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Abstract

Hyperspectral unmixing is a process aiming at identifying the constituent

materials and estimating the corresponding fractions from hyperspectral im-

agery of a scene. Non-negative matrix factorization (NMF), an effective linear

spectral mixture model, has been applied in hyperspectral unmixing during

recent years. As the data of hyperspectral imagery analyzed deeper, prior
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knowledge of some signatures in the scene could be available. Besides, in sever-

al scenes such as mining areas, a few surface substances like copper and iron are

easy to identify through field investigation. Thus, their spectral signatures can

be used as prior knowledge to unmix hyperspectral data. In such a context, we

propose a non-negative matrix factorization based framework for hyperspectral

unmixing using such prior knowledge, referred to as NMFupk. Specifically, our

algorithm supposes that some spectral signatures in the scene are known and

then utilizes the prior knowledge of the spectral signatures to unmix the hyper-

spectral data. In a series of experiments, we test NMFupk and NMF without

prior knowledge on both synthetic and real data. Results achieved demonstrate

the efficacy of the proposed algorithm.

Indexing terms:Hyperspectral unmixing, non-negative matrix factoriza-

tion (NMF), spectral signatures, prior knowledge.
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1 Introduction

Hyperspectral remote sensing measures radiance of earth’s surface materials at hun-

dreds of narrow and contiguous wavelength bands. Most recently, hyperspectral sen-

sors have been evolved to collect spectra extending from visible region through the

infrared band. The major application categories of hyperspectral sensing include

image fusion, anomaly detection, target recognition, and background characteriza-

tion.1–5 Frequently, however, due to the low spatial resolution of a sensor as well as

the combination of distinct materials into a homogeneous mixture,6 a single pixel in

hyperspectral imagery is a mixture of several distinct substances. A great challenge is

to unmix the given mixed pixels, or in other words, decompose the measured spectra

of mixed pixels into a collection of constituent spectra (endmembers) and a set of

corresponding fractions (abundances).

For the past few years, linear spectral unmixing model has been widely used to

solve the problem.6–8 It considers mixed pixel a linear combination of endmembers

weighted by their corresponding abundance fractions. This linear model has practical

advantages such as ease of implementations and flexibility in different applications.9

Under this model, hyperspectral unmixing takes three main procedures, namely di-

mension reduction, endmember extraction, and inversion.6 Dimension reduction, an

optional step, intends to reduce the dimension of the data in the scene. Endmember

extraction aims at estimating the set of distinct endmembers mixed in the pixels.

A group of endmember extraction algorithms have been proposed. Some algorithms

such as the pixel purity index (PPI),10 N-FINDR,11 and the vertex component anal-
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ysis (VCA)12,13 assume the presence of at least one pure pixel of each endmember

in the data. So rigorous, however, the prerequisite could not be satisfied in some

datasets. Other extraction algorithms like the minimum-volume enclosing simplex

(MVES),14 the minimum volume simplex analysis (MVSA)15 and the iterated con-

strained endmembers (ICE)16 are based on minimum volume. One main drawback

of this kind of algorithm is the high computation cost, particularly as the number

of endmembers increases.17 Inversion, the last procedure, is oriented to estimating

the fractional abundances of each mixed pixel from its spectrum and the endmember

spectra.6 Mature algorithms on inversion include least squares methods and minimum

variance methods, etc.

In consideration of the non-negativity of both spectra and abundances, another

method, non-negative matrix factorization (NMF),18 has been applied in hyperspec-

tral unmixing.19 However, NMF, which decomposes the data into two non-negative

matrices, could lead to non-unique solutions for the existence of local minima caused

by the non-convexity of the objective function.20 Even though, taking VCA as an

initialization method for NMF, the performance can be improved dramatically, and

the endmembers can be well extracted.

With the study of hyperspectral data progressing, prior knowledge of some signa-

tures in the scene could be available. Besides, in several scenes such as mining areas,

some materials like copper and iron are easy to identify through field investigation.

Thus, their spectral signatures can be obtained from the spectral library. Such prior

knowledge of endmembers has been used for classification and change detection of

hyperspectral image.21–23 In this paper, we propose an NMF based framework (N-
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MFupk) to incorporate prior knowledge into hyperspectral data unmixing. In the

proposed algorithm, we assume that one or two spectral signatures in the scene are

known. NMFupk then makes use of the prior knowledge to unmix the hyperspectral

data. Numerical experiments on both synthetic and real data confirm the efficacy of

NMFupk.

