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Abstract

Sparse hyperspectral unmixing assumes that each observed pixel can be ex-
pressed by a linear combination of several pure spectra in a priori library.
Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0
norm based optimization problem. Existing methods usually utilize a relax-
ation to the original l0 norm. However, the relaxation may bring in sensitive
weighted parameters and additional calculation error. In this paper, we pro-
pose a novel multi-objective based algorithm to solve the sparse unmixing
problem without any relaxation. We transform sparse unmixing to a multi-
objective optimization problem, which contains two correlative objectives:
minimizing the reconstruction error and controlling the endmember sparsity.
To improve the efficiency of multi-objective optimization, a population-based
randomly flipping strategy is designed. Moreover, we theoretically prove that
the proposed method is able to recover a guaranteed approximate solution
from the spectral library within limited iterations. The proposed method can
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directly deal with l0 norm via binary coding for the spectral signatures in
the library. Experiments on both synthetic and real hyperspectral datasets
demonstrate the effectiveness of the proposed method.

Keywords: Hyperspectral image, Sparse unmixing, Multi-objective
optimization, l0 problem, Binary coding

1. Introduction

Hyperspectral imaging technology has achieved prominent development
in recent years [Bioucas-Dias et al. 2012]. Hyperspectral images usually cov-
er hundreds of bands which can be detected simultaneously through imaging
spectrometer. Based on such high spectral resolution, a lot of valuable infor-
mation is extracted [Green et al. 1998, Keshava et al. 2002, Shippert. 2004,
Landgrebe. 2002]. However, the spatial resolution of most hyperspectral im-
ages is low, thus observed pixels are usually mixed which means several pure
materials could be found in a single pixel [Bioucas-Dias et al. 2013]. The
existence of mixed pixels imposes restrictions on practical applications of
hyperspectral images. Therefore, decomposition of the measured spectral
signals, commonly known as hyperspectral unmixing, is important for accu-
rate interpretation of hyperspectral image.

Hyperspectral unmixing refers to the process of separating mixed pixels
into a set of constitutive spectra (endmembers) and their corresponding frac-
tions (abundances) [Hu et al. 1999, Petrou et al. 1999, Dobigeon et al. 2008,
Zhong et al. 2016]. The endmembers are assumed as an representation of
the pure substances presented in the image, and the abundance fractions are
their respective percentages in each pixel. The decomposition operation con-
sists of two steps: extracting endmembers and estimating the corresponding
abundances [Parra et al. 1999]. Linear mixing model (LMM) is popular to
model spectral unmixing problem [Adams et al. 1986, Ma et al. 2014]. It as-
sumes that each pixel in the hyperspectral image is linearly weighted by the
endmembers existing in the pixel. Based on LMM, there has been a tremen-
dous effort in the past decade to solve the spectral unmixing problem. Ear-
ly research are mainly based on geometry [Boardman. 1993, Winter. 2003,
Nascimento et al. 2005], statistics [Nascimento et al. 2005] and nonnegative
matrix factorization (NMF) [Qian et al. 2011, Lu et al. 2013, Zhu et al. 2014].
The geometry-based methods assume that all the pixels lie in a high-dimensional
data simplex, and endmembers are considered as the vertices of the simplex
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[Boardman. 1993]. However, these methods usually assume the presence of at
least one pure pixel per endmember in the image, which is a strict assumption
and difficult to be satisfied [Iordache et al. 2011]. Statistics based methods
transform the problem to a statistical inference form, whereas these meth-
ods are usually complex and time-consuming [Berman et al. 2004]. NMF
could decompose the hyperspectral image into a product of two nonnegative
matrixes, whose mathematics form is similar to that of linear spectral un-
mixing. However, the physical meaning of the extracted endmembers seems
ambiguous [Pauca et al. 2006].

Recently, the spectral unmixing problem has been approached in a spec-
tral library based semi-supervised fashion, known as sparse unmixing, aiming
at finding an optimal subset of the library that can best model each observed
mixed pixel in the scene. Spectral library is a collection of many pure spec-
tral signatures which are known in advance. This approach often leads to
a sparse solution due to the fact that the number of spectral signatures
in the library is usually much larger than that of endmembers presented
in the hyperspectral image. However, the objective function of sparse un-
mixing is a l0 norm constrained optimization problem, which is NP-hard
[Elad. 2010, Gong et al. 2016].

To solve the sparse unmixing problem, researchers have introduced many
strategies, mainly including convex relaxation approaches [Eldar et al. 2010,
Tropp. 2006] and greedy algorithms (GAs) [Tropp. 2004, Tropp et al. 2006].
Convex relaxation usually approximates l0 norm to a closest convex l1 nor-
m, so that global optima can be achieved. Some optimization algorithm
such as alternating direction method of multipliers (ADMM) [Esser. 2009,
Yang et al. 2010], are used to solve the problem. In the paper [Iordache et al. 2014],
sparse unmixing problem was extended to a joint sparse regression form which
aims at finding a few nonzero lines in library. In the paper [Iordache et al. 2012,
Feng et al. 2014, Feng et al. 2016, Feng et al. 2016], spatial information of
hyperspectral images was taken into account to improve the unmixing accu-
racy. In view of the fact that some materials in spectral library are known
to exist in the scene, the spectral a priori information was incorporated into
the sparse unmixing process in [Tang et al. 2015]. However, convex relax-
ation based methods can only provide a limited approximation to the l0
norm regularized sparse unmixing problem. Greedy algorithms try to find
the optimal solution heuristically through making best decision in each it-
eration. In the paper [Iordache et al. 2011], typical orthogonal matching
pursuit (OMP) was used to solve the sparse unmixing problem, where the
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spectral signatures most correlated with current residual were selected to
update the solution. However, the high correlation of spectral library limits
its performance. To overcome the deficiency of OMP, subspace matching
pursuit (SMP) [Shi et al. 2014] was proposed based on simultaneous orthog-
onal matching pursuit. In [Tang et al. 2014], the regularized simultaneous
forward-backward greedy algorithm (RSFoBa) was proposed, which integrat-
ed a backward greedy step to the forward greedy step. In this case, incorrect
extraction made in earlier forward steps can be removed and candidate end-
members can be reduced. However, the number of endmembers extracted by
greedy algorithms is usually unstable. Bayesian approach was also proposed
to solve sparse unmixing. In [Themelis et al. 2012], a sparsity assumption
and nonnegativity constraint based hierarchical Bayesian approach was pre-
sented, which can provide the sparse solution without necessarily tuning any
parameters. But it might be much more complex than the convex relaxation
approaches and GAs.

