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Abstract—Traditional airport detection methods usually uti-
lize geometric characteristics to locate targets, but theyare
not suitable for low-resolution remote sensing images. Taking
both low and high resolution into account, we present a novel
hierarchical reinforcement learning (HRL) saliency model to
detect airport target. Different from conventional saliency models
focusing on nature images, our HRL model is more effective
for multi-resolution remote sensing images. According to airport
characteristic, we design a reinforcement learning structure to
suppress background and highlight interesting airport regions
level by level. To generate a final saliency map, we fuse bottom-
up region features with top-down line feature based on target
attribute, which can restrain other salient regions except for
airports. Moreover, a learning stop criterion based on Latent
Dirichlet Allocation (LDA) topic model is proposed at each level
to judge the state of saliency detection, thus learning process
can be adaptively controlled. Besides, a back-level propagation
mechanism is employed to reinforce airport target between levels.
HRL saliency model can take the advantage of hierarchical
structure to quickly locate interest regions in remote sensing
images with large cover area. Furthermore, HRL is robust
for illumination and resolution variety. Extensive experimental
results on a remote sensing dataset containing 730 images of
40 different airports demonstrate that the proposed HRL model
outperforms 18 state-of-the-art saliency models in terms of two
popular evaluation measures. Besides, it has significantlyhigher
detection rate than other 6 airport detection methods.

Index Terms—airport detection, multi-resolution , hierarchical
reinforcement learning, LDA topic model, back-level propagation
mechanism.

I. I NTRODUCTION

W ITH the increasingly development of sensor technol-
ogy, the application area of remote sensing images is

more and more abroad, such as scene classification ([1], [2]),
semantic annotation [3], target detection [4]. And automatic
airport detection technology plays an important role in target
detection, attracting more and more attention in military and
civil application, such as precision guidance, aerial recon-
naissance, security monitoring. Because airports are usually
located on cluttered ground surroundings including buildings,
mountains, rivers or vegetation, accurate airport detection
becomes a challenging problem under the influence of various
disturbance factors.

Most of existing airport detection methods usually adopt
geometrical characteristics of airport such as straight orpar-
allel line feature aiming at high-resolution images. Liu et
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al. [5] searched for elongated rectangles in the image, then
considered these detected rectangles as runways. Zhu et al.
[6] applied long straight line as airport top-down feature and
the method in [7] used parallel information to determine the
interest regions. However, these methods could be hardly used
to locate airport regions in low-resolution images because
linear feature of airport has some problems such as zigzag
broken or parallel lines overlap by the resolution restriction.
Tao et al. [8] proposed an improved SIFT matching strategy
to detect regions of interest (ROIs), being followed by a
SVM classifier to refine detection result. But searching and
matching in the whole image, can undoubtedly cause extensive
computation.

In recent years, various saliency models were put forward
to detect targets, which are most designed for nature images.
Traditional saliency models ([9], [10]) are based on the
biological vision mechanism, such as Itti model [9], which
calculates global or local center-surround feature differences
to determine saliency maps. But it is very hard to suppress
complicated backgrounds. Perazzi [11] (SF model) and Cheng
[12] (GC model) choose element uniqueness and its distribu-
tion as features to generate saliency map. SF model [11] treats
superpixel as basic element to perform the operation, while
GC model in [12] uses Gaussian Mixture Models (GMM)
to decompose an image to get basic elements. Besides that,
there are some saliency models using frequency character-
istics. The prominent superiority of these methods is their
easy operability. Hou and Zhang [13] (SR model) extract
the spectral residual of an image in the spectral domain, and
obtain saliency map by inverse transform of spectral residual.
DSR model [14] computes dense and sparse reconstruction
errors putting the boundary pixels as background according
to the pre-knowledge hypothesis that most of targets usually
appear in the center of an image while surrounding outer
boundary are the background regions. While Yang et al.
[15] (GBMR model) combines background and foreground
queries to generate saliency map by using the background
prior information. GBMR can effectively resolve the problem
that targets appear on the edge of an image by computing
four independent saliency maps in four side areas. The above-
mentioned saliency models have good performance for natural
images, which can quickly locate target regions. So, saliency
models are introduced to airport detection in RSIs with mass
data, which can greatly reduce searching time. But these mod-
els cannot get the same accuracy for remote sensing images
(RSIs), due to the significant differences between RSIs and
natural images in the aspect of resolution, texture, structure,
and illumination intensity. The natural image datasets applied
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to saliency detection are most close shot photography. These
images usually have high contrast, bright color, clear outline
and simple texture. Therefore, edge detection, differences
about color and texture can be used to detect salient regions,
which makes most saliency detection models work well. But
for RSIs, especially for low-resolution RSIs, there are no
obvious boundary between airport target and background, and
texture contrast is not obvious either. Moreover, different
airport targets have different texture features and structure
information. Due to the differences, existing saliency models
designed for natural images cannot be used directly in RSIs.
This is because edge and texture features are ineffective to
detect airport in low-resolution RSIs, it is difficult to get
accurate detection result.