The rest of the paper is organized as follows: in Section 2, we review NMF. The

NMFupk algorithm is derived in Section 3. Experimental results appear in Section 4.

Finally, we conclude in Section 5.

2 NMF for Hyperspectral Unmixing

In this section, we first briefly introduce the linear mixing model, which is the most

widely used model in spectral unmixing. Secondly, NMF, which is the foundation of

the proposed algorithm, is reviewed.

2.1 Linear Mixing Model

Spectral unmixing aims at identifying the constituent materials and estimating the

corresponding fractions in each mixed pixel. The linear mixing model assumes that

the observed spectrum of a mixed pixel can be expressed as a linear combination of

the spectra of the endmembers weighted by their corresponding abundance fractions.

Suppose V ∈ RL×K is the observed hyperspectral data matrix, where L is the number

of spectral bands and K represents the number of pixels. Each column of matrix V

denotes a material spectrum vector with L bands. W ∈ RL×P is the spectral signature
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matrix, with each column corresponding to an endmember spectrum, and P is the

number of endmembers in the scene. H ∈ RP×K indicates the abundance matrix.

Each column of matrix H, denoted by hi, is the fraction of the ith pixel. Then the

linear mixing model for the pixel with coordinate (i, j) can be written as

Vij =
P∑

a=1

WiaHaj +Nij (1)

where N ∈ RL×K signifies the additive observation noise. (1) can be rewritten in the

matrix form as:

V = WH+N (2)

Since the fraction of each endmember for a mixed pixel cannot be negative and their

sum should be one, the model has the following two constrains:

P∑
p=1

Hpk = 1 (3)

Hij ≥ 0,∀i, j (4)

which are called sum-to-one and non-negativity, respectively.

2.2 NMF

Typically, the NMF problem follows as:18 given a non-negative matrixV, find reduced

rank non-negative matrices W and H to satisfy:

V ≈ WH. (5)

Here, V ∈ RL×K is a data matrix in which each observation of an object is stored

as a column. W ∈ RL×P is often regarded as the source matrix, with each column
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corresponding to an endmember. H ∈ RP×K is the abundance matrix associated with

the data in V.19 We can regard W as a basis optimized for the linear approximation

of the data matrix V. As few basis vectors can represent many data vectors, good

approximation can be obtained only if the basis vectors discover the latent structure

in the data.20 As with other methods of finding components such as PCA and ICA,24

the created basis of NMF could have no physical meaning. However, in contrast to

ICA and PCA, the non-negativity constrains make the representation purely additive

(allowing no subtraction), which meets with the natural of both spectra and their

fractional abundances. Besides, NMF is suitable for dealing with high-dimensional

data and the dimension of hyperspectral data is very high. In this paper, we also use

VCA for initialization, then NMF becomes more inclined to get the expected part-

based representation of the data. Hence, NMF can be used to unmix hyperspectral

data.

To unmix hyperspectral data, NMF can be performed by minimization of the

following objective function which is based on Euclidean distance.25

F (W,H) =
1

2

∑
i

∑
j

(Vij − (WH)ij)
2
=

1

2
∥V−WH∥2 (6)

Lee and Seung18 proposed an NMF algorithm grounded on multiplicative update

rules of W and H. As mentioned earlier, for the existence of local minima caused

by the non-convexity of the objective function in (6), NMF could lead to non-unique

solutions. Hence, we can take VCA12,13 as an initialization method to improve the

performance of hyperspectral unmixing using NMF. The overall process is summa-

rized in Algorithm 1.
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Algorithm 1: Outline of hyperspectral unmixing using NMF with VCA initialization

Input: L × K matrix V ≥ 0, endmember number P

1 Initialize matrix W via VCA.

2 H ⇐ W†V.

3 Set W and H positive.

4 Compute Fnew = 1
2
∥V−WH∥2.

5 repeat

6 Fold ⇐ Fnew.

7 W ⇐ W. ∗ (VHT )./(WHHT + ε),

8 H ⇐ H. ∗ (WTV)./(WTWH+ ε).

9 hi ⇐ hi/(1
T
Phi), i = 1, 2 . . . K.

