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Abstract

Cloud detection is one of important tasks for remote sensing image processing. In this paper, a novel multi-level

cloud detection method based on deep learning is proposed for remote sensing images. Firstly, the simple linear

iterative clustering (SLIC) method is improved to segment the image into good quality superpixels. Then a deep

Convolutional Neural Network (CNN) with two branches is designed to extract the multi-scale features from each

superpixel and predict the superpixel as one of three classes including thick cloud, thin cloud and noncloud. Finally,

the predictions of all the superpixels in the image yield the cloud detection result. In the proposed cloud detection

framework, the improved SLIC method can obtain accurate cloud boundaries by optimizing initial cluster centers,

designing dynamic distance measure and expanding search space. Moreover, different from traditional cloud detection

methods which cannot achieve multi-level detection of cloud, the designed deep CNN model can not only detect cloud

but also distinguish thin cloud from thick cloud. Experimental results indicate that the proposed method can detect

cloud with higher accuracy and robustness than compared methods.

Index Terms

Cloud detection, superpixel, deep learning, Convolutional Neural Network, remote sensing images.

I. INTRODUCTION

WITH the rapid development of remote sensing technology, remote sensing images are widely applied to

various fields such as military target recognition, environment monitoring, meteorology, mineral development and

geographical mapping. However, 50 percent of the Earth’s surface is covered by cloud at any time [1]. Cloud often

appears and covers objects on the surface in remote sensing images, which makes much difficulty to many image

analysis tasks and causes inaccurate analysis results [2] [3]. Hence, detecting and removing cloud regions are highly

necessary to improve the availability of remote sensing images.

Many cloud detection methods have been proposed. These methods can be roughly classified into two main

categories: threshold based ones and machine learning based ones. They extract a variety of manual features pixel

by pixel, followed by setting a threshold or learning a binary classifier to determine whether this pixel belongs

to cloud area or not. Cihlar and Howarth [4] used the value of the temporal normalized difference vegetation
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index (NDVI) profile to detect cloud-contaminated pixels and optionally replaced these with interpolated values in

NOAA/AVHRR images. Girolamo and Davies [5] used a two-step direct threshold technique to separate clear and

cloudy pixels in degraded AVIRIS data. Jedlovec et al. [6] used bispectral composite threshold (BCT) technique with

the 20-day composites of two channels imagery for cloud detection. The threshold methods have rapid computing

speed, but the structure and texture of cloud are neglected and the detection results rely on the sensors. Machine

learning methods with more robustness gain popularity. In [7], Hégarat-Mascle and André detected cloud by using

the Markov Random Field (MRF) framework to formalize the physical properties of cloud. Rossi et al. [8] extracted

the features of cloud by using Singular Value Decomposition (SVD) and identified the cloud cover by Support Vector

Machine (SVM) in Quickbird images. Li et al. [9] trained a SVM classifier using the brightness and texture features

to detect cloud. Yuan and Hu [10] proposed a cloud detection method based on object classification using image

features extracted by bag-of-words model. Zhang and Xiao [11] developed a progressive refinement scheme based

on the color properties derived from observations and statistical results to extract cloud regions from color aerial

photographs. An and Shi [12] proposed an supervised approach based on the scene-learning scheme and designed a

cloud detector to detect cloud on the whole image scenes. Generally, machine learning methods yield more accurate

cloud detection results than threshold ones.

In remote sensing images, ground objects are diverse and the thickness and forms of cloud are varied, and

there are many easily confusing objects such as white buildings, planes and snow. Therefore, cloud detection in

remote sensing images is quite challenging. Although many works have been developed for cloud detection, most

of existing methods cannot work well on thin cloud. Thin cloud is semi-transparent and the contrast between cloud

and background is weak, hence it is easily missed. In addition, the multi-level cloud detection cannot be achieved by

existing methods. The detected cloud region can be removed through image reconstruction/restoration technology

[13]. Generally, the thick cloud regions are reconstructed by a sequence of temporal optical images and the thin

cloud are removed through image enhancement techniques like Retinex [14]. Therefore, the removal schemes for

them are very different. However, the existing cloud detection methods cannot distinguish thin cloud from thick

cloud, which is important for automatic cloud removal and other image analysis tasks.