Therefore the general structure that airport detection meth-
ods based on saliency model is designed to be a saliency detec-
tor followed by a classifier aiming at high-resolution RSIs.The
saliency detectors either employ the existing saliency model
or make a slight change on it. Just as those methods proposed
in [16], [17] and [6], they apply saliency model to extract
ROIs containing an airport, and then use a classifier to refine
these regions until airport was detected. [16] and [6] use the
GBVS saliency model [18] to detect ROIs , which views maps
as a graph model, using Markovian algorithm to search key
locations. And Yao et al.[17] employs the FT saliency model
proposed in [19], which chooses a band pass filter to eliminate
noises and backgrounds and retain salient regions. Thus,
unsupervised model becomes supervised through refinement
process, which increases the training samples and complexity
of algorithm undoubtedly. But it is difficult to acquire high-
resolution images in many aviation reconnaissance missions.
Therefore, the problem of how to fast accurately detect airports
in low-resolution RSIs becomes urgent, which we should settle
in practical engineering application.

To solve above problems, this paper proposes a new hierar-
chical reinforcement learning saliency model to detect airport
target in terms of airport imaging characteristic. HRL model
not only can accurately detect airport region in low-resolution
RSIs which includes many similar structures and textures,
but also can fast locate airport target in high-resolution RSIs
with massive data and wide field of view. So, the adaptive
ability for multi-resolution images is conspicuous superiority
of our model. Furthermore, Latent Dirichlet Allocation (LDA)
[20] model is embedded into our saliency model rather than
following behind saliency detection. Thus, our saliency model
can efficiently detect certain type of salient target depending
on the particular task demands.

The main contributions of our approach are summarized in
three aspects below:

(1). We propose a novel hierarchical reinforcement learning
structure which can selectively approximate airports arealevel
by level by a back-level propagation mechanism of saliency
map. It is helpful to better suppress complex background and
other salient targets and highlight airport region at the same
time.

(2). We build a saliency detection model which fuses
bottom-up lower-features map with top-down object-based
feature map. Thus, airports region can be highlighted well;

meanwhile, other salient targets and background are all ef-
fectively suppressed. That is to say, special advantage of our
model is that it can only detect airport target rather than all
salient targets in RSIs compared with other saliency models.

(3). We design a judgment strategy to autonomously deter-
mine the number of learning level and the time of learning stop
applying LDA topic model. It can intelligently control learn-
ing processing by identifying the similarity between saliency
regions and training airport target features in each level.

II. HRL SALIENCY MODEL

HRL saliency model consists of hierarchical learning pro-
cess and learning stop judgment. As for the learning part, we
fuse the bottom-up latent feature with top-down object-based
feature to highlight airport target. And we reinforce these
conspicuous regions and suppress background by hierarchical
learning structure. For estimating learning processing, we
design an adaptive learning stop criteria using LDA topic
model which are trained in advance. Fig. 1 shows the flowchart
of our HRL saliency model.

A. Reinforcement learning saliency model

For each level of HRL saliency model, as shown in Fig.
1(a), by bottom-up and top-down saliency detection and fea-
ture fusion, we get a saliency map of corresponding level.
Through back-level propagation mechanism among levels, as
shown in Fig. 1(b), the saliency difference between target and
background is reinforced. Specific implementation detailsare
as follows.

1) Bottom-up saliency map: a) Superpixel clustering
For capturing the structural information of an image and

reducing computational complexity, we first cluster all pixels
into different regions to form superpixels using the simple
linear iterative clustering (SLIC) algorithm [21]. According to
color features and space distance constraints, similar pixels are
partitioned into the same superpixel region which has obvious
consistency in structure. So, superpixel segmentation is more
conducive to highlight the structural information of the image
than in pixels.

Given the input imageI, we use SLIC to segment it intom
superpixels (regions), getting the global feature setP as

P = {p1,p2, · · ·,pm}. (1)

In Eq. (1),pi represents feature vector of regioni. In this
paper, we select the color features in CIELab color space as
the feature vector because of the physical characteristicsbased
on CIELab which is provided with the wide color gamut and
rich chroma. The feature vector of each region is defined as
average color feature of pixels it consists in each color channel
in CIELab space. That is, for the regioni, feature vectorpi

can be described as

pi = (l̄i, āi, b̄i), (2)

where l̄i, āi, b̄i represent the average color of all pixels in
region i of L, A, B color channel respectively.

b) Background pre-knowledge
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(a) Reinforcement learning saliency model

(b) Hierarchical reinforcement learning saliency model

Fig. 1. Flowchart of HRL saliency model.