In this paper, we propose a novel multi-objective based sparse unmix-
ing (MOSU) for hyperspectral data, by transforming it to a bi-objective
optimization problem. Multi-objective optimization refers to solving prob-
lems of more than one objective, which often conflicts against each other
[Deb et al. 2001, Sindhya et al. 2013]. This property is precisely in line with
the two objectives in sparse unmixing. The motivation of our study is the
excellent performance of the subset selection by Pareto optimization (POSS)
[Qian et al. 2015]. POSS treats subset selection as a multi-objective op-
timization problem and uses Pareto optimization to update the candidate
solutions. Based on POSS, we express sparse hyperpsectral unmixing as a
bi-objective optimization. The reconstruction error and sparsity of the solu-
tion are treated as two objectives that can be optimized simultaneously under
our framework. Then, the l0 norm based sparse unmixing can be solved di-
rectly without any relaxation. However, POSS is time-consuming, since the
convergence speed is quite slow. In MOSU, we improve the computational ef-
ficiency of POSS by extending it to a population-based method. Since POSS
cannot directly handle the population problem, we integrate the improved
method into the framework of non-dominated sorting genetic algorithm-II
(NSGA-II) [Deb et al. 2002]. Original POSS adopted a randomly flipping
strategy to select subset from a large set of variables, and only one offspring
is generated in each iteration. Here, we replace the single updating strat-
egy by a population-based strategy. By generating more offsprings in each
iteration, our algorithms can find solutions with lower computation work,
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compared with POSS. A theoretical proof about the maximum iterations of
our method to obtain a guaranteed approximate solution, is further present-
ed. The main contributions of this paper are listed below:

• We introduce a novel multi-objective optimization based method for
hyperspectral sparse unmixing, by transforming sparse unmixing to
a bi-objective optimization problem. Then the l0 norm constrained
unmixing problem is able to be handled directly without relaxation.

• To improve the computational efficiency of the POSS, we extend the
POSS to a population-based algorithm, where several offsprings are
generated in each main iteration.

• Furthermore, we have theoretically present the maximum iterations of
MOSU under the same condition of POSS.

The rest of this paper is organized as follows. Section 2 introduces some
related works concerned with the LMM, POSS and NSGA-II. In Section 3, we
present the MOSU and give some theoretical analysis. Experimental results
are shown in Section 4. Finally, we conclude this paper in Section 5.

2. Related works

In this section, some related works are presented. We first give a brief
introduction to the linear sparse unmixing model. Then, POSS and NSGA-
II, which lay a foundation for our proposed algorithm, are reviewed.

2.1. Linear sparse unmixing model

In hyperspectral images, a pixel usually contains several different ma-
terials. However, only a single spectrum is recorded to express the pixel,
resulting in the phenomenon of mixed observed spectra. In linear sparse un-
mixing model, each pixel in a hyperspectral image can be approximated as
a linear combination of several pure spectral signatures in a spectral library:

y =
m∑
i=1

aixi + n = Ax + n (1)

where y ∈ Rr×1 is the measured spectrum of a mixed pixel with r bands,
A ∈ Rr×m is the spectral library with m spectral signatures, x ∈ Rm×1
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is the abundance vector with regard to the library A, and n ∈ Rr×1 is the
error term. Considering the physical meaning of abundance fractions, two
constrains should be imposed to the sparse unmixing model: the abundance
nonnegativity constraint (ANC) and the abundance sum-to-one constraint
(ASC):

ANC : xi ≥ 0 (2)

ASC :
m∑
i=1

xi = 1 (3)

However, ASC is prone to strong criticism for real hyperspectral images. It
should be extended to a so-called generalized sum-to-one constraint (gen-
eralized ASC) which could be automatically imposed by the nonnegativity
of sources [Iordache et al. 2011]. As a result, the optimization problem of
sparse unmixing can be written as:

min
x
‖x‖0

s.t. ‖y −Ax‖2 ≤ δ,x ≥ 0
(4)

where ‖x‖0 denotes the number of non-zero elements in x, δ > 0 is the
tolerance of reconstruction error. Suppose the hyperspectral image contains
n pixels, then Eq. (1) can be written in a matrix form:

Y = AX + N (5)

where Y = [y1,y2, ...,yn] ∈ Rr×n denotes the whole hyperspectral image
data, yi ∈ Rr×1 is the ith pixel data, X = [x1,x2, ...,xn] denotes the abun-
dance matrix, xi ∈ Rm×1 is the abundance vector of the ith pixel, and N is
the noise matrix. Based on this model, the sparse unmixing problem can be
expressed by

min
X
‖X‖row−0

s.t. ‖Y −AX‖F ≤ δ,X ≥ 0
(6)

where ‖Y−AX‖F =
√
trace[(Y −AX)(Y −AX)T ] is the Frobenius norm

of X, ‖X‖row−0 denotes the number of nonzero rows (sparsity) in abundance
matrix X. Unfortunately, due to the combination and non-smooth properties
of l0 norm, the optimization problem is NP-hard to solve.
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2.2. The POSS method

The subset selection by Pareto optimization (POSS) is an effective multi-
objective based subset selection method, which aims at solving problems as
feature selection, sparse regression and dictionary learning [Qian et al. 2015].
Here, we first give a brief introduction to the multi-objective optimization,
and then explain how to apply POSS in sparse regression.

2.2.1. Multi-objective optimization

Multi-objective optimization is a class of algorithms for searching optimal
solution of problems with several objectives [Li et al. 2013, Xu et al. 2014].
Mathematically, multi-objective problem can be described as follows [Eckart et al. 1999]:

min f(x) = [f1(x), f2(x), ..., fN(x)]

s.t. gi(x) ≤ 0, i = 1, 2, ..., p

hj(x) = 0, j = 1, 2, ..., q

(7)

where x is the decision variable, f(x) = [f1(x), f2(x), ..., fN(x)] denotes the
set of objective functions, gi(x) and hj(x) are the constraint functions. Dif-
ferent from traditional single-objective optimization, the objectives in multi-
objective optimization usually conflict with each other. Thus, there may not
exist a solution optimal to all the objectives. Generally, a compromise should
be adopted to make all the objectives as optimal as possible. A common s-
trategy for multi-objective optimization is giving an optimal solution set,
known as Pareto optimal. As discussed in [Eckart et al. 1999], considering
two decision variables x1 and x2 for a minimization problem, x1 dominates
x2 (i.e. x1 � x2) if

∀i ∈ {1, 2, ..., N} : fi(x1) ≤ fi(x2) ∧ ∃j ∈ {1, 2, ..., N} : fj(x1) < fj(x2)
(8)

2.2.2. POSS in sparse regression

Considering the sparse regression problem:

min
s
f(s)

s.t. |s| 6 k
(9)

where f(s) is the criterion function, s is a binary vector of all the columns
of V (each column is given a label 0 or 1), V = [v1,v2, ...,vm] can be seen
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as a library in sparse regression problems (if an atom vi ∈ V is selected, the
corresponding position in s is set as 1), |s| is the cardinality of the set s, Vs

is a subset of V with |s| atoms, and k is a positive integer to control the
sparsity of the solution. In POSS, the constrained optimization problem of
Eq. (9) is treated as a bi-objective optimization. The two objectives are the
criterion function and the sparsity constraint. Then Eq. (9) can be described
as

min
s
f(s) = [f1(s), f2(s)] (10)

where

f1(s) =

{
+∞, |s| = 0 or ≥ 2k

f(s), otherwise

f2(s) = |s|
(11)

POSS begins with an empty set, where each decomposed column is labeled
as 0. An archive P is used to store the candidate solutions which are updated
iteration by iteration based on Pareto optimization. In each main iteration, a
single candidate is selected from P and updated through a randomly flipping
operation where each bit (0 or 1) is flipped with a probability 1/m or remains
unchanged with a probability 1−1/m. Then P is updated by comparing the
new generated solution with all the current candidate solutions in P based
on Pareto optimization. Moreover, POSS has been proved that it can find a
set s with the condition in Theorem 1 [Qian et al. 2015] within 2ek2m main
iterations.