Deep learning methods can mine high level features and have improved effectiveness of many computer vision

tasks. In this paper, a novel cloud detection method based on deep learning is proposed for remote sensing images.

Simple linear iterative clustering (SLIC) method is firstly improved to segment the image into superpixels with

accurate image boundaries. Then a deep Convolutional Neural Network (CNN) with two branches is designed to

predict these superpixels as thick cloud, thin cloud or noncloud. And the predictions of all the superpixels in the

image yield the final cloud detection result.

In summary, the proposed method has the following three main contributions.

1) A multi-level cloud detection framework is proposed. The proposed framework combines superpixel method

with deep learning to detect cloud and distinguish thin cloud from thick cloud.

2) SLIC algorithm is improved through optimizing initial cluster centers, designing dynamic distance measure

and expanding search space. With the improved SLIC algorithm, accuracy cloud boundaries are obtained.

3) A new CNN architecture with two branches is designed, which can extract multiscale features and detect thick
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cloud and thin cloud effectively even in complex circumstance.

The remainder of the paper is organized as follows. Section II describes the superpixel segmentation. In section

III, cloud detection using the designed deep CNN is introduced. Section IV presents and analyzes experimental

results. Finally, Section V gives the conclusion.

II. SUPERPIXEL SEGMENTATION

Superpixel algorithms [15] group pixels into perceptually meaningful atomic regions, which can be used to

replace the rigid structure of the pixel grid and greatly reduce the complexity of subsequent image processing tasks

such as depth estimation [16], segmentation [17], body model estimation [18] and object localization [19]. In this

paper, the image is segmented into superpixels which are used as basic units to detect cloud. As a widely-used

superpixel method, SLIC algorithm [15] can output good quality superpixels that are compact and roughly equally

sized. However, because SLIC obtains initial cluster centers through dividing the image into several equal-size grids

and its search space is limited to a local region, the produced superpixels cannot adhere to weak cloud boundaries

well and the smooth thick cloud region will be over segmented. In this paper, SLIC algorithm is improved from

three aspects: optimizing initial cluster centers, designing dynamic distance measure and expanding search space.

By using the improved SLIC method, better quality superpixels can be generated for remote sensing images.

A. Color Space Transformation

The color of cloud is white and bright, with high intensity and low saturation. Same to [11] [12], the color space

transformation to Hue, Saturation, Intensity (HSI) [20], [21] color model is firstly performed. For one pixel, the

transformation from RGB to HSI color model is defined as:

H =

θ, B ≤ G

360− θ, B > G

(1)

S = 1− 3×min(R,G,B)

R+G+B
(2)

I =
R+G+B

3
(3)

θ = cos−1

{
[(R−G) + (R−B)]/2√

(R−G)2 + (R−B)(G−B)

}
(4)

where R, G, B are the values of red, green and blue channels of input image, and H , S, I are the values of hue,

saturation and intensity components in HSI space, respectively. Fig. 1 shows HSI color space of an example image.

It can be seen that the cloud region is salient in S and I components . Therefore, S and I components are used in

our improved superpixel method.
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Fig. 1. HSI color space of an image. (a) Original RGB color image. (b) Hue component image. (c) Saturation component image. (d) Intensity

component image.

Fig. 2. An instance of initial cluster center generation. (a) Original RGB image. (b) The transformed image with S and I channels. (c) Subregions

obtained by GS04. (d) Initial cluster centers. (e) Final superpixel result.

B. Initial Cluster center Optimization

SLIC obtains initial cluster centers by using equal-size grids, which does not take account of image content.

In [22], a graph based superpixel approach GS04 was developed, which can generate big superpixels in smooth

regions and small superpixels in complex texture regions, but their shapes are very irregular. In this paper, we used

GS04 method to generate initial cluster centers.

We define the dissimilarity measure between the ith and jth pixels as:

ω(pi, pj) =
√
(Si − Sj)2 + (Ii − Ij)2 (5)

where pi is the ith pixel, S and I are two values of saturation and intensity components in HSI space.