10 Compute Fnew = 1
2
∥V−WH∥2.

11 until the maximum number of iterations has been reached or |Fold−Fnew|
Fnew

≤ τ .

Output:W ∈ RL×P and H ∈ RP×K .

8



Here, .∗ and ./ denote elementwise multiplication and division, respectively. W†

means pseudo inverse of W. hi denotes the ith column of matrix H. 1P is P -vector

with all the components equal to unity. In the process, a small positive quantity ε

should be added to the denominators during the update of W and H at each iteration

step. τ is a preset threshold. Clearly, given a non-negative initialization, the rules

insure matrices non-negative.

3 NMF for hyperspectral unmixing using prior

knowledge (NMFupk)

NMFupk is developed for hyperspectral unmixing with prior knowledge of spectral

signatures in the scene. As we noted above, NMFupk assumes that some spectral

signatures in the scene are known. NMFupk uses a decomposition model which ex-

plicitly distinguishes the known part and the unknown part of a spectral signature

matrix as follows,

V = WH

=

[
W1,W2

]H1

H2


= W1H1 +W2H2 (7)

where W1 indicates the known signatures with H1 the corresponding abundance

fractions, W2 and H2 represent the unknown endmembers and related abundance

fractions, respectively. Figure 1 illustrates the NMFupk model. The most straight-
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Figure 1: An illustration of NMFupk model. Spectral signature matrix W is treated

as two parts. W1 is the known part with H1 the corresponding abundance fraction-

s. W2 and H2 represent the unknown signatures and related abundance fractions,

respectively.

forward way to use the additional knowledge is to replace the first part of W with the

known signatures after initialization (in this paper, we use VCA for initialization),

then use them in the NMFupk model as initial values. However, it could unexpectedly

degrade the VCA initialization because the first few endmembers randomly extracted

by VCA could not correspond with the known signatures in a good chance. Hence,

by direct substitution, the valuable endmembers will decline in the number as well as

get repetitive.

Instead of the simple initialization, we put forward a matching method which

searches the known-signature-matched endmembers in W after VCA initialization

and then supersedes them by the known ones. Specifically, if the angle between an

extracted endmember and a known signature spectrum is less than a given threshold,

then we consider them a matched pair. To keep pace with the NMFupk model, we

also realign W via putting the known endmembers leftmost. Algorithm 2 embodies
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Algorithm 2: Initialization of NMFupk

Input: L × K matrix V ≥ 0, endmember number P , and known-signature matrix W1

1 while not all known endmembers have been matched or iter < maxiter do

2 Initialize W via VCA.

3 Search matched endmembers in W.

4 end

5 Replace the matched endmembers in W by the known signatures and put them leftmost.

6 H ⇐ W†V.

7 Set W and H positive.

Output: W ∈ RL×P and H ∈ RP×K .

the process for the initialization of NMFupk. maxiter limits the number of iterations

for the matching procedure.

Considering (7), the objective function in (6) can be transformed as follows,

F =
1

2
∥V−W1H1 −W2H2∥2 . (8)

If we can separate the gradient of the objective function as below,

∂F

∂W
=

[
∂F

∂W

]+
−

[
∂F

∂W

]−
(9)

where
[
∂F
∂W

]+
> 0 and

[
∂F
∂W

]−
> 0 denote the positive and negative parts of ∂F

∂W

respectively. Then we can construct the multiplicative update factor by taking nega-

tive terms of the partial derivative as its numerator, while taking positive ones as its

denominator:26,27

W ⇐ W. ∗
[
∂F

∂W

]−
./

[
∂F

∂W

]+
. (10)
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Obviously, W remains non-negative during the update.

Then, by partially differentiating the objective function (8) with respect to each

matrix to be updated:

∂F

∂W2

= −VHT
2 +W2H2H

T
2 +W1H1H

T
2 (11)

∂F

∂H1

= −WT
1V+WT

1W1H1 +WT
1W2H2 (12)

∂F

∂H2

= −WT
2V+WT

2W2H2 +WT
2W1H1 (13)

we can get the following multiplicative rules for NMFupk.