Although POSS is an useful method to deal with sparse regression prob-
lem, it is computational complex, especially when the endmember number is
large.

2.3. NSGA-II

NSGA-II is a population-based evolutionary strategy. The comparison s-
trategy in NSGA-II is effective on population-based evolutionary algorithms.
The main operations of NSGA-II include non-dominated sorting, crowding
distance calculating, tournament selection and genetic algorithm [Siinivas et al. 1994].
Some details are described below:

Non-dominated sorting: For an individual s, the number of individuals
that dominate it is ns (individuals stored in Ns), and the number of individ-
uals it dominates is ss (individuals stored in Ss). Individuals with ns = 0
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are added to the first front. For each individual s1 in the first front and
each individual s′ in Ss1 , ns′ is decremented by 1. If ns′ = 0, the front of
individual s′ would be set as 2. The other fronts are determined by the same
way. Finally, all individuals are sorted to several fronts.

Crowding distance calculating: Individuals in the same front are ranked
by their crowding distances. In each front, crowding distance is set to an
infinite value for boundary individuals with maximal and minimal fitness
value respectively. For the other individuals, it is calculated as below:

ds =
l∑

i=1

fi(s + 1)− fi(s− 1)

fmaxi − fmini

(12)

where ds is the crowding distance of the individual s, fi(s + 1) and fi(s− 1)
are the ith objective values for the two adjacent individuals of s respectively,
fmaxi and fmini are the maximal and minimal fitness values, l is the number
of objectives.

Tournament selection: In each main iteration, several individuals (par-
ents) are selected to be updated. For the selection of each parent, two indi-
viduals are selected randomly and the individual with better performance is
selected based on non-dominated sorting and their crowding distances.

Genetic algorithm: Crossover and mutation of genetic algorithm are con-
ducted to generate offsprings. Then the candidate solutions are updated
based on non-dominated sorting and crowding distance.

3. Multi-optimization based spectral unmixing for hyperspectral
image

Motivated by the managing ability of POSS for sparse regression prob-
lems, we introduce it to solve the sparse unmixing problem of hyperspectral
images. The randomly flipping strategy in POSS is suitable to handle the
sparsity of the selected endmembers. Considering the particularity of sparse
regression and the high efficiency of population-based strategy, we improve
POSS to a population-based method, aiming at obtaining a faster conver-
gence speed. In this case, the comparison strategy (Pareto optimization) in
POSS would be unsuitable. Therefore, we involve our improved POSS algo-
rithm in the NSGA-II framework, so as to take advantage of its comparison
strategy: non-dominated sorting and crowding distance.
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In this section, we introduce our proposed multi-optimization based s-
parse unmixing algorithm in detail. Then, we give a theoretical analysis of
the proposed algorithm.

3.1. Multi-optimization based spectral unmixing algorithm

In MOSU, the spectral unmixing problem is transformed to a bi-objective
optimization problem as the form of Eq. (10) and Eq. (11), the two objec-
tives are the reconstruction error and the sparsity of the solution. It can be
described as:

min
s
f(s) = [f1(s), f2(s)] (13)

where

f1(s) =

{
a large value, |s| = 0 or ≥ 2k

‖Y −AsX‖F , otherwise

f2(s) = |s|
(14)

where A = [a1, a2, ..., am] is the spectral library, k denotes the number of ac-
tive endmembers in the image, s is a binary vector of the spectral signatures,
As is a sub-library of A with |s| atoms. The endmember number k should
be known in advance. In MOSU, we use HySime [Bioucas-Dias et al. 2008]
to give it an automatic estimation. For a solution s, if the ith atom in s is
1, the corresponding ai is selected as an endmember. f1(s) is set to a large
value when |s| = 0 or |s| ≥ 2k, which is infinite in POSS. The difference
here is used to adapt the crowding distance calculating. If fmin1 and fmax1

are infinite, denominator in Eq. (12) will be imponderable and the crowding
distance will be meaningless. The whole process of MOSU for hyperspectral
image unmixing is shown in Algorithm 1.

MOSU contains six main steps. The first five steps are conducted to
extract endmembers, and the last one aims at calculating the abundance
fractions for the scene.

Step 1 : Initialize the population randomly and then sort them. The
initialized population can be seen as an initial candidate solution set. It
contains several independent binary vectors (individuals). Then the non-
dominated sorting is performed to the population. Thus all the individuals
are sorted to several graduated fronts.

Step 2 : Compute the crowding distance for each individual based on Eq.
(12) and rank the whole population further. Individuals with maximal and
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Algorithm 1 The flowchart of MOSU for hyperspectral image unmixing

Initialize:
Decompose the spectral library as A = [A1,A2, ...,Am];
The randomly initialized population (initial candidate solutions) P0 = {s} with pop individuals (each
bit is initialized as 1 with a probability 1/m and 0 with a probability 1-1/m);
The number of parents individuals pop′ = pop/2 and population P ′;
The number of main iterations gen.

Process:
1: while t is smaller than the maximum iteration number gen do
2: Non-Dominated sorting:
3: For each s ∈ Pt, determine the corresponding Ns and Ss.
4: If Ns = ∅, set ranks = 1 and F1=F1 ∪ s (F1 is the first front).
5: while front Fi 6= ∅ do
6: For each s ∈ Fi, s

′ ∈ Ss, set ns′ = ns′ − 1;
7: If ns′ = 0, set ranks′ = i+ 1, Fi+1 = Fi+1 ∪ s′;
8: end while
9: Crowding distance calculating:

10: while front Fi do

11: For each individual s, calculate the crowding distance ds =
f1(s+1)−f1(s−1)

fmax
1 −fmin

1

+
f2(s+1)−f2(s−1)

fmax
2 −fmin

2

(ds is set to a large value if s is a boundary individual);
12: Sort the individuals in Fi in a descending order of their crowding distance.
13: Set i = i+ 1.
14: end while
15: Tournament selection:
16: while the number of parent individuals is smaller than pop′ do
17: Select two individuals si and sj in the whole population randomly;
18: If (ranksi < ranksj )|(ranksi = ranksj ∧ dsi > dsj ), si is selected as a parent individual,

P ′ = P ′ ∪ si;
19: Elseif (ranksi > ranksj )|(ranksi = ranksj ∧ dsi < dsj ), sj is added to the parent individual,

P ′ = P ′ ∪ sj .
20: end while
21: Offspring generating (population-based randomly flipping):
22: for each individual s ∈ P ′ do
23: Update s through flipping each bit with a probability 1/m and remaining it unchanged with a

probability 1− 1/m;
24: Compute X = (AT

s As)−1AT
s Y;

25: Compute f1(s) = ‖Y −AsX‖F and f2(s) = |s|.
26: end for
27: Candidate solutions updating:
28: Merge the current candidate solutions and offsprings through putting the two populations togeth-

er to a single population. After the merging operation, the new population contains 1.5 ∗ pop
individuals.

29: The first pop individuals will be selected based on non-dominated sorting and their crowding
distance, then the candidate solutions are updated to Pt+1 (the whole population contains pop
individuals).

