are all based on natural HSI data such as
ICVL [49, 50], Bgu HS [51, 53], and Arad HS [54, 59]. They
mainly generate 31 bands from RGB images, which different
from the remote sensing HSI generating to 150 bands.

We can find that there lacks SSR technology for reconstruct-
ing multi-band remote sensing HSI from RGB images.

C. GAN on generation and remote sensing image processing

Generative Adversarial Network (GAN) was proposed in
2014 [43] and has been widely used in various fields such
as image generation [31, 60], image style transform [61, 62],
and image super-resolution [63, 64]. GAN is composed of a
generator G and a discriminator D, the G and D zero-sum
game, jointly promote each other.

Image generation is to generate specific images from other
images or text. The HSI resonstruction can be seen as a
generation from RGB to HSI. GAN has been widely used
on image generation. A generator aims to generate a target
image from an image or other input and the discriminator
aims to distinguish whether the image generated is real or
not. Early methods used GAN [43] and its improvements
to generate [65, 66]. After that, a number of hierarchical
generation methods are used to generate an image closer and
closer to the target one, such as StackGAN [67], LAPGAN
[68] and PGGAN [69]. In [31], a generic image-to-image
translation framework based on CGAN [70] is proposed and
PatchGAN is proposed to improve the discriminator on output.
Different from the pair image generation or style transform,
unsupervised generation methods have also been gradually de-
veloped. CycleGAN [62] use cycle-consistent to realize unpair
image translation. Meanwhile, DualGAN [71] and DiscoGAN
[72] adopt a similar approach. In addition to one-to-one
generation, many one-to-many generation methods have been
developed, most of which are implemented by introducing
latent code [73, 74]. A typical method is StyleGAN [61, 75],
it aims to generating image with a specific style or obtaining
corresponding style image from latent code.

GAN has also achieved ideal results on remote sensing im-
age processing [64, 76]. [77] is a GAN model for unsupervised
pan-sharpening. Zhao et al. study on remote sensing change
detection via GAN [78]. In [64, 76], the authors use GAN for
remote sensing super-resolution. GAN is also used for cloud
detection [79] and scene classification [80]. Many studies use
GAN for hyperspectral anomaly detection [10], classification
[81] while Mehta et al. adopt GAN for HSI dehazing [82].

In this paper, we will adopt GAN for the reconstruction of
HSI from RGB images.
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D. Quantitative Metrics on HSI reconstruction
At present, the evaluation indicators used in the literature

that recover HSI from RGB are different, and we will intro-
duce the commonly used ones below. Let I(i)R represents the
ith spectrum in the real HSI and I(i)G the ith spectrum in the
generated HSI. n is the total number of spectra. d represents
the number of bands in HSI.

• RMSE (Root Mean Squared Error) measures the pixel-
wise square root error between spectra generated and the
real. It is the most commonly used metric in RGB-to-HSI
research [19, 28, 30, 48, 49, 51–58].

RMSE =

√√√√ 1

n

n∑
i=1

(I
(i)
R − I

(i)
G )

2
(1)

• MRAE(Mean Relative Absolute Error) is the magni-
tude of the error relative to the true value. Same as RMSE,
they both measure the distance between the spectrum and
its true value, except that MRAE is the error related to
the L1 norm [28, 48, 52–54, 56, 58].
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• MPSNR (Mean Peak Signal-to-Noise Ratio). PSNR
is often used as a measurement of signal reconstruction
quality in image compression and other fields, and it can
be derived from MSE (Mean Squared Error). For HSI,
we need to calculate PSNR for different bands separately,
and then take the average value, which is called MPSNR
[19, 26, 27, 53]. Similar to MRAE, MPSNR reflects the
relative magnitude between the error and real HSI.
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In Eq.(3), MSEj is the MSE of jth band and MAXj is
the max possible value in jth band of real HSI. I(i,j)R/G is
the jth intensity in ith spectrum.