Theorem 1: The objective function (8) is nonincreasing under the update rules

W2 ⇐ W2. ∗ (VHT
2 )./(W2H2H

T
2 +W1H1H

T
2 ) (14)

H1 ⇐ H1. ∗ (WT
1V)./(WT

1W1H1 +WT
1W2H2) (15)

H2 ⇐ H2. ∗ (WT
2V)./(WT

2W2H2 +WT
2W1H1). (16)

The proof of the theorem can be found in the Appendix.

Fixing the known matrix W1 and updating the unknown ones iteratively, we can

obtain all the endmembers and their corresponding abundance fractions finally. Based

on the update rules, the algorithm for the hyperspectral unmixing using NMFupk is

summarized in Algorithm 3.

4 Experiments

In this section, we test the proposed NMFupk and NMF without prior knowledge

on both synthetic and real data. Through the experiments, we can verify the valid-

ity of the NMFupk model for hyperspectral unmixing as well as test whether prior
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Algorithm 3: Outline of hyperspectral unmixing using NMFupk

Input: L × K matrix V ≥ 0, endmember number P , and known-signature matrix W1

1 Initialize W and H via Algorithm 2

2 hi ⇐ hi/(1
T
Phi), i = 1, 2 . . . K.

3 Compute Fnew = 1
2
∥V−W1H1 −W2H2∥2.

4 repeat

5 Fold ⇐ Fnew.

6 Update W2, H1 and H2 using (14) - (16).

7 hi ⇐ hi/(1
T
Phi), i = 1, 2 . . . K.

8 Compute Fnew = 1
2
∥V−W1H1 −W2H2∥2.

9 until the maximum number of iterations has been reached or |Fold−Fnew|
Fnew

≤ τ .

Output: W ∈ RL×P and H ∈ RP×K .
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knowledge contributes to a better performance. One or two signatures in NMFupk

are given known, so we only compare the remained unknown endmembers between

the two algorithms.

Three distance metrics are considered to evaluate the performances of the two al-

gorithms. One is the spectral information divergence (SID),28 which is frequently used

to measure the quasi-distance or directed difference between the pth true endmember

signature Wp and its estimate Ŵp. It is defined as:

SIDp = D(Wp||Ŵp) +D(Ŵp||Wp). (17)

Here D(Wp||Ŵp) is the relative entropy of Wp with respect to Ŵp given by

D(Wp||Ŵp) =
L∑
l=1

pl log(
pl
ql
) (18)

where pl = Wlp/
L∑

j=1

Wjp, ql = Ŵlp/
L∑

j=1

Ŵjp.

The second metric is the L∞ norm, it measures the maximum difference between

corresponding spectral components. For a vector x ∈ RL, the L∞ norm is defined as:

∥x∥∞ = max
1≤i≤L

|xi| (19)

where xi is the ith element of x. If two spectra have low difference on average, but they

differ significantly at a specific wavelength, where one spectrum has a spike and the

other does not, then they are really two different spectra. This is specially important

for the identification of some specific material whose spectrum is characterized by

peaks in certain frequencies.

The third metric is the root mean square error (RMSE):29

RMSEp =

√√√√ 1

K

K∑
k=1

(Hpk − Ĥpk)2. (20)
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Here, H denotes the true abundances and Ĥ represents the estimated ones. RMSE

is commonly used to measure the similarity of two abundances.

Mean values of all the metrics, signified as sid, l∞ and rmse respectively, will be

computed to assess the performances of the algorithms. And, generally speaking,

the smaller sid, l∞ or rmse is, the more the estimation approximates the truth.

Meanwhile, the standard deviations of all the metrics, denoted by σSID, σL∞ , σRMSE

respectively, are reported. We also adopt the Monte Carlo method in our experiments.

Each algorithm is run 50 times, then the median values and standard deviations are

computed.

In all the experiments, the preset threshold τ and maximum number of iterations

for Algorithm 1 and Algorithm 3 are set to be 0.001 and 200, respectively. The

maxiter for Algorithm 2 is set to be 20. We set the threshold of angle in Algorithm 2

by comparing the endmember of a known material and the endmember of the same

material obtained by VCA, then the angle is set to be (a little larger than) the angle

between these two spectral signatures. Specifically, in the synthetic data experiment,

it is set to be 10 degrees while in the real data experiment, it is set to be 20 degrees.