30: end while
31: Select final solution from the candidate solutions based on k (we determine final solutions whose

endmember number is k), and determine the final extracted endmembers (As∗ ).
32: Inversion (abundance estimation):
33: Compute abundance fractions for the scene using nonnegative least squares algorithm based on the

original hyperspectral data and spectral library:
34: X∗ = argminX ‖Y −As∗X‖, s.t.X ≥ 0
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minimal objective function values are assigned a large value, so that they can
always be selected.

Step 3 : Select parent population based on a tournament selection strat-
egy. Individuals with relatively good performance can be selected.

Step 4 : Update the parent individuals to offsprings based on a population-
based randomly flipping. Each bit of parent individuals is flipped with a
probability 1/m, and remains unchanged with a probability 1− 1/m. Thus
the number of flipped bits for each individual is random. Based on this,
a sufficient exploration for the spectral signatures in the prior library can
be ensured. The two objective values of these offsprings are also calculated
in this step. The population-based randomly flipping strategy is further
illustrated in Fig. 1.

Step 5 : Mix the current candidate solutions and offsprings together. All
of them are compared to update the candidate solutions whose number is
the same with the original population.

Up to the fifth step, candidate solution in recent iteration are determined
and the population is updated. This procedure needs to be conducted many
times until the number of maximal iterations is reached. Then the final
solution is selected from the final population. According to the endmem-
ber number estimated by HySime, only candidate solution whose non-zero
elements is k can be selected as final solution. At last, the abundance esti-
mation step (Step 6 ) is conducted to calculate the corresponding abundance
fractions. In view of the nonnegative constraint of the abundance fractions,
a nonnegative least squares algorithm (lsqnonneg function in MATLAB) is
used.

For further describing MOSU, the overall procedure is illustrated in Fig.
2.

As mentioned previously, the proposed MOSU is an improvement of POS-
S, nevertheless, they are quite different: Firstly, in POSS, one of the can-
didate solutions in archive P is selected to be updated in each iteration.
However, MOSU is a population-based algorithm, where several candidate
solutions can be selected to be updated. Secondly, the updated solutions
(offsprings) in MOSU can compare with not only the current candidate so-
lutions but also the other offsprings to update the candidates. While the
single offspring in POSS can only compare with the current candidate solu-
tions. Lastly, the parent individual in POSS is selected randomly. However,
parents in MOSU is selected based on a tournament strategy, where individ-
uals with relatively better performance (elites) are selected to be updated.
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Fig. 1: The population-based randomly flipping process of MOSU. A population is initialized randomly
and each bit is flipped with a probability 1/m.

Fig. 2: The overall procedure of MOSU.
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The elite selection can accelerate the algorithm and benefit to capture good
solutions.

In summation, there are two main advantages of MOSU. On the one
hand, the spectral unmixing problem of hyperspectral image is transformed
to a bi-objective optimization problem. In this case, the l0 norm based sparse
unmixing can be handled directly without relaxation. On the other hand,
a faster convergence speed can be obtained compared with POSS. MOSU
improves POSS to a population-based algorithm. Hence in this case, the
relatively better individuals can be explored.

3.2. Theoretical analysis

In this section, we give some theoretical analysis for MOSU.
Defination 3.1:(Submodularity Ratio [Das et al. 2011]) Let f be a non-

negative set function. The submodularity ratio of f with respect to a set U
and a parameter k ≥ 1 is

γU,k(f) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S f(L ∪ {x})− f(L)

f(L ∪ S)− f(L)
(15)

Defination 3.2:([Das et al. 2011]) For a hyperspectral image Y = [y1,y2, ...,yn],
finding a subset with sparsity k from a known library A = [a1, a2, ..., an] is
equal to maximizing

F (D) =
n∑
i=1

max
As⊂A,|s|=k

R2
yi,As

(16)

where R2
yi,As

= (Var(yi) − MSEyi,As)/Var(yi) and MSEyi,As = E[‖yi −∑m
i=1 aixi‖2] [Qian et al. 2015]. In this case, for each pixel data y, the sub-

modularity ratio for sparse unmixing can be defined as

γU,k = min
L⊆U,As:|s|≤k,As∩L=∅

∑
a∈As

(R2
y,L∪{a} −R2

y,L)

R2
y,As∪L −R

2
y,L

(17)

All the following analyses are described in the pixel-wise case.
Lemma 3.1: Let A∗sk ⊂ A be the optimal solution, OPT = R2

y,A∗sk
be

the optimal value of maxs:|s|=k R
2
y,As

, Ai
s ⊂ A be the sub-library for any

individual si in Pi chosen by MOSU in the first i iterations, Ai
s = A∗sk −

Ai
s correspond to a binary code si, and Ai

s
′

= {a′ = Res(a,Ai
s) = a −
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∑
ai∈Ai

s
aixi | a ∈ Ai

s} be the residual of a ∈ Ai
s conditioned on Ai

s. There

exists one variable â ∈ A−Ai
s such that

R2
y,Ai

s∪{â} −R
2
y,Ai

s
≥ γ∅,k

k
· (OPT−R2

y,Ai
s
) +

(| si | −γ∅,k)
k

·R2
y,∅ (18)

Proof. Using Lemmas 2.3 and 2.4 in [Das et al. 2008], we can easily drive
that

R2
y,Ai

s∪Ai
s

= R2
y,Ai

s
+R2

y,Ai
s
′ ≥ R2

y,A∗sk
= OPT (19)

Thus
R2

y,Ai
s
′ ≥ OPT−R2

y,Ai
s

(20)

Based on Defination 3.2 and | si |=| si′ |≤ k, we get

γ∅,k = min
Ai

s
′:|si′|≤k

∑
a′∈Ai

s
′(R2

y,∅∪{a′} −R2
y,∅)

R2
y,Ai

s
′∪∅ −R

2
y,∅

= min
Ai

s
′:|si′|≤k

∑
a′∈Ai

s
′(R2

y,a′ −R2
y,∅)

R2
y,Ai

s
′ −R2

y,∅

(21)

Thus ∑
a′∈Ai

s
′

R2
y,a′− | si | ·R2

y,∅ ≥ γ∅,k · (R2
y,Ai

s
′ −R2

y,∅) (22)

and ∑
a′∈Ai

s
′

R2
y,a′ ≥ γ∅,k · (R2

y,Ai
s
′ −R2

y,∅)+ | si | ·R2
y,∅

= γ∅,k ·R2
y,Ai

s
′ + (| si | −γ∅,k) ·R2

y,∅

(23)

Let â′ = argmaxa′∈Ai
s
′ R2

y,a′ , then we get that

R2
y,â′ ≥

γ∅,k

| si |
·R2

y,Ai
s
′ +

(| si | −γ∅,k)
| si |

·R2
y,∅

≥ γ∅,k
k
·R2

y,Ai
s
′ +

(| si | −γ∅,k)
k

·R2
y,∅

≥ γ∅,k
k
· (OPT−R2

y,Ai
s
) +

(| si | −γ∅,k)
k

·R2
y,∅

(24)
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Let â ∈ Ai
s corresponds to â′ with â′ = Res(â,Ai

s) and use Lemma 2.4 in
[Das et al. 2008], we get

R2
y,Ai

s∪{â}−R
2
y,Ai

s
= R2

y,â′ ≥
γ∅,k
k
· (OPT−R2

y,Ai
s
) +

(| si | −γ∅,k)
k

·R2
y,∅ (25)

�
Theorem 3.1: Let Jmax be the maximum value of j ∈ [0, k], then in the

current population Pi, there exists an individual s in Pi with subset As meets
| s |≤ j and

R2
y,As
≥ [1− (1− γ∅,k

k
)j] ·OPT + (1− γ∅,k

k
)j ·R2

y,∅

+

j∑
l=1

(1− γ∅,k
k

)l−1 | sj−l | −γ∅,k
k

·R2
y,∅

(26)

where sj−l is the binary code corresponds to the sub-library Asj−l
= A∗sk −

Asj−l
, and sj−l has j − l non-zero elements.