As we known, RSIs usually contain complicated back-
ground such as sea, forest and land in one image. In these
situations, it is difficult to guarantee airport target as salient
regions according to human visual attention mechanism. So,
background pre-knowledge is introduced to our model, which
has been used to saliency detection in natural images. Accord-
ing to this principle, we suppose that interesting targets always
tend to appear at central regions of an image.

As for RSI, especially low-resolution RSI often contain
large cover area in which most of the area is the background,
only a small fraction is the target. Moreover, the possibility
of target appear on image boundary is very small, so it is
reasonable to treat image edges as the background in RSIs.
Even if the target appears in one boundary, it cannot appear
in four boundaries simultaneously. Consequently based on this
assumption that targets will appear in the image center while

background regions usually are located in the image bound-
aries, we can construct a background data set using feature
vectors of boundary regions. Thus, background templateB is
represented as

B = {b1,b2, · · ·,bj , · · · ,bn}, 0 < n < m, (3)

bj = (l̄j , āj, b̄j), 1 ≤ j ≤ n, (4)

where n is the number of image boundary regions, andbj

represents feature vector of the background regionj. Because
those superpixels locating in the boundaries are considered as
background which can almost cover all kinds of background
features, our model can better suppress complex background
to ensure highlighting airport.

c) Similarity measure
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Fig. 2. Similarity measure map.

Up to now, we have got the global datasetP and background
datasetB. Next, we mine the latent feature of each region in
global data set by compare it with background information.

Given data pairs(pi,bj), wherepi ∈ P andbj ∈ B, we
use Eq. (5) to calculate the similarity coefficientαij between
each global region (that is,pi) and each background one (that
is, bj),

αij = argmin
αij

‖bj − αijpi‖2. (5)

We define the model in Eq. (5) as Least Distance Similarity
Measure (LDSM) operator. Andαij is the learning coefficient
of pi corresponding tobj . As shown in Fig. 2, taking 2D
feature space for example, it describes three feature vectors
including one background region (b1) and two global regions
(p1 andp2). If a global vector is similar to background ones,
just as p1 and b1 in Fig. 2 (By projecting between two
vectors we can have an intuitive understanding of two vectors
similarity.), the similarity coefficientα11 is approximate to 1.
Whenpi equals tobj , αij equals to 1 exactly. While there
is a great difference (difference on angle or length of vectors)
between global and background regions, just asp2 andb1 in
Fig. 2,α21 tends to be bigger or smaller than 1. Therefore, we
can define the similarity measure of each region to background
features with the difference betweenαij and 1. To standardize
and simplify it, we normalize the learning coefficientαij to
βij as follows.

βij = N (|αij − 1|) , (6)

whereN (x) denotes normalizingx into [0,1]. After this nor-
malization, the closerβij is to 0, the corresponding superpixel
region is closer to background.

By solving this optimization problem, we can get a similar-
ity coefficient matrix:











β11 β12 · · · β1n

β21 β22 · · · β2n

...
...

...
...

βm1 βm2 · · · βmn











, (7)

where theith row is a learning vector representing the dif-
ferences of all background regions to regioni in global data
set. Each element shows the relevance between a background
region and a global region. It will get a low value for element
βij when there is a strong correlation betweenpi and bj

becausepi tends to preferably representbj to obtain a small
error. Otherwise, if there is large difference between these two
regions, that is,pi has a fair chance to be a target region,pi

cannot representbj perfectly andβij tends to take a high value
to meet withbj ’s projection. For this reason, salient targets
can be distinguished from background areas due to its higher
βij-value than other regions’.

For each row of the similarity coefficients above, we define
latent featureβi as the average of the similarity coefficients
on all global superpixels, implying distributing equal weight
to each coefficient

βi =

n
∑

j=1

βij/n. (8)

Then, the latent feature map isF = (β1, β2, · · · , βm). Eq.
(8) denotes that the latent feature is calculated by averaging
the similarity coefficients on all global superpixels, implying
distributing equal weight to each coefficient. When back-
ground consists of more than one texture structure in RSIs,
(for example, background is composed of land and sea.) this
strategy uniformly treating all background regions can learn
approximately equal latent features for different background.
Meanwhile, these latent features background holding are lower
than target regions’. Therefore, we calculate latent feature as
Eq. (8), and its value shows the possibility that regioni is a
target. The biggerβi is, the more likely regioni to be a target.