• SAM (Spectral Angle Mapper) reflects the spectral
angular distance between the generated spectrum and the
real one. Different from MPSNR or MRAE, SAM has
more constraints on the shape of the generated spectrum
[19, 26, 27, 30, 47, 48, 51–53].
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• MSSIM (Mean Structural SIMmilarity). SSIM is a
measurement proposed in [83]. Unlike RMSE and M-
RAE which measure error visibility, SSIM measures the
structural similarity of two bands. MSSIM is the mean
of SSIM of every generated HSI band and the real
[19, 26, 27, 53].
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Where µj
G/R and σj

G/R denote the mean and standard of
patch in jth band of generated or real HSI. σjj

RG is the
covariance between the patches in jth band in R and jth
band in G. C1 = (K1 × L)2 and C2 = (K2 × L)2 are
constants where L denotes the dynamic range of pixel
values and we select K1 = 0.01,K2 = 0.03, L = 65535.

In addition, there are also other indicators adoped, such as
NRMSD [50], ERGAS [47] and SSM [27] which evaluate
pixel-wise error; GFC [58], CC [19] and R [30] from the
perspective of relevance; ∆E [58], BPMRAE [54] that is
colormetric based.

In this paper, we will compare R2HGAN with other state-
of-the-art methods on RMSE, MRAE, SAM, MSSIM and
MPRNR to comprehensively evaluate the recovery result.

III. PROPOSED METHOD

In this paper, we propose a 3 to 150 bands mapping frame-
work for HSI reconstruction and experiment it on multiple
scene images. To promote the diversity and the reality of
the generated HSI, we design a joint discrimination method
under the GAN framework. One discriminator is designed
as a conditional PatchGAN which supervises the consistency
between HSI and input RGB. It outputs a patch in which
each element represents the performance of a region in HSI.
Another discriminator is proposed to ensure the physical
reality of the generated spectra. Meanwhile, Random Global
Uniform Sampling (RGUS) technique samples the spectra in
HSI, and then they are input to the MLP to get reality scores
for every one. The flowchart of R2HGAN is illustrated in Fig.
1.

A. U-Net Generator

To make use of multi-scale features of RGB image and gen-
erate an HSI containing semantic characteristics and detailed
information in both, we design a U-Net for the Generator (G).
In G encoder, to realize rapid reduction of the image size,
there are 8 Conv-layers with kernel size = 4×4, stride = 2
each followed by Leaky ReLU. To save computing resources,
we adopt convolutional kernel with kernel size = 4 ×
4, stride = 2 instead of kernel size = 44, stride = 1 and
2×2 pooling. In the encoder, the size of feature maps is down
by half layer by layer. Since the input image size is cropped
to 256× 256, to leverage information at the deepest semantic
level, 8 conv-layer are used one by one. After 8 downsampling,
the size becomes 1/28 = 1/256 of the input image. We utilize
deconv kernel size = 4 × 4, stride = 2 for upsample and
before it, ReLU is used for activation. In the first three layers
in the decoder, dropout with keep prob = 0.5 is adopted to
avoid overfitting. After the concatenate with 7 encoder layers,
a deconv layer followed by Tanh activation restores the 150-
channel HSI. It is worth noting that we removed all the BN
layers in G as we select batchsize = 1 for the generator
because it is well known that BN will cause poor effect when
batch size is small [51].
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Fig. 1. The flowchart of R2HGAN. We design a U-Net generator to fully integrate features of different semantic levels thus get a more precise HSI. The
Generator consists of an 8-layer convolutional encoder and a corresponding decoder. Joint discrimination is conducted by conditional discriminator and spectral
discriminator. The conditional discriminator take the RGB image and generated or real HSI for input, and output an N ×N metric for correspondence of the
two inputs. Before the spectral discriminate, RGUS is used for sample spectra from HSI including steps patch divide and random sample. Then the selected
spectra is input to the MLP based spectral discriminator.

B. Joint Discrimination: Conditional Discriminator

We design a joint discrimination for prompting the generator
to produce more realistic spectra and ensure the correspon-
dence between generated samples and input RGB. The joint
discrimination in conducted by two discriminators, one is
the conditional discriminator (Con-D) which with a input
concating HSI and RGB images. For the Con-D, we adopt
PatchGAN to avoid one value between 0 − 1 cannot express
the whole generative result. With the input of RGB and HSI
combined, the output of the Con-D is an N ×N patch where
each one corresponding to the conditional reality of a local
area in the generated image. Different from the traditional
GAN which the variable output evaluates the whole picture,
our conditional D can consider the reality of each patch and
integrate each one. Please see Table I for the detailed structure
of conditional D.