Proof. The proof is inspired by [Qian et al. 2015]. It can be proved based
on mathematical induction.

The initial value of Jmax is 0 or 1, which is qualified for the above con-
dition. Assume that currently Jmax = j < k. Let s be the corresponding
solution with subset As which meet the above condition. Based on Lemma
3.1, there exists a new solution s1 satisfying

R2
y,As1

−R2
y,As
≥ γ∅,k

k
· (OPT−R2

y,As
) +

(| s | −γ∅,k)
k

·R2
y,∅ (27)

Then
R2

y,As1
≥ [1− (1− γ∅,k

k
)j+1] ·OPT + (1− γ∅,k

k
)j+1 ·R2

y,∅

+

j+1∑
l=1

(1− γ∅,k
k

)l−1 | sj+1−l | −γ∅,k
k

·R2
y,∅

(28)

where | s1 |=| s | +1 ≤ j + 1. After including s1 into the population,
Jmax = j + 1. Finally, the theorem is proved. �

Theorem 3.2: For MOSU, assume parents number is half of the original
population, the maximal number of main iterations to find a solution s with
|s| ≤ k and R2

y,Ak
s
≥ [1 − (1 − γ∅,k

k
)k] · OPT + (1 − γ∅,k

k
)k · R2

y,∅ +
∑k

l=1(1 −
γ∅,k
k

)l−1 |s
i
k−l|−γ∅,k

k
·R2

y,∅ (under the condition in Theorem 3.1 ), is 1.5kem.
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Proof: Jmax cannot decrease according to Theorem 3.1 and the non-
dominated sorting process in Algorithm 1. Thus, as parents number is half
of the original population, Jmax can increase by at least 1 in one iteration
with a probability:

0.5pop

pop+ 0.5pop
· 1

m
· (1− 1

m
)m−1 ≥ 2

3em
(29)

where m is the size of spectral library, pop is the number of the original
population and 0.5pop is the number of parent individuals generated in the
tournament selection process. Then at most 1.5em main iterations need to
be conducted to increase Jmax and at most 1.5kem main iterations are needed
when Jmax reaches to k. Therefore, the maximal number of the criterion f1

computing is 0.75pop · kem to increase Jmax to k. �
According to the Theorem 1 in [Qian et al. 2015], the number of the

criterion f1 computing is increased exponentially in POSS, which could be
huge when the endmember number is large. However, it is increased linearly
in MOSU. Since that the major computational load exists in the calculation
of reconstruction error, MOSU is more suitable for further application.

4. Experiments

In this section, three synthetic and one real experiments are conducted
to test the performance of MOSU. MOSU is compared with some state-
of-the-art algorithms: two well-known convex relaxation methods (SUnSAL
[Bioucas-Dias et al. 2010] and SUnSAL-TV [Iordache et al. 2012]) and three
GAs (SMP [Shi et al. 2014], RSFoBa-Inf and RSFoBa-2 [Tang et al. 2014]).
MOSU and POSS can always find a theoretically guaranteed approximation
solution within the maximal iteration number, so we only compare their pro-
cessing time. All the experiments are based on Chapter 1 of the United
States Geological Survey (USGS)1 digital spectral library (splib06a). The
reflectance values of 498 materials are measured for 224 uniformly distribut-
ed spectral bands in the interval of 0.4 ∼ 2.5µm (A ∈ R224×498). Details
about the USGS library settings are described in the following experiments.
Section 4.1 gives the performance evaluation criterions of experimental result-
s. Section 4.2 describes the experiment environment and parameter setting

1Available online: http://speclab.cr.usgs.gov/spectral-lib.html
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for all the involved algorithms. Section 4.3, 4.4 and 4.5 demonstrate the
performance of MOSU on three synthetic data sets. Finally in Section 4.6,
experiments on real data set are conducted and analyzed.

4.1. Performance evaluation criterion

To evaluate the abundance estimations for synthetic images, the root-
mean-square error (RMSE) for each endmember and the signal to recon-
struction error (SRE) for each pixel are used. RMSE for the ith endmember
is described as below:

RMSEi =

√√√√ 1

n

n∑
j=1

(xi,j − x̂i,j)2 (30)

where xi,j represents the real abundance fraction for the ith endmember in
the jth pixel, x̂i,j represents the corresponding estimated value, n is the
number of pixels in the synthetic image. The RMSE for each algorithm is
the average of all endmember RMSEs:

RMSE =
k∑
i=1

RMSEi (31)

where k is the number of extracted endmembers and a smaller RMSE repre-
sents a better performance.

SRE provides a better measurement on the relationship between the pow-
er of error and signal as follows:

SRE = 10log10

(
E[‖X‖2

F ]

E[‖X− X̂‖2
F ]

)
(32)

where X is the true abundance matrix and X̂ is the estimated abundance
matrix. For the SRE criterion, a larger value means a more accurate estima-
tion.

4.2. Experiment environment and parameter setting

All the following experiments are executed on a computer with 3.40GHz
Intel core, i7 CPU and 32GB RAM. The setting of some main parameters
in MOSU are described here: Firstly, the sparsity k should be known in
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advance. In this paper, we use HySime [Bioucas-Dias et al. 2008] algorithm
to obtain this parameter automatically. Secondly, the gen in Algorithm
1 is set experientially based on the maximal number of main iterations in
Theorem 3.1. Thirdly, the randomly flipping probability of each bit is set
as 1/m. According to Markov random process, the endmember extraction
result would not be affected by x/m, x = 1, 2, .... Lastly, in order to test
the effect of population size in MOSU, we set it as 20 and 40 to compare
their convergence speed in the following experiments. But all the other listed
synthetic and real experiments are conducted with a 20 population size.

4.3. Experiments with synthetic data 1

In the first synthetic data experiments, 240 spectral vectors are randomly
selected from the USGA library. Different signal-to-noise ratios (SNR) of
noise are considered. The computation of SNR is:

SNR = 10log10

(
‖Y‖2

F

‖N‖2
F

)
(33)

where, a small SNR indicates a strong noise.
Considering the physical property of hyperspectral images that the noise

is usually correlated, correlated noise is added to synthetic image data sets
in this paper. The noise SNR is set as 20dB, 30dB and 40dB respectively.

Different endmember numbers are considered here, varying from 3 to 10.
In each case, the corresponding synthetic image has the same image size of
64×64. The abundance fractions are generated based on the same operation
in [Shi et al. 2014], where the values are forced to be smaller than 0.7 to
avoid pure pixels. In this case, the active endmembers will be more difficult
to be extracted.