4.1 Evaluation with Synthetic Data

Data Creation: we choose five mineral spectral signatures (shown in Figure 2) from

United States Geological Survey (USGS)30 digital spectral library to simulate real

endmember spectral signatures. The synthetic data are created as follows:

(1) Divide the scene, whose size is z2 × z2 (z = 8), into z × z regions. Initialize
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Figure 2: Selected spectral signatures from USGS. The title of each subimage denotes

the mineral corresponding to the signature.

each region with the same type of ground cover, randomly selected from the

endmember class. The number of endmembers is 5 (P = 5).

(2) Generate mixed pixels through a simple (z + 1)× (z + 1) spatial low-pass filter.

(3) Replace all the pixels in which the abundance of a single endmember is larger

than 70% with a mixture made up of only two endmembers (the abundances of

the two endmembers both equal 50%) so as to further remove pure pixels and

represent the sparseness of abundances at the same time; After these three steps,

we obtain the distribution of five endmembers in the scene and specific values are

stored in H with a size of of P ×K (K = z2 × z2).

(4) From the USGS digital spectral library, we selected 470 wave bands (L = 470).
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The size of spectral signatures W is L× P .

(5) Use linear spectral mixing model V = W ×H to generate hyperspectral data,

add white Gaussian noise at the same time. The signal to noise ratio (SNR) of

the noise is 20 db. The size of hyperspectral data V is L×K.

As mentioned earlier, we run NMFupk with one or two signatures known, both of

which are selected randomly. For simplicity, we indicate the two scenarios by NMFup-

k(1) and NMFupk(2). The numbers in the parentheses count the given endmembers.

Axinite is given as the known signature in NMFupk(1), while Axinite and Clinochlor

are given in NMFupk(2). We calculate sid and l∞ only of the unknown signatures for

both algorithms and rmse of all abundances.

We can conclude from Table 1 and Table 2 that NMFupk behaves better than NMF

without prior knowledge on sid, l∞ and rmse in both scenarios. Comparing rmses

in the two tables, we find that the more signatures are given, the more estimation of

abundances approximates the truth. Meanwhile considering the standard deviations

of all the metrics, NMFupk also has a better performance than NMF in both scenarios.

Prior knowledge of some endmembers in the scene does contribute to better extraction

of the other endmembers and estimation of abundances. Figure 3 shows comparison

of the extracted endmembers among different algorithms on synthetic data and Figure

4 shows their corresponding estimated abundance maps as well as the true ones.
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Table 1: Comparison between NMF without prior knowledge and NMFupk(1) on

synthetic data

algorithm sid l∞ rmse σSID σL∞ σRMSE

NMF 0.0160 0.1383 0.1182 0.1073 0.0558 0.0377

NMFupk(1) 0.0132 0.1319 0.1060 0.0808 0.0452 0.0344

Table 2: Comparison between NMF without prior knowledge and NMFupk(2) on

synthetic data

algorithm sid l∞ rmse σSID σL∞ σRMSE

NMF 0.0242 0.1282 0.1169 0.1556 0.0516 0.0296

NMFupk(2) 0.0180 0.1239 0.0961 0.0781 0.0349 0.0273
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Figure 3: Comparison of the extracted endmembers among different algorithms on

synthetic data. Spectral signatures are estimated using NMFupk(2) (sid = 0.0187),

NMFupk(1) (sid = 0.0206), NMF without prior knowledge (sid = 0.0262) from top

row to bottom row, respectively. Each column, from left to right, corresponds to

the same endmember: Carnallite, Almandine, Axinite, Clinochlore and Diaspore.

The thin lines are estimated spectral signatures, the thick lines are standard spectral

signatures. The x-coordinate stands for wavelength (µm), and y-coordinate represents

reflectance.
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Figure 4: Comparison of abundance maps on synthetic data. True abundance maps,

abundance maps obtained by NMFupk(2) (rmse = 0.0616), NMFupk(1) (rmse =

0.0681), NMF without prior knowledge (rmse = 0.0739) from top row to bottom row,

respectively.
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4.2 Evaluation with Real Data

In this section, we evaluate the performance of the proposed NMFupk algorithm using

the AVIRIS data taken over the Cuprite Nevada site.31 In our experiment, a 188×191

subimage of the hyperspectral data is considered as our region of interest, with 224

spectral bands. Due to strong noise or dense water vapor content, the bands 1 − 2,