C. Joint Discrimination: Spectral Discriminator

To improve the physical reality of the generated spectra, a
spectral discriminator is provided. The main structure of the
spectral discriminator (Spe-D) is an MLP with an input of one
dim with 150 elements (a spectrum) and an output between
0-1 with details in Table II.

To comprehensively percept of the spectral curve shape
information, MLP is adopt instead of 1D-CNN. The output
is to select the first of the softmax layer which represents the
probability of whether the spectrum is true.

TABLE I
STRUCTURE OF THE CONDITIONAL DISCRIMINATOR

Operation Name Size

– Input 153×256×256

Conv 3×3

Layer1 256×256×256Conv 3×3

Leaky ReLU

Conv 4×4, Stride=2

Layer2 512×128×128
Conv 3×3

BatchNorm

Leaky ReLU

Conv 4×4, Stride=2

Layer3 1024×64×64
Conv 3×3

BatchNorm

Leaky ReLU

Conv 4×4, Stride=2

Layer4 1024×32×32BatchNorm

Leaky ReLU

Conv 4×4
Output 1×31×31

Sigmoid
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TABLE II
STRUCTURE OF THE SPECTRAL DISCRIMINATOR

Operation Name Output Size

Linear(150,128) Input 128
Linear(128,256) Hidden-1 256
Linear(256,128) Hidden-2 128

Linear(128,2) Hidden-3 2
Softmax and select the first Output 1

We extract a certain number of spectra from the HSI for
spectral discriminator to improve the calculation efficiency
and prevent over-fitting. To make the selected spectra more
representative of the global spectral characteristics, we propose
a Random Global Uniform Sampling (RGUS) technique. The
RGUS can sample spectra evenly distributed in each position
of the HSI, and with greater randomness. Details of RGUS is
shown in Algorithm 1.

Algorithm 1 Random Global Uniform Sampling (RGUS)
Input: HSI data with size N × N ; Patch size for division

S × S;
Output: M ×M spectra selected from the HSI;

1: Divide the input HSI into M×M patches with size S×S,
where S ×M = N ;

2: Randomly generate two numbers a, b between 0 and S as
the horizontal and vertical coordinates respectively;

3: Extract the spectra with the location [a, b] in each patch
and get M ×M spectra;

4: return M ×M spectra;

Force the output to 1 when training G to generate more
real spectra and optimize them to 0 of the generated HSI (and
the output of the real HSI to 1) to improve the discrimination
performance of the spectral discriminator.

D. Loss Function

We use the L1 loss and binary cross-entropy (BCE) loss
to construct our loss functions. The goal of the generator
is to generate pseudo-HSI to obey the real data distribution
p data(x) as much as possible, which can fool the discrim-
inator. For this purpose, we first constrain the proximity of
each generated spectra with the real ones. L1 loss is a pixel-
wise loss and it can avoid the sensitivity to outliers and prone
to over-smoothing of L2 loss. Therefore, we choose L1 loss
in generator. Let y be the real HSI and x be the RGB image,
z be the parameters in G, the output of G is G(x, z), the L1

loss can be calculated according to Equation (6).

LL1 = Ex,y,z [‖y −G(x, z)‖1] (6)

In addition, in order to fool the conditional discriminator,
binary cross-entropy (BCE) is used for adversarial loss.

Lconadv(G,Dcon) = Ey [logDcon(y)]

+ Ex,z [log(1−Dcon(G(x, z)))]
(7)

In the same way, the adverse loss of the spectral discriminator
is

Lspeadv(G,Dspe) = Ey [logDspe(y)]

+ Ex,z [log(1−Dspe(G(x, z)))] .
(8)

In summary, the loss of generator is in Equation (9), where
λ1 and λ2 represent the weight coefficient between the three
losses.