Table 1 shows the SRE and RMSE results obtained by different algo-
rithms. All the methods display well results when SNR is high. However,
in low SNR data, the results of most methods present significant decline,
while the proposed method decreases less. Specially, when the number of
endmember is large, the superiority of MOSU is more obvious. Although
the results of some greedy algorithm-based methods (SMP, RSFoBa-inf and
RSFoBa-2) are close to that of MOSU when the number of endmember is
small, superiority of the MOSU could be clearly observed with the increase
of endmember number. Compared with convex relaxation-based methods
(SUnSAL and SUnSAL-TV), the MOSU achieves better performance in n-
early all the situation. Overall, MOSU performs better than other methods,
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although the noise becomes gradually stronger and the endmember number
becomes larger. The reason is that MOSU can extract optimal endmembers
with little redundant endmember that is inactive in the image and the cor-
responding material does not exist in the image. Fortunately, the estimation
of k is usually exactly in accordance with the truth in synthetic data cases,
which results in no redundant endmembers for MOSU.

The mainly difference between MOSU and the greedy based SMP and
RSFoBa (RSFoBa-Inf and RSFoBa-2) is the endmembers extracting. Unfor-
tunately, SMP, RSFoBa-Inf and RSFoBa-2 always encounter the problem of
missing active endmembers or extracting many redundant endmembers. The
problem becomes more serious with the increase of endmember number and
the decrease of SNR, especially in low SNR cases. However, MOSU can per-
form well on extracting endmembers and the results are always in accordance
with the truth in synthetic experiments.

In order to further verify the performance of MOSU, the k top-ranking
endmembers are recorded based on their residual values for SMP, RSFoBa-Inf
and RSFoBa-2. Take the case of k = 5 as example, their top-five endmembers
with relatively smaller residual values are selected respectively. We find that
the top-five endmembers of all the three GAs are not in accordance with the
truth. Therefore, it can be conclude that, SMP, RSFoBa-Inf and RSFoBa-2
cannot extract right endmembers although the active endmember number
is estimated in advance. It can also be summarized that the bi-objective
optimization based sparse unmixing strategy in MOSU is effective.

In addition, Fig. 3 shows the true abundance maps and the abundance
maps estimated by all involved algorithms. The abundance maps are imple-
mented with 30dB correlated noise when the endmember number is eight.
Each row of Fig. 3 displays the abundance maps estimated by different algo-
rithm for an endmember, and each column shows the results of an algorithm
for different endmembers. It can be observed that all the methods perform
well in most cases. However, compared with other methods, the results of
MOSU have less noise. Moreover, from Fig. 3(f) we can see that the MOSU
perform better in preserving the outline information. In general, the MOSU
achieves the closest results to the truth.

The processing time of MOSU and POSS on synthetic data 1 with 30dB
correlated noise and 3∼10 endmembers is listed in Table 2. It is the aver-
age time after running each algorithm ten times. To analysis the effect of
population number in MOSU, we set it as 20, 40 respectively and denote the
corresponding algorithms as MOSU20, MOSU40. From Table 2, it can be
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Fig. 3: Comparison of abundance maps on synthetic data 1 with 30dB correlated noise when the
endmember number is eight. From top row to bottom row are are the maps corresponding to endmembers
from 1 to 8. From left column to right column are abundance maps obtained by SUnSAL, SUnSAL-TV,
SMP, RSFoBa-Inf, RSFoBa-2, MOSU and the truth respectively.

observed that MOSU20 converges faster than POSS in most cases. MOSU40
is usually slower than MOSU20, even slower than POSS especially when the
endmember number is large. Therefore, MOSU20 with a 20 population size
is more suitable for sparse unmixing.
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Table 1: SRE and RMSE results for synthetic data 1 obtained by different algorithms.

SRE for Synthetic Data 1 obtained by different algorithms.

SUnSAL SUnSAL-TV SMP RSFoBa-inf RSFoBa-2 MOSU

20dB

3 2.8076 3.5098 15.3646 15.3646 11.4518 15.3646
4 2.9599 4.2180 11.0828 13.5643 10.9240 13.5643
5 4.5366 6.0651 11.5581 12.6789 5.6186 12.6789
6 3.9672 5.2114 11.7837 7.9009 5.6513 11.7837
7 2.6258 3.9804 4.7634 2.8868 2.0382 11.0265
8 1.9617 3.7398 4.5147 3.9948 3.9948 9.3688
9 2.9957 4.4994 3.3664 3.1914 -0.6123 9.0067
10 2.8201 4.2564 3.9317 0.5114 0.0231 9.0858

30dB

3 8.2087 14.2316 25.0731 25.0731 21.7841 25.0731
4 7.9690 14.7605 23.2740 23.2740 20.5890 23.2740
5 9.4310 15.2156 20.6604 22.2056 16.6541 22.2056
6 8.6034 13.9011 20.0220 19.6872 14.2256 21.0834
7 5.8326 11.9027 15.6379 11.5078 6.0484 20.2018
8 5.4090 11.2326 15.3641 12.9509 8.5018 17.8117
9 6.3004 12.0434 11.2738 7.9266 7.5480 17.7749
10 6.0235 11.7989 6.5884 3.0025 3.0679 17.9527

40dB

3 17.7541 21.7765 35.0535 35.0535 35.0535 35.0535
4 17.4207 21.6018 33.0989 33.0989 30.5111 33.0989
5 18.1889 22.5929 30.3167 32.0162 24.7172 32.0162
6 16.7907 21.0164 29.9143 30.9952 24.9827 30.9952
7 13.1550 19.4718 25.2325 27.4613 16.6172 30.0172
8 12.7155 18.4439 24.4671 26.3354 14.2802 27.7430
9 13.0964 19.1598 11.2738 13.7984 13.7984 27.4860
10 13.1162 18.7945 11.1832 4.4256 4.3458 27.5013

RMSE for synthetic data 1 obtained by different algorithms.

SUnSAL SUnSAL-TV SMP RSFoBa-inf RSFoBa-2 MOSU

20dB

3 0.2302 0.2410 0.0626 0.0626 0.0865 0.0626
4 0.2015 0.1561 0.1028 0.0704 0.0888 0.0704
5 0.1580 0.1220 0.0851 0.0675 0.1116 0.0675
6 0.1434 0.1133 0.0697 0.0806 0.1018 0.0697
7 0.2794 0.2481 0.2397 0.2283 0.2475 0.1927
8 0.1541 0.1182 0.1041 0.1299 0.1299 0.0757
9 0.1323 0.1075 0.1290 0.1293 0.1369 0.0759
10 0.1244 0.0995 0.1067 0.1039 0.1057 0.0698

30dB

3 0.1212 0.0728 0.0205 0.0205 0.0285 0.0205
4 0.1048 0.0546 0.0296 0.0231 0.0296 0.0231
5 0.0824 0.0457 0.0304 0.0225 0.0355 0.0225
6 0.0750 0.0437 0.0292 0.0252 0.0406 0.0238
7 0.0972 0.0519 0.0534 0.0424 0.0452 0.0237
8 0.0952 0.0524 0.0336 0.0424 0.0552 0.0280
9 0.0809 0.0452 0.0459 0.0511 0.0530 0.0274
10 0.0775 0.0422 0.0692 0.0672 0.0657 0.0249