In the initial graph, each pixel denotes a component. Let Int(C) be the internal difference of component C, and

Dif(C1, C2) be the difference between two neighboring components C1 and C2:

Int(C) = max
pi∈C,pj∈C

ω(pi, pj) (6)

Dif(C1, C2) = min
pi∈C1,pj∈C2

ω(pi, pj) (7)

According to [22], the pairwise comparison predicate D(C1, C2) is defined as:

D(C1, C2) =

true Dif(C1, C2) > MInt(C1, C2)

false otherwise

(8)

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (9)
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where τ(C) = k/|C| is the threshold function, |C| denotes the size of C, and k is a constant parameter, in this

paper, k = 50.

The merge process is started with the initial graph. Then final subregions are gradually produced by using the

region comparison predicate D(C1, C2) to merging similar components in loop steps.

Fig. 2 is an instance of initial cluster center generation, where Fig. 2(c) is subregions generated by carrying out

GS04 method on the image in HSI space. It can be seen that these produced subregions adhere well to image

boundaries, but their sizes and shapes are very irregular. We filter out small subregions with a threshold 500, and

geometric center pixels of the remained subregions are taken as initial cluster centers, see the red dots in Fig. 2(d).

It can be seen that initial cluster centers are sparse in smooth cloud region and dense in background region with

complex texture.

C. Iterative Clustering

Next, iteration clustering is carried out in the 4-dimensional space [S, I, x, y]
T , where [S, I]

T are the values of

saturation and intensity components in HSI space and [X,Y ]
T are the position coordinates of a pixel.

In the assignment step, each pixel pi is associated with the nearest cluster center through comparing it with all

cluster centers by using distance measure D which will be discussed in Section II.D. In [15], the search for the

nearest cluster center is limited to a local region in order to speed up the algorithm, which constrains the flexibility

of superpixels in boundary and size. Therefore we search the entire image to determine the nearest cluster center

for the clustering pixel in this paper.

Once each pixel has been associated to the nearest cluster center, an update step will adjust the cluster centers to

be the mean [S, I, x, y]
T vector of all pixels belonging to the cluster. The L2 norm is used to compute a residual

error E between the new cluster center locations and previous cluster center locations. The assignment and update

steps will be repeated iteratively until the error converges.

D. Distance Measure Design

Generally, a weighted distance measure combining color and spatial proximity is needed in superpixel segmen-

tation. In this paper, the distance measure between the ith pixel and the jth cluster center cj is defined as:

D = DC +
α

Size
DS (10)

DC =
√
(Si − Scj )

2 + (Ii − Icj )
2 (11)

DS =
√
(xi − xcj )

2 + (yi − ycj )
2 (12)

where α is a constant parameter, Size is the area of the jth cluster in current loop.

The parameter α is used to control the relative importance between color similarity and spatial proximity. A

bigger α gives more relative importance to spatial distance than color proximity, which can generate more compact

superpixels. When α is small, the resulting superpixels will adhere more tightly to image boundaries, but have less

regular shape. In this paper, α is set to 8000. As for parameter Size, different from original SLIC [15] in which
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Size is a constant parameter, Size is changed with iterative clustering and used for adjusting the influence of the

spatial distance DS on the clustering pixel when searching for nearest distance center. When the compared cluster

center belongs to a large cluster region, Size can weaken the influence of DS , which can ensure that the pixel

far from its cluster center is segmented into the correct cluster, and avoid small superpixels in large homogenous

regions (over-segmentation). And when the compared cluster center belongs to a small cluster region, the influence

of DS is enhanced, which can reduce the probability of big superpixels occurring in complex texture regions (under-

segmentation). Therefore the designed distance measure can dynamically balance the relative importance between

color proximity and spatial proximity in each iteration to generate good quality superpixels.

Fig. 3. The flowchart of our improved SLIC.

Fig. 4. The architecture of our designed CNN.

Fig. 3 is the flowchart of our superpixel method. The initial cluster centers are firstly obtained through GS04

method using S and I component values of HSI color space, and then the assignment and update steps are repeated

iteratively in the 4-dimensional space [S, I, x, y]
T using the designed dynamic distance measure D to generate the

final superpixels. Fig. 2 (e) is the superpixel segmentation result generated from Fig. 2 (a) by our method. It can

be seen that the resulting superpixes are compact and adhere to cloud boundaries very well.