LG = LL1+λ1Lconadv(G,Dcon)+λ2Lspeadv(G,Dspe) (9)

For discriminators, the optimization goal is to distinguish
between generated HSI and the real, as Equation (10) and
(11).

max
Dcon

Lconadv(G,Dcon) = Ey [logDcon(y)]

+ Ex,z [log(1−Dcon(G(x, z)))]
(10)

max
Dspe

Lspeadv(G,Dcon) = Ey [logDspe(y)]

+ Ex,z [log(1−Dspe(G(x, z)))]
(11)

In total, the optimization process can be expressed as (12).

G∗ = arg min
G

max
Dcon,Dspe

LL1(G) + λ1Lconadv(G,Dcon)

+ λ2Lspeadv(G,Dspe)
(12)

E. Implementation

The training samples are a set of 256×256 image patches
randomly cropped from RGB and corresponding HSI. During
the spetral discrimination, we first select 4×4 spectra from
the generated HSI and the spectra in the corresponding real
HSI are also extracted. As for loss function, we set λ1 =
λ2 = 0.01. For optimization, we adopt Adam Optimizer
with β1 = 0.9, β2 = 0.999 and during the process, the
two discriminators are trained together and take turn with
G. Learning rate decreasing strategy is adopted, the initial
learning rate of G, conditional D and spectral D are 1× e−4

and become 0.1 times the previous after every 300 epochs.
In order to generate reliable results early, we firstly train 100
epochs of G to obtain preliminary results and then add the two
discriminators into the training process to adjust the quality of
generation. After two Ds join, every training G 3 iters, training
the two Ds 1 iter.

IV. EXPERIMENT

In this section, we experiment with R2HGAN on GF5
dataset. We conduct a detailed introduction of the dataset
and present different quantitative metrics on HSI construction.
Then a comparison with other state-of-the-art generation meth-
ods is carried out. Finally, ablation studies of the architecture
are stated.
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(a) 1 MsCNN (b) 1 HSCNN+ (c) 1 HSRNet (d) 1 FMNet (e) 1 R2HGAN (f) 2 real HSI

(g) 2 MsCNN (h) 2 HSCNN+ (i) 2 HSRNet (j) 2 FMNet (k) 2 R2HGAN (l) 2 real HSI

(m) 3 MsCNN (n) 3 HSCNN+ (o) 3 HSRNet (p) 3 FMNet (q) 3 R2HGAN (r) 3 real HSI

Fig. 2. False-color image of the generated HSI for three test images, (a), (b), (c), (d) and (e) show the result of MsCNN, HSCNN+, HSRNet, FMNet,
R2HGAN respectively for image 1, the false-color of real HSI is in (f). (g), (h), (i), (j), (k) and (l) show the result and real HSI for image 2 and (m), (n),
(o), (p), (q) and (r) show the result and real HSI for image 3.

A. Datasets and Experiment Setup

The dataset includes 6 scenes of hyperspectral including
inland, island and sea. It covers cities, mountains, arable land,
forests, ports, etc and the imaging time includes four seasons
of 2018/2019. The HSIs are imaged by GF5 visible and near-
infrared (VN) sensor with 16 bits (the range of reflection value
is 0-65535). Each HSI has a total of 150 bands covering the
wavelength range of 390nm−1035nm with a nominal spectral
resolution of 5 nm. The RGB images are extracted from the
HSIs’ bands 72, 35, 23. Each scene of the dataset has a spatial
size of 2083×2008 and is cropped to 512×512 batches. Thus
the dataset has 120 512× 512 HSIs and corresponding RGB
images. 115 image pairs are selected for training and 5 image
pairs for testing.

The experiment is carried out under win10 system with
Intel (R) Core (TM) i7-7700K CPU @ 4.20GHz and NVIDI-
A GeForce GTX 1080. The training process of R2HGAN
takes approximately 19 hours. Under the same condition-
s, we compare R2HGAN to four spectral super resolution
methods, including MsCNN [51], HSCNN+ [56], FMNet [84]
and HSRNet [85]. MsCNN and HSCNN+ are based on U-
Net and DenseNet respectively. FMNet adopts pixel-aware to
keep pixel-learning ability. HSRNet uses physical mechanism,
reconstructing according to Spectral Response Function (SRF).