40dB

3 0.0403 0.0277 0.0065 0.0065 0.0065 0.0065
4 0.0352 0.0233 0.0074 0.0074 0.0094 0.0074
5 0.0297 0.0188 0.0100 0.0073 0.0132 0.0073
6 0.0284 0.0180 0.0093 0.0076 0.0124 0.0076
7 0.0399 0.0208 0.0167 0.0092 0.0167 0.0076
8 0.0394 0.0223 0.0166 0.0096 0.0223 0.0090
9 0.0348 0.0194 0.0459 0.0256 0.0256 0.0089
10 0.0328 0.0182 0.0286 0.0391 0.0396 0.0082
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Table 2: The computational time of MOSUs and POSS (sec).

endmember number MOSU20 MOSU40 POSS

3 26.45 67.89 75.97

4 181.84 148.90 162.96

5 193.15 235.86 262.63

6 234.09 289.08 242.48

7 357.29 431.77 408.55

8 348.20 486.13 389.30

9 551.98 476.47 695.22

10 536.11 666.64 617.00

4.4. Experiments with synthetic data 2

In the second synthetic data experiments, the spectral library also in-
cludes 240 signatures. Among them, five similar spectral signatures are se-
lected specially from the USGA library and the others are selected from the
library used in synthetic data 1. The first five signatures are Actinolite H-
S116.3B, Actinolite HS22.3B, Actinolite HS315.4B, Actinolite NMNH80714
and Actinolite NMNHR16485. Unmixing problem is more difficult in this
case. For example, Actinolite HS22.3B is likely to be missed when Actinolite
HS116.3B is selected because they are too similar. It can also happen among
the rest spectral signatures. Their spectra are shown in Fig. 4. The synthetic
image here is generated based on the same operation in the above synthetic
experiments. The size of all the generated images is also 64× 64. The noise
SNR here are 20dB, 30dB and 40dB respectively and the endmember number
is varying from 3 to 10.
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Fig. 4: Spectra of five selected highly similar materials in synthetic data 2.
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Table 3 shows results obtained by different algorithms. It can be observed
that MOSU also performs best. Performance of the algorithms are tend to be
worse than that on synthetic data 1. In Table 3, the advantage of the MOSU
is also obvious, especially when the endmenber number is large. Further-
more, we observe that different endmember number has little influence on
the results of MOSU. This phenomenon indicates that the MOSU is not very
sensitive to the variation of endmember number. In addition, Fig. 5 shows
the true abundance maps and the abundance maps estimated by all the algo-
rithms on synthetic data 2. The abundance maps is also implemented with
30dB correlated noise when the endmember number is eight. Similar to the
results of Fig. 3, in Fig. 5, we can see that the abundance maps of MOSU
show better outline preserving capacity. The three greedy algorithm-based
methods present close performance, and their results are closer to the truth,
compared with SUnSAL and SUnSAL-TV. However, MOSU outperforms all
of them in most cases.

4.5. Experiments with synthetic data 3

The third synthetic dataset is provided by [Iordache et al. 2012] using
five randomly selected spectral signatures from the library in Section 4.3.
Synthetic data 3 contains 75× 75 pixels, whose background pixels are mixed
by the five selected pixels with the fractional abundance values 0.1149, 0.0741,
0.2003, 0.2055, and 0.4051, respectively.

Table 4 shows SRE and RMSE results on synthetic data 3 obtained by
different algorithms. It can be observed that MOSU has the best SREs
and RMSEs among the six algorithms. Fig. 6 grapes the abundance maps
obtained by SUnSAL, SUnSAL-TV, SMP, RSFoBa-Inf, RSFoBa-2, MOSU
and the truth with 30dB correlated noise. Each row of Fig. 6 are abundance
maps obtained by an algorithm, and each column corresponds to the results
of different algorithms for an endmember. We can see that the estimated
abundance maps obtained by SUnSAL, SMP, RSFoBa-Inf and RSFoBa-2
have more noise, especially in the abundance maps of endmember 5. By
comparison, the estimated results of SUnSAL-TV and MOSU are closer to
the truth. Although the unmixing results of SUnSAL-TV have less noise
than MOSU, more patches in its abundance maps are lost in endmember
1 and endmember 3. Overall, MOSU can obtain a relatively better results
compared with the others.
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Table 3: SRE and RMSE results for synthetic data 2 obtained by different algorithms.

SRE for Synthetic Data 2 obtained by different algorithms

SUnSAL SUnSAL-TV SMP RSFoBa-inf RSFoBa-2 MOSU

20dB

3 1.4935 4.7485 1.7569 1.7569 8.7495 9.1863
4 0.8008 3.8189 0.2944 -0.1087 1.2529 9.6566
5 1.0132 3.5134 0.5111 0.5111 0.6152 8.4236
6 1.4762 3.5906 1.2019 1.5000 1.9012 8.7361
7 0.9016 2.9262 1.6817 1.6817 1.4331 9.1976
8 0.8754 3.2240 2.8397 4.4345 2.1443 8.8730
9 0.7792 2.9297 0.1262 1.5539 2.8646 8.0299
10 1.3463 3.2135 0.8055 0.8055 2.2762 7.8837

30dB

3 4.5008 6.3980 3.8972 6.6002 3.2224 18.7641
4 4.2866 5.6305 1.4631 2.0494 4.1208 19.2000
5 3.5375 5.3574 2.0818 1.9945 3.9870 17.5236
6 3.8292 5.8552 2.6497 3.4193 2.6282 16.9777
7 3.4025 5.9792 2.6299 3.1775 3.1049 17.8688
8 3.5173 6.4997 5.1362 4.9291 5.9503 17.5240
9 2.7543 5.4745 1.4363 4.2383 4.1972 16.1698
10 3.4184 5.9015 1.9468 5.0523 4.2713 16.1400

40dB

3 10.6950 6.7210 9.0856 28.5543 3.3601 28.5543
4 9.4186 5.8792 2.6919 9.0453 25.9514 29.0152
5 8.2928 5.6425 4.4459 4.4549 5.8321 27.2800
6 7.9923 6.3070 4.8654 4.9972 5.8857 26.7131
7 7.8238 6.7670 5.0718 8.2771 9.6493 27.5575
8 7.9719 7.7274 5.0716 5.8663 5.8666 26.7139
9 7.0023 7.2006 2.5629 7.8910 9.2511 25.8656
10 7.5349 8.0748 2.7838 8.6649 8.6062 25.4837

RMSE for synthetic data 2 obtained by different algorithms

SUnSAL SUnSAL-TV SMP RSFoBa-inf RSFoBa-2 MOSU

20dB

3 0.2618 0.1899 0.2391 0.2391 0.1239 0.1193
4 0.2555 0.1933 0.2634 0.3239 0.2838 0.0979
5 0.2254 0.1768 0.2309 0.2309 0.2265 0.1035
6 0.1896 0.1525 0.1796 0.1731 0.1695 0.0864
7 0.1898 0.1548 0.1561 0.1561 0.1627 0.0776
8 0.1780 0.1350 0.1282 0.1090 0.1419 0.0799
9 0.1700 0.1352 0.1516 0.1333 0.1189 0.0803
10 0.1428 0.1168 0.1509 0.1509 0.1210 0.0762