III. CLOUD DETECTION

As a deep learning method, CNN have improved the performance dramatically for a wide range of computer

vision tasks such as image classification [23], saliency detection [24], object detection [25] and super-resolution

[26]. In [23], a single-branch CNN is designed for image classification, which cannot extract multi-scale features

of interesting objects. In [24], a double-branch CNN is employed to model saliency of objects in images, which
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only solve binary classification problem and cannot be used for multi-level cloud detection. In this paper, a deep

CNN with two branches is designed to mine multi-scale features to classify superpixels (image patches) as one of

three classes including thick cloud, thin cloud and noncloud.

A. Designed CNN Architecture

As shown in Fig. 4, the overall architecture of the designed CNN contains two branches with four convolutional

layers and one fully-connected layer, and two branches are followed by two fully-connected layers. For convolutional

layers, the size of the feature map is defined as width× height× depth, where the first two dimensions describe

the spatial size and the depth defines the number of channels. Consider CONV# as a convolutional layer, LRN#

as a local response normalization, MAXP# as a max pooling layer, ReLU# as a nonlinear rectified linear unit

function [27], FC# as a fully connected layer, DropOut# as a dropout layer [28]. The structure of the network

can be described concisely by the sizes of feature maps at each layer. Both branches have the same structure, which

can be described as:

CONV 1(55× 55× 48) → LRN1 → MAXP1 →

CONV 2(27× 27× 64) → RELU2 → LRN2 →

MAXP2 → CONV 3(13× 13× 128) →

CONV 4(6× 6× 256) → MAXP4 →

FC5(128) → RELU5 → DropOut5

In the two branches, the size of filters is 5 × 5 in CONV1 and CONV2 and 3 × 3 in CONV3 and CONV4,

and the max pooling layers perform max pooling over 3× 3 spatial neighborhoods with a stride of 2 pixels on the

output of the convolution layers.

The two branches are followed by two fully-connected layers. In this paper, the output of the last fully-connected

layer indicate the probabilities of the input patch which belongs to cloud, thin cloud and noncloud respectively. It

means that the unit number of the output layer is 3. Therefore, the structure of the last two layers can be described

as:

FC6(256) → RELU6 → DropOut6 → FC7(3).

B. Training and Detection

In the training stage, a couple of patches with size of 55× 55 and 111× 111 centered at each trained pixel are

extracted and their 3-channel RGB values are inputted into the designed CNN, where the small patch is for the first

branch and the big one, resized to 55 × 55 before inputted into the CNN, is for the second branch. Through the

two branches of the designed CNN, the high-level features are extracted at two scales. Through training, a CNN

classifier with three class predictions is generated for cloud detection.

In this paper, the weights in each layer were initialized from a zero-mean Gaussian distribution with standard

deviation 0.01 and the neuron biases in the second and fourth convolutional layers as well as in the fully-connected

hidden layers were initialized with the constant 0.1. We used stochastic gradient descent (SGD) with a minibatch
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Fig. 5. The processing chain of cloud detection in the proposed framework.

size of 256. The weight decay and momentum were set to 0.0001 and 0.9, respectively. The learning rate started

from 0.03 and was divided by 10 when the error plateaus, and the models were trained for up to 50×800 iterations.

In the detection stage, superpixels are firstly obtained from the testing image using the improved superpixel

method described in section II. For each superpixel, a couple of image patches (55× 55 and 111× 111) centered

at its geometric center pixel are extracted and inputted into the trained CNN model, and thus the class of the

superpixel is predicted. Merging the predictions of all superpixels in the testing image, the final cloud detection

result is obtained. The procedure of cloud detection is illustrated in Fig. 5.