To train all the deep-learning based methods adequately,
we train them on the whole training set (115 image pairs) and
chose different parameters by evaluate them on the testing
set (5 image pairs). Therefore, we choose the parameters
by selecting the best result of each method. All experiment
settings are set same for R2HGAN and other four methods.

B. Comparison with Other Methods

We compare our R2HGAN with some state-of-the-art spec-
tral super-resolution methods including MsCNN [51], HSCN-
N+ [56], FMNet [84] and HSRNet [85]. All these methods are
fully optimized on our dataset under same condition to obtain
the best performance for fair competition. The exception is
that HSRNet is cropped during the test due to GPU memory
limitations. Fig. 2 shows a comparison of the false-color
images of the HSI generated by these methods. We can find
that R2HGAN generates HSI whose false-color image closer
to the real HSI. MsCNN has a large loss of both spatial and
color information. HSCNN+ and HSRNet can maintain the
spatial structure well, but lost information of the color. FMNet
can better preserve color information while maintaining spatial
structure relatively completely. R2HGAN has a good recovery
of spatial and color information at the same time. The HSI
generated by HSRNet has seams because of the limitation of
GPU memory, we cut the RGB image input 512 × 512 into
256× 256 and Re-splicing.

Table III shows the performance of different comparison
methods on various indicators, including MPSNR, MRAE,
RMSE to measure the result of image reconstruction, Spectral
Angle Mapping (SAM) to quantity related to spectral shape
and category information and MSSIM that measure the spatial
structure. MPSNR represents RMSE and MRAE to a certain
extent and MAXj = 65535. From these indicators, we can
find that FMNet is under-performing in terms of spatial struc-
ture, which is related to its use of pixel-aware. HSCNN+ and
HSRNet perform relatively well on both spectral and spatial
information except R2HGAN. R2HGAN performs better than
any other comparing methods in five indicators. R2HGAN
gets the highest MPSNR of 61.479 followed by HSRNet with
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(a) MsCNN, HSRNet
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(b) MsCNN, HSRNet, FMNet
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(c) MsCNN, FMNet

Fig. 3. Abnormal spectra generated by comparison methods. The title of the figure represents the methods generating abnormal spectra. In (a), MsCNN and
HSRNet have abnormal generation. In (b), except for R2HGAN and HSCNN+, other methods all generated abnormal spectra. In (c), MsCNN and FMNet
have abnormal generation.
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(a) Building
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(b) Soil
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(c) Water

300 400 500 600 700 800 900 1000 1100

Wavelength(nm)

0

500

1000

1500

2000

2500

3000

3500

4000

R
ef

le
ct

io
n 

V
al

ue

Real
R2HGAN
HSRNet
HSCNN+

(d) Cloud
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(e) Road
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(f) Tree

Fig. 4. Compare real spectra with those generated by various methods. (a-d) shows the spectra of different ground objects produced by five methods. The
titles represent objects selected to plot spectra. R2HGAN generates spectra that are more like real ones on multi-objects.

48.166. Meanwhile, R2HGAN preserves the most structural
information with MSSIM=0.9972 followed by HSCNN+. The
SAM between R2HGAN generated HSIs and the real ones
reaches as low as 0.0435, while HSCNN+ gets a second at
0.192 more than four times of R2HGAN.

TABLE III
A COMPARISON OF DIFFERENT METHODS ON OUR DATASET. FOR RMSE,
MRAE, SAM AND RSDS A LOWER SCORE INDICATES BETTER, WHILE

FOR MSSIM AND MPSNR A HIGHER SCORE INDICATES BETTER.

Method RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑

MsCNN [51] 23682 136.33 1.3539 0.7108 28.056
HSCNN+ [56] 2242 6.829 0.192 0.9432 46.273
HSRnet [84] 2625.2 5.997 0.4832 0.9426 48.166
FMNet [85] 7793.4 40.787 0.4842 0.8741 42.792
R2HGAN 178.3 0.126 0.0435 0.9972 61.479

Besides, our method can avoid generating abnormal or non-
physical spectral curves. As shown in Fig. 3, the relatively
competitive HSRNet and FMNet in the comparison method
are both prone to outliers. Furthermore, MsCNN is almost

impossible to produce spectra without anomalies. R2HGAN
has not been found to produce abnormal spectra.