30dB

3 0.1726 0.1342 0.1644 0.0966 0.1958 0.0394
4 0.1612 0.1340 0.2224 0.1961 0.1857 0.0324
5 0.1559 0.1248 0.1818 0.1821 0.1429 0.0360
6 0.1329 0.1036 0.1433 0.1236 0.1450 0.0329
7 0.1351 0.0988 0.1129 0.1207 0.1285 0.0283
8 0.1233 0.0852 0.0839 0.0897 0.0807 0.0294
9 0.1285 0.0928 0.1459 0.0883 0.0889 0.0308
10 0.1068 0.0803 0.1276 0.0757 0.0867 0.0290

40dB

3 0.0795 0.1131 0.0861 0.0128 0.1810 0.0128
4 0.0824 0.1160 0.1861 0.0526 0.0157 0.0104
5 0.0838 0.1082 0.1323 0.1323 0.1038 0.0117
6 0.0751 0.0859 0.1096 0.1105 0.0957 0.0107
7 0.0755 0.0778 0.0919 0.0612 0.0502 0.0093
8 0.0681 0.0633 0.0636 0.0755 0.0755 0.0101
9 0.0732 0.0636 0.1329 0.0491 0.0409 0.0101
10 0.0620 0.0522 0.1000 0.0425 0.0428 0.0099
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Fig. 5: Comparison of abundance maps on synthetic data 2 with 30dB correlated noise when the
endmember number is eight. From top row to bottom row are are the maps corresponding to endmembers
from 1 to 8. From left column to right column are abundance maps obtained by SUnSAL, SUnSAL-TV,
SMP, RSFoBa-Inf, RSFoBa-2, MOSU and the truth respectively.
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Fig. 6: Comparison of abundance maps on synthetic data 3 with 30dB correlated noise. From top row
to bottom row are abundance maps obtained by SUnSAL, SUnSAL-TV, SMP, RSFoBa-Inf, RSFoBa-2,
MOSU and the truth respectively. From left column to right column are the maps corresponding to
endmembers from 1 to 5.
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Table 4: SRE and RMSE results for synthetic data 3 obtained by different algorithms.

SRE for Synthetic Data 3 obtained by different algorithms

SNR SUnSAL SUnSAL-TV SMP RSFoBa-inf RSFoBa-2 MOSU

20dB 2.8740 6.1687 5.2260 5.5423 4.2532 9.2787

30dB 6.1289 10.4846 13.5314 12.6625 11.7148 16.7099

40dB 11.0483 20.8034 23.0685 22.8953 22.7590 26.4514

RMSE for Synthetic Data 3 obtained by different algorithms

SNR SUnSAL SUnSAL-TV SMP RSFoBa-inf RSFoBa-2 MOSU

20dB 0.1405 0.0845 0.1001 0.0952 0.1004 0.0798

30dB 0.0925 0.0463 0.0413 0.0439 0.0424 0.0334

40dB 0.0508 0.0179 0.0138 0.0140 0.0141 0.0108

4.6. Experiments with real data

Many real hyperspectral datasets have provided a realistic opportunity
to explore the methodology of hyperspectral data analysis. The well-known
AVIRIS Cuprite dataset with 224 spectral bands is used in this paper. A
hyperspectral image used here is a 204×151 subscene of the Cuprite dataset2

with 188 spectral bands collected in 1997, where some water absorption and
low SNR bands are removed. A Tricorder map3 produced by a USGS in
1995 is shown in Fig. 7 to further illustrate the image. The mineral distri-
bution maps of Alunite+Muscovite, Alunite, Hematite and Montmorillonite
produced by Tricorder software for the 204 × 151 AVIRIS Cuprite scene is
shown in Fig. 8. Tricorder map labels each pixel pure for one special materi-
al. But an abundance fraction is used to represent the degree of each mineral
presented in the pixel in the unmixing result for each pixel. Therefore, the
mineral map is only a qualitative assessment of the algorithm performance
and cannot be used as a direct comparison between algorithms. The spectral
library used here is different from that in synthetic experiments. The USGS
spectral library consists of 498 minerals with the above corresponding bands
removed.

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3http://speclab.cr.usgs.gov/PAPER/tetracorder
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Considering that there always exist a large number of materials in real
hyperspectral image, the Cuprite image is divided into several blocks to get
better performances. The block size for MOSU is set to 12. HySime is used
to estimate endmember number in the image dataset and the result is 14.
Considering the complexity in real-world images, we just take the HySime
result as a reference and set the whole endmember number larger than 14
to ensure little endmember missed. Thus, we set k in each block as 2, 3
and term the resulting algorithms as MOSU2, MOSU3, respectively. All the
five comparison methods used above are also discussed in this real dataset.
Abundance maps of the above four minerals (Alunite+Muscovite, Alunite,
Hematite and Montmorillonite) estimated by the seven algorithms are shown
in Fig. 9 and Fig. 10. We can see that the abundances estimated by MO-
SU2 are comparable or higher in the regions assigned to the corresponding
minerals, compared to the other considered algorithms. SMP and RSFoBa-2
cannot find the Alunite mineral. SUnSAL, SUnSAL and RSFoBa-Inf cannot
give the abundance of Alunite a good estimation. Only MOSU3 and MOSU2
give the Montmorillonite distribution clear descriptions. Generally, MOSU2
is slightly better than MOSU3, cause there exist less redundant endmembers
in it. Thus, it can be concluded that the proposed multi-objective optimiza-
tion based MOSU unmixing method is valid in real-world hyperspecral image
unmixing.

5. Conclusion

To solve the sparse unmixing problem, in this paper, a multi-objective
optimization based sparse unmixing algorithm (MOSU) for hyperspectral
image is proposed. MOSU transforms sparse unmixing to a bi-objective op-
timization problem. The reconstruction error and the sparsity of endmember
are the two objectives. In this case, the l0 norm based sparse unmixing can
be handled directly without relaxation. The proposed unmixing method is
inspired by a Pareto optimization based POSS method that can be used
to solve subset selection problems. We extend POSS to a population-based
algorithm to improve its computation efficiency and demonstrate the effec-
tivity theoretically. Experiments on the synthetic datasets and the real-world
dataset verify the good performance of MOSU. In conclusion, MOSU have
good performance in solving the sparse unmixing problem, and we will focus
on exploring more effective methods to solve this problem.
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Fig. 7: USGS map showing the location of different minerals in the Cuprite mining district in NV.

Fig. 8: The classification maps produced by the USGS Tricorder algorithm for the 204 × 151 AVIRIS
Cuprite scene.
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Fig. 9: From top row to bottom row are abundance maps estimated by SUnSAL, SUnSAL-TV, SMP on
the 204×151 subscene of the Cuprite dataset. From left column to right column are the maps corresponding
to Alunite+Muscovite, Alunite, Hematite and Montmorillonite, respectively.
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Fig. 10: From top row to bottom row are abundance maps estimated by RSFoBa-Inf, RSFoBa-2, MOSU3
and MOSU2 on the 204×151 subscene of the Cuprite dataset. From left column to right column are the
maps corresponding to Alunite+Muscovite, Alunite, Hematite and Montmorillonite, respectively.
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