IV. EXPEREMENT RESULTS

The proposed algorithm is implemented by using C++ on the PC with Intel CPU i7-4790k at 4 GHz and IGABYTE

GV-N970WF3OC-4GD GPU, and the designed deep network is implemented through the software library Caffe

[29]. A total of 81 experimental images with sizes ranging from 500 × 400 to 800 × 600 are obtained from the

satellite Quickbird (http://glcf.umd.edu/data/quickbird/) with the spatial resolution about 2.44-2.88m, Flickr.com and

the Google map. Of these experimental images, 38 images are used for training and 43 for test. The ground truth of

these images are obtained manually. Centering at each pixel in training images, we extract a couple of patches with

size of 55× 55 and 111× 111 respectively. In this way, 204,000 couples of patches are obtained from the training

set, where the number of cloud, thin cloud and noncloud patches are 26,000, 22,000, and 156,000 respectively.

For a testing image, superpixels are firstly obtained by the improved superpixel method, and a couple of image

patches are then extracted from each superpixel and inputted into the trained CNN model to predict the class of
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this superpixel, and the final cloud detection result of the testing image is achieved by using the predictions of all

its superpixels.

Fig. 6. Superpixel segmentation instance. (a) Original image. (b) GS04 [22]. (c) SLIC [15]. (d) Our improved SLIC.

Fig. 7. Cloud detection results for the two images in Fig. 6 using different superpixel methods. (a) Original image. (b) GS04 [22]. (c) SLIC

[15]. (d) Our improved SLIC.
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A. Effectiveness of Improved Superpixel Method

In the proposed cloud detection framework, SLIC method is used to cluster the image into small subregions,

which is improved through optimizing initial cluster centers, designing dynamic distance measure and expanding

search space. In order to verify the effectiveness of the improved SLIC method, we compare it with SLIC [15] and

GS04 [22].

Fig. 6 shows two superpixel segmentation instances, where the cloud is thick and smooth in the first row, and

thin and unsmooth in the second row. It can be seen that SLIC and our improved method can obtain more compact

and regular superpixels than GS04 method. While compared with SLIC, since our designed distance measure can

dynamically adjust the relative importance between color proximity and spatial proximity in each iteration and the

search of the nearest cluster center is in the entire image, our superpixel method can not only avoid over-segmentation

in large homogenous regions but also suppress noise superpixels.

We use cloud detection results to evaluate the three superpixel methods. Fig. 7 shows the cloud detection results

for the two images in Fig. 6 using the same single branch CNN structure with 55× 55 input (see the first branch

of Fig. 4) combined with different superpixel methods, where the red line represents ground truth and the blue line

is the cloud detection result. It is obvious that all methods can detect the most of the cloud. However, for the weak

cloud boundaries and isolated cloud regions, our improved superpixel method can achieve more accurate results,

see the yellow boxes in Fig. 7, because our method can obtain suitable initial cluster centers in thin cloud region

and the size of the superpixel can adaptively change with image content and the produced superpixels are more

easy to adhere to weak cloud boundaries.

Two metrics precision and recall are used to evaluate the performance of cloud detection using different

superpixel methods, which are defined as follows:

precision =
CP

DP
(13)

recall =
CP

GN
(14)

where CP is the number of pixels correctly detected as cloud, DP is the number of pixels detected as cloud,

and GN is the number of cloud pixels in ground truth. A better cloud detection method has higher precision and

recall. By using 43 test images, we calculate the average precision and recall for different superpixel methods.

Table I shows statistical results, where Precision c and Recall c are results of thick cloud, Precision t and

Recall t represent results of thin cloud, and Precision and Recall are for the entire cloud region (including thick

cloud and thin cloud). Obviously, our improved superpixel method has better precision and recall values than

compared methods.

B. Performance of Different CNN Architectures

In this paper, a double-branch CNN is designed to detect thick cloud and thin cloud, which can mine the features

of cloud at two scales. We compare our double-branch CNN with three single-branch CNNs including Alexnet [23]

and our two single-branch CNNs with 55 × 55 input(the first branch in Fig. 4) and 111 × 111 input(the second
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TABLE I