We randomly select different objects and plot their spectra
generated as well as the real ones. Fig. 4 shows the difference
between spectra generated by five methods and the real ones.
Please note that the lack of spectral curves from a certain
method in some figures is due to the abnormal spectrum
generated by the method. We only show the generated spectra
which are similar to the real ones. It is obvious that R2HGAN
generated spectra more like the real ones for various objects.
Besides, FMNet performed relatively well, HSRNet and H-
SCNN+ performed poorly, and MsCNN was the worst, barely
able to generate a normal spectrum.

In Fig. 5, some typical bands of the HSI generated by the
five methods are exhibited. From left to right are respectively
bands of MsCNN, HSCNN+, HSRNet, FMNet, R2HGAN, and
the GroundTruth. The performance of MsCNN in all bands is
far from the true value. Besides, all methods except MsCNN
get a relatively close generation to the real HSI for band 60 in
image 1. For band 10 and 80 in image 1, the five methods all
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1 MsCNN 10 1 HSCNN+ 10 1 HSRNet 10 1 FMNet 10 1 R2HGAN 10 1 real HSI 10

1 MsCNN 60 1 HSCNN+ 60 1 HSRNet 60 1 FMNet 60 1 R2HGAN 60 1 real HSI 60

1 MsCNN 80 1 HSCNN+ 80 1 HSRNet 80 1 FMNet 80 1 R2HGAN 80 1 real HSI 80

1 MsCNN 135 1 HSCNN+ 135 1 HSRNet 135 1 FMNet 135 1 R2HGAN 135 1 real HSI 135

2 MsCNN 100 2 HSCNN+ 100 2 HSRNet 100 2 FMNet 100 2 R2HGAN 100 2 real HSI 100

3 MsCNN 110 3 HSCNN+ 110 3 HSRNet 110 3 FMNet 110 3 R2HGAN 110 3 real HSI 110

Fig. 5. Different bands of the generated HSI on three test images. Each row represents the effect of different methods on the same band, and each column
represents the different bands of the same method to generate HSI. Numbers before the methods represent different test images and the following ones
represent the index of the band. For example, 1 MsCNN 30 means it shows the 30th band in the HSI generated for image 1 by MsCNN.

distorted slightly in spatial details of the band and FMNet also
caused brightness distortion. But for band 135 in image 1 and
band 100 in image 2, all methods failed to generate reliable
bands, only R2HGAN can reserve more spatial information.
Test image 3 is relatively simple with cloud and sea water, but
FMNet and MsCNN all cause abnormal points. Test image 3
is relatively simple with cloud and sea water, but FMNet and
MsCNN all cause abnormal points.

C. Ablation Studies

The ablation studies are conducted to improve the effec-
tiveness of the two discriminators. We compare the joint
discrimination with conditional discriminator only or spectral
discriminator only respectively.

1) Study of Joint Discrimination: Here we main analyze the
excellence of joint discrimination. In Table IV, we demonstrate
RMSE, MRAE, SAM, MSSIM, and MPSNR of 6 ablation
experiments.

Comparing experiment 1 and 3 in Table IV, we can find the
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TABLE IV
ABLATION STUDIES, THE CROSS IN BN MEANS MOVING BN FROM G, THE CHECK MARK MEANS WITH THE D OR RGUS. Con-D REPRESENTS THE

CONDITIONAL DISCRIMINATOR WHILE Spe-D MEANS THE SPECTRAL ONE.

Name BN Con-D Spe-D RGUS RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑

1 % 1820.5 4.4045 0.1404 0.981 51.2877
2 ! ! ! 311.02 0.382 0.0742 0.991 58.1387
3 % ! 357.62 0.37 0.0553 0.9952 59.4947
4 % ! ! 266.56 0.227 0.0477 0.9962 60.0801
5 % ! ! 204.91 0.162 0.0462 0.9965 60.7535
6 % ! ! ! 143.23 0.1066 0.0418 0.9975 62.058
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Fig. 6. Comparison of generated spectra after adding discriminators on different objects. R2HGAN represents the joint discrimination, G+Con-D means
only use conditional D and G only is the spectral without any discriminator.

introduce of the conditional discriminator greatly improved the
generation effect that the MPSNR gains an increase of around
8.2. Meanwhile, the MSSIM also has a 1.4% improvement
which means that the conditional discriminator enables the
generator to recover more spatial structure information.