104 − 113, 148 − 167 and 221 − 224 are removed, leaving a total of 188 spectral

bands. As true total number of endmembers and the associated minerals are yet to

be accurately identified, we can only refer to previous works12,13,32–35 done by others

to preset our known signatures and endmember number. And there is no way to

calculate rmse for a lack of true abundance maps. Finally, we choose Montmorillonite

and Sphene for NMFupk(2) and Sphene for NMFupk(1). They can be extracted by

VCA.13 The signatures of these two minerals can be obtained from the USGS library.

In order to estimate the number of endmembers present in the processed area, we

resort to the VCA, proposed in,13 and take P = 8.

In Table 3, for both algorithms, we calculate sid and l∞ on average of all the

extracted endmembers except Sphene. Likewise, we calculate sid and l∞ with Mont-

morillonite and Sphene excluded in Table 4. Obviously, NMFupk outperforms NMF

without prior knowledge in both scenarios. Besides, considering the standard devi-

ations of errors, we conclude that NMFupk has a more predictable behavior than

NMF without prior knowledge. Figure 5, Figure 6 and Figure 7 show spectral sig-

natures estimated by NMFupk(2), NMFupk(1) and NMF without prior knowledge,

respectively. Comparing the three figures, we find that endmembers extracted by the
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Table 3: Comparison between NMF without prior knowledge and NMFupk(1) on real

data

algorithm sid l∞ σSID σL∞

NMF 0.0284 0.1853 0.0131 0.0522

NMFupk(1) 0.0219 0.1817 0.0077 0.0475

Table 4: Comparison between NMF without prior knowledge and NMFupk(2) on real

data

algorithm sid l∞ σSID σL∞

NMF 0.0302 0.2094 0.0118 0.0506

NMFupk(2) 0.0222 0.1683 0.0049 0.0369

algorithms are different. Thus, we refer to the mineral map23,36 produced by USGS

in 1995. The Tricorder 3.3 software product was used to map different minerals in

the Cuprite mining district. Among the spectral signatures extracted by NMFupk(2),

two minerals, namely Dry Long Grass and Quartz, do not appear in the map. As

for the endmembers extracted by NMFupk(1), three minerals cannot be found in the

map. They are Dry Long Grass, Ammonio-Smectite and Microcline. By contrast, N-

MF without prior knowledge behaves worst, with only three minerals (Kaolin/Smect

#1, Kaolin/Smect #3 and Alunite) appearing in the map. Hence, we conclude that

NMFupk can extract endmembers more accurate than NMF without prior knowledge

and the more prior knowledge is given, the better result is obtained.
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Figure 5: Spectral signatures estimated by NMFupk(2) (sid = 0.0203). The spectral

signatures of Montmorillonite and Sphene are given known. The title of each subimage

denotes the mineral corresponding to the signature. The thin lines are estimated

spectral signatures, the thick lines are standard spectral signatures.
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Figure 6: Spectral signatures estimated by NMFupk(1) (sid = 0.0225). The spectral

signature of Sphene is given known. The title of each subimage denotes the mineral

corresponding to the signature. The thin lines are estimated spectral signatures, the

thick lines are standard spectral signatures.
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Figure 7: Spectral signatures estimated by NMF without prior knowledge (sid =

0.0338). The title of each subimage denotes the mineral corresponding to the signa-

ture. The thin lines are estimated spectral signatures, the thick lines are standard

spectral signatures.
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5 Conclusion

In this paper, we present a novel non-negative matrix factorization based framework

for hyperspectral unmixing using prior knowledge of spectral signatures (NMFupk).