STATISTICS OF DIFFERENT SUPERPIXEL METHODS

Methods Precision c Recall c Precision t Recall t Precision Recall

GS04 0.8972 0.8230 0.4039 0.4516 0.8895 0.8567

SLIC 0.8610 0.8470 0.4887 0.5195 0.8944 0.9052

Proposed 0.8759 0.8947 0.5547 0.6141 0.8945 0.9356

TABLE II

STATISTICS OF DIFFERENT CNNS

Methods Precision c Recall c Precision t Recall t Precision Recall

AlexNet 0.8393 0.8956 0.5262 0.4168 0.8978 0.8893

Our CNN(55) 0.8759 0.8947 0.5547 0.6141 0.8945 0.9356

Our CNN (111) 0.8733 0.8571 0.5111 0.5828 0.9005 0.9185

Our CNN (55 and 111) 0.9026 0.9253 0.6379 0.6672 0.9039 0.9454

TABLE III

DETECTION PERFORMANCE OF DIFFERENT METHODS FOR THICK CLOUD AND THIN CLOUD

Methods Recall c Recall t

K-means 0.8753 0.2161

Mean-shift 0.8836 0.2478

Chan-Vese 0.8861 0.3474

Method of [11] 0.9091 0.3559

Method of [12] 0.8981 0.4725

Original method of [24] 0.8820 0.5632

Improved method of [24] 0.9774 0.8117

Proposed method 0.9780 0.8467

branch in Fig. 4) respectively. Table II is statistical results for different CNN architectures combined with our

superpixel method on the test set. It can be seen that our double-branch CNN has the best metric values whatever

for thick cloud, thin cloud or entire cloud. Therefore, our double-branch CNN has more effective cloud detection

results compared with three single-branch CNNs.

C. Comparison with Other Cloud Detection Methods

In this paper, the image is firstly segmented into superpixels using our improved SLIC method, and the classes

of these superpixels are then predicted using the designed CNN model to obtain the cloud detection result. The



12

TABLE IV

STATISTICS OF DIFFERENT CLOUD DETECTION METHODS

Methods RR ER FAR RER

K-means 0.6924 0.0862 0.0165 8.0279

Mean-shift 0.7087 0.0869 0.0212 8.1578

Chan-Vese 0.7388 0.0900 0.0254 8.2075

Method of [11] 0.7568 0.0623 0.0135 12.1415

Method of [12] 0.7787 0.0613 0.0165 12.4978

Original method of [24] 0.8032 0.0796 0.0199 10.0873

Improved method of [24] 0.9322 0.0396 0.0221 23.5285

Proposed method 0.9454 0.0330 0.0189 28.6067

Fig. 8. Visual comparisons of different cloud detection methods. (a) Original image. (b) Ground truth. (c) K-means. (d) Mean-shift. (e)Chan-Vese.

(f) Method of [11]. (g) Method of [12]. (h) Original method of [24]. (i) Improved method of [24]. (j) Our proposed framework.

proposed framework can detect two-level cloud including thick cloud and thin cloud at the same time. We compare

our cloud detection framework with K-means [30], Mean-shift [31], Chan-Vese [32], [33] and two cloud detection

methods in [11] and [12].

In [24], a double-branch CNN is used to model saliency of objects in images. The input of the upper branch is
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a superpixel-centered large context window including the full image to extract the global context features, and the

lower branch focuses on a local context to refine the prediction. In this paper, the method of [24] is also compared.

In addition, in order to verified the effectiveness of the CNN architecture of [24] for cloud detection, we improved

the method of [24] by replacing the inputs of the two branches using our image patches with the size of 111× 111

and 55× 55 respectively, and the results is given.

Fig. 8 shows some example results using different cloud detection methods, where Fig. 8(b) is ground truth (white

region represents thick cloud and gray region is thin cloud). Because these compared methods cannot differentiate

thin cloud from thick cloud, results by them only have white regions which denote the detected entire cloud. The

first row in Fig. 8 is a simple case. The cloud is thick and the contrast between cloud and background is strong,

and all methods can obtain satisfactory detection result. From the second row to the last row, tested images are

complex, in which there are bright background, snow (see the forth row), thin and even semitransparent cloud. For

these complex situations, the last two methods based on CNN have better detection results.

In order to evaluate the detection performance of these methods for thick cloud and thin cloud, recall values are

calculated on the 43 test images for thick cloud and thin cloud respectively. Statistic results are given in Table III.