In experiment 4, only the spectral discriminator is adopted
together with the RGUS. It can be seen that the addition of
the spectral discriminator has greatly improved the quality of
the generated spectra, and the PSNR has been increased from
51.29 to 60.08. At the same time, the spectral discriminator
can obtain a lower SAM than the conditional discriminator.

The experiment 6 in Table IV shows the results of adopting
joint discrimination and using RGUS sampling for spectral
discriminator. And it is shown that with the discriminators, all
indicators have improved. When we use conditional discrim-
inator and spectral discriminator simultaneously, the spectra
generated are more similar to the real ones that use G alone
or G and conditional D. As is shown in Fig. 6, the G alone
method causes a huge deviation in the generated spectra.
R2HGAN represents the joint with the conditional and spectral
discriminator, it generates spectra very close to the method
with conditional D only. The spectral discriminator fine-tunes

the spectra to make it closer to real. For example, Fig. 6
(d) shows the spectra of a cloud pixel. The G only method
generates spectrum far from the real. The conditional D and
R2HGAN obtain spectra exactly alike, and the one from
R2HGAN is more similar to the real.

2) Ablation on RGUS: For the spectral discriminator, we
random select several spectra from the HSI. We design a
Random Global Uniform Sampling (RGUS) technique to
extract spectra which represent global spectral information of
the HSI. For experiment 5 in Fig. IV, we random select the
same number of spectra as RGUS for spectral discrimination.
As compare between 5 and 6, the RGUS promotes the MPSNR
from 60.75 to 61.30. Therefore, the global information by the
RGUS is helpful for the generation.

Meanwhile, we compare the patch size of RGUS in Table
V. A larger patch size results in fewer selected spectra, which
reduces training time. Smaller patch size selects more spectra
and causes consumption of the training time. As is shown
in Table V, with the increase of patchsize in RGUS (M),the
spetra input to Spe-D reduce, the various indicators gradually
improve till M = 64. Thus we select the patchsize as 64.
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TABLE V
EXPERIMENT ON THE PATCH SIZE OF RGUS

Name M in RGUS RMSE ↓ MRAE ↓ SAM ↓ MSSIM ↑ MPSNR ↑

1 16 178.97 0.1189 0.0425 0.9973 60.939
2 32 178.28 0.1257 0.0435 0.9972 61.479
3 64 143.23 0.1066 0.0418 0.9975 62.058
4 128 162.32 0.1178 0.0417 0.9976 61.842

3) Effect of removing BN in G: From Table IV, experiment
2 and 6 show the different effects of whether to remove
BN. Comparing with BN in G, the removal of it wons a
3.16 improvement of MPSNR as well as promoting of other
indicators.

V. CONCLUSION

We propose a general framework for generating HSI from
RGB images. The R2HGAN can generate reliable spectra
while retaining more spatial information. We collect 6 scenes
of HSI from GF5 for the experiment which different from
the previous methods of conducting testing and training on
one-scene HSI. And to overcome the ill-posedness during
3-150 bands generation and overfitting (over smooth), we
design a joint discrimination method to distinguish the reality
of the generation by discriminators two discriminators. The
conditional discriminator based on PatchGAN measures the
correspondence between the generated HSI and the input RGB.
The spectral discriminator adopts MLP architecture to avoid
the problem of CNN being affected by the receptive field. Fur-
thermore, we newly design a random global uniform sampling
(RGUS) method to extract spectra from the generated HSI for
the spectral discriminator.The RGUS is closer to obtaining a
subset of the global spectral expression. Ablation studies im-
prove the effectiveness of our framework. Our method achieves
better generation results than other state-of-the-art methods
under the evaluation of multiple indicators. Codes of our
R2HGAN are available on http://levir.buaa.edu.cn/Code.htm.
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