The NMFupk algorithm is based on multiplicative update rules and makes a use of

prior knowledge of spectral signatures in the scene. Numerous experiments both on

synthetic and real data lead to the conclusion that NMFupk is a useful model to solve

the hyperspectral unmixing problem with such prior knowledge and behaves better

than NMF without prior knowledge.
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Appendix: Proof of Theorem 1

First, we prove convergence of the update rule for H1 in (15) (here, we use H̃ for a

replacement to avoid confusion by subscript later), and then convergence of the other

two update rules could be proved in the similar way. And, we will employ auxiliary
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function similar to that used in.20

Rewrite W and H in a partitioned form:

W =

[
W̃,W

]
,H =

H̃
H

 . (21)

The objective function for a single row, denoted h̃, can be shown as

F (h̃) =
1

2

∥∥∥v− W̃h̃−Wh̄
∥∥∥2

(22)

=
1

2

∑
i

(vi −
∑
a

W̃iah̃a −
∑
p

Wiph̄p)
2 (23)

where v, h̃ and h̄ indicate separate rows of V, H̃ and H respectively. We define an

auxiliary function G(h̃, h̃
t
) for F (h̃) satisfying the conditions

G(h̃, h̃
t
) ≥ F (h̃), G(h̃, h̃) = F (h̃). (24)

Then, F (h̃) is nonincreasing under the update

h̃
t+1

= argmin
h̃

G(h̃, h̃
t
). (25)

The proof is given in.20

Given K(h̃
t
) is the diagonal matrix

Kab(h̃
t
) = δab(W̃

T
W̃h̃

t
+ W̃

T
Wh̄

t
)a/h̃

t

a, (26)

we define function G as

G(h̃, h̃
t
) = F (h̃

t
) + (h̃− h̃

t
)T∇F (h̃

t
) +

1

2
(h̃− h̃

t
)TK(h̃

t
)(h̃− h̃

t
) (27)
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where function δ(x) means the diagonalization of vector x. Obviously, G(h̃, h̃) =

F (h̃). On the other hand, F (h̃) can be expanded as

F (h̃) = F (h̃
t
) + (h̃− h̃

t
)T∇F (h̃

t
) +

1

2
(h̃− h̃

t
)T (W̃

T
W̃)(h̃− h̃

t
). (28)

Comparing (27) with (28), we find that G(h̃, h̃
t
) ≥ F (h̃) is equivalent to

(h̃− h̃
t
)T [K(h̃

t
)− W̃

T
W̃](h̃− h̃

t
) ≥ 0. (29)

Rescaling the components of K(h̃
t
)− W̃

T
W̃, we can get the matrix

Mab(h̃
t
) = h̃

t

a(K(h̃
t
)− W̃

T
W̃)abh̃

t

b. (30)

Then K(h̃
t
)− W̃

T
W̃ is semipositive definite if and only if M is, and

vTMv =
∑
ab

vaMabvb (31)

=
∑
ab

vah̃
t

a(K(h̃
t
)− W̃

T
W̃)abh̃

t

bvb (32)

=
∑
ab

δab(W̃
T
W̃h̃

t
+ W̃

T
Wh̄

t
)ah̃

t

bv
2
a − vah̃

t

a(W̃
T
W̃)abh̃

t

bvb (33)

≥
∑
ab

δab(W̃
T
W̃h̃

t
)ah̃

t

bv
2
a − vah̃

t

a(W̃
T
W̃)abh̃

t

bvb (34)

=
∑
ab

h̃
t

a(W̃
T
W̃)abh̃

t

bv
2
a − vah̃

t

a(W̃
T
W̃)abh̃

t

bvb (35)

=
∑
ab

(W̃
T
W̃)abh̃

t

ah̃
t

b[
1

2
v2
a +

1

2
v2
b − vavb] (36)

=
1

2

∑
ab

(W̃
T
W̃)abh̃

t

ah̃
t

b(va − vb)
2 (37)

≥ 0. (38)

Thus, G(h̃, h̃
t
) is an auxiliary function for F (h̃). In that case, the update rule can
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be built by replacing G(h̃, h̃
t
) in (24) by (27):

h̃
t+1

= h̃
t
−K(h̃

t
)−1∇F (h̃

t
). (39)

And, by partially differentiating the objective function in (22) with respect to h̃, we

have

∇F (h̃) = −W̃
T
v+ W̃

T
W̃h̃+ W̃

T
Wh̄. (40)

Then, writing the components of (39) explicitly, we get

h̃
t+1

a = h̃
t

a

(W̃
T
v)a

(W̃
T
W̃h̃

t
+ W̃

T
Wh̄

t
)a
. (41)

Hence, the convergence of update rule for H1 in (15) has been proved. And, con-

vergence of the other two update rules in (14) and (16) can be proved in the same

way.
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