Because the compared methods cannot distinguish thin cloud from thick cloud, the metric precision is not given

here. The seventh row is the statistic results of the method of [24], as can be seen that the CNN based method has

obvious superiority in thin cloud than the five non-CNN based methods. And when we replace the original inputs

of the CNN using our multi-scale image patches, the detection results are improved greatly for both thick cloud

and thin cloud, see the eighth row, which means that our multi-scale features are more effective for cloud detection

than the multi-context features of [24]. However, the improved method of [24] still can not distinguish thin cloud

from thick cloud. On the contrary, our method with highest recall values can distinguish thin cloud from thick

cloud. Therefore, our method is superior to the compared methods.

We evaluate the algorithm performance for the entire cloud detection. Here, four metrics are used including the

right rate (RR), error rate (ER), false alarm rate (FAR), and ratio of RR to ER (RER). RR is the same with

metric recall, and other three metrics are defined as:

ER =
CN +NC

TN
(15)

FAR =
NC

GN
(16)

RER =
RR

ER
(17)

where CN is the number of cloud pixels detected as noncloud pixels, NC is the number of noncloud pixels detected

as cloud pixels, TN is the total number of pixels in the input image, and GN is the number of cloud pixels in

ground truth.

A good cloud detection method has high values of RR and RER and low values of ER and FAR. Table IV

presents the average values of four metrics for the 43 test images. It can be seen that our method has the best values

in RR, ER and RER except for FAR. Especially RER metric, our method is higher at least 5.1 than compared
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TABLE V

RUNTIME STATISTICS OF CLOUD DETECTION UNDER DIFFERENT SITUATIONS ON TEST SET

Situations Superpixel segmentation(s) CNN prediction(s) Total time(s)

Situation 1 0 474 474

Situation 2 4.62 5.26 9.88

Situation 3 4.62 0.26 4.88

methods. Considering our method has the best detection accuracy and can achieve multi-level detection of cloud,

our method outperforms other compared methods greatly.

D. Time Complexity

In this paper, a two-branch CNN is combined with superpixel method to detect cloud. The size of feature maps in

the designed CNN is small, which reduces the computation complexity. In addition, more runtime is saved through

predicting the class of the superpixels to achieve the final cloud detection result. In [24], a two-branch CNN is used

to model saliency of objects in images, which has more layers and bigger maps than our proposed CNN architecture.

In [12], each pixel is predicted to detect cloud, which is time-consuming. Table V illustrates the runtime for three

situations on the 43 test images, including:

Situation 1: remove superpixel step from our framework, and predict each pixel in the image to obtain the final

cloud detection result.

Situation 2: combine the CNN of [24] with our proposed superpixel method to detect cloud.

Situation 3: our final cloud detection framework.

It can be seen from Table V that our final detection framework has the fastest speed with 4.83 seconds per image.

Therefore, through superpixel preprocessing and size reduction of feature maps of the CNN, the runtime is saved

greatly.

V. CONCLUSION

Cloud often appears and covers the objects on the surface in remote sensing images, which will make much

difficulty to target detection, object recognition and other tasks. Usually, the treatment for thin cloud is different

from thick cloud in some image analysis tasks, such as cloud removal and target detection. Therefore it is useful

to distinguish thin cloud from thick cloud in cloud detection. However, the multi-level detection of cloud is still

not addressed in spite of the fact that many cloud detection methods have been proposed. In this paper, a novel

multi-level cloud detection method based on deep CNN is proposed for remote sensing images. The image is firstly

segmented into superpixels using the improved SLIC method. A couple of image patches are then extracted from

each superpixel and inputted to the designed deep CNN to predict the class of this superpixel as thick cloud,

thin cloud or noncloud. For an image, the final cloud detection result is obtained using the predictions of all

its superpixels. In the proposed cloud detection framework, SLIC method is improved through optimizing initial
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cluster centers, designing dynamic distance measure and expanding search space, which can obtain accurate cloud

boundaries. Moreover, the CNN with two branches is designed to extract multi-scale features which can detect thick

cloud and thin cloud effectively even in complex circumstance. Qualitative and quantitative analysis are implemented

in experiment stage. Experimental results demonstrate that our proposed framework can achieve multi-level cloud

detection, and the result is more accurate and robust than compared methods.
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