2) top-down saliency map: Considering that the airport is a
special kind of remote target with many particular character-
istics, among which straight line represents most significant
feature of airport target. Compared with mussy land, forest
cover and calm sea, airport regions consist of lots of densely
straight lines, which are long or short, parallel or intersecting.
So, we think that these regions with higher linear density
distribution are most likely the airport area. For distinguishing
airport target from many salient regions, we introduce a top-
down strategy driven by certain task to build our saliency
model which extract linear feature to construct airport-based
feature map.

The line detection operator (LSD) [22] is a linear-time
line segment detector that gives accurate results, a controlled
number of false detections, and requires no parameter tuning.
We use LSD to detect line segment in input images. Due to
the differences between high and low resolution in RSIs, there
are no obvious long straight lines after LSD detecting on low-
resolution image. Instead, it will produce some problems such
as zigzag broken or parallel lines overlap. It is difficult toform
accurate saliency map using high-density broken short lines.
Thus, we adopt line density map as top-down feature to reflect
linear characteristics of airport area. Then we calculate the line
density of each superpixel. In theory, line distribution should
be dense in airport region. Though there are no clear rules
of these line distributions, the line density of these regions is
usually higher than other regions, that is to say, dense areacan
be considered as proposal of airport target in line density map.
Therefore, we use line density information as the particular
characteristic of airport to distinguish it from other salient
targets.
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For the initial input imageI, we use LSD model obtain
the line information of the whole image. Then, corresponding
superpixel segment above, we get line density in each region
by a statistic about line length in one superpixel. For the region
i, the line densitydi can be calculate as

di =
NL(region(i))

N(region(i))
, i = 1, 2, · · · ,m, (9)

whereNL(region(i)) denotes the number of pixels on the
lines in regioni andN(region(i)) is total number of pixels
in region i. Then, the target feature map (that is, line density
map) isD = (d1, d2, · · · , dm). Airport regions consist of nu-
merous line structures, which is very important characteristic.
Although it is difficult to extract the geometric characteristics
of these lines (such as parallel, vertical) in low-resolution
image, the line density can imply more useful information
in locating airport targets. Therefore, we believe that those
regions with higher line density are the airport targets with
greater probability.

3) Top-down and Bottom-up feature fusion: Next, in order
to bring in airport information to feature maps for highlighting
airport regions meanwhile suppressing other targets, we fuse
the latent feature mapF with line density mapD as Eq. (10),

S = D · F, (10)

where ’·’ means element-wise product, andS means the result
map after feature fusion. This step can be seen as putting
mask over latent feature map. For the salient regions inF, if
the corresponding value inD is large, its salient characteristic
can be retained. That is, we keep those regions which are
salient in both saliency map and airport-based feature map.
Otherwise, if it is inconspicuous in line feature map, the
corresponding region would be suppressed. As a result, this
feature fusion procedure can be seen as a filtering airport
step from a series of salient targets. For achieving our aim
and simplicity, we choose multiplex operation for fusion here.
And careful adjustment for the features is implemented during
constructing reinforcement matrix process following.

B. Hierarchical reinforcement learning structure

The fused feature map above reflects the feature difference
between airport target and background, which we can use to
reinforce input image and enlarge the contrast of foreground
and background. And the implementation details are as fol-
lows.

Firstly, we stretch the fused feature using a quadratic
function,

R = f(S) =
[

xi
2
]

. (11)

In Eq. (11),xi means any element in matrixS. Selecting
polynomial transformation for element stretching in matrix F
can suppress background meanwhile remain object features
unchanged approximately. We define the featureR in above
equation as reinforcement matrix, and use it to reinforce input
image,

I2 = I ·R. (12)

We treat the imageI2 getting fromI as a new input of next
layer, and use the similar procedures above to learning features

in the 2nd level. In this way, we can construct hierarchical
learning structure, that is,

It+1 = It ·Rt, (13)

where It and It+1 mean the input images intth and t+1th
level respectively, andRt represents the reinforcement matrix
in tth level. By above updating, the new input imageIt+1 has
larger salient pixel values in target regions and further inhibits
background area.

C. Learning stop criteria based on LDA

By hierarchical feature learning, we can distinguish salient
regions from background according to the feature value. Then,
a criterion is needed to judge whether the target regions are
salient enough to segment them from background regions.

At the beginning of hierarchical learning process, some
background regions cannot be suppressed totally while target
regions are highlighted, which means that salient regions
contain target as well as part of background at this moment.
As the learning going on, background regions are suppressed
gradually level by level until totally, when the learning process
will complete.

To realize these, we design a stop criteria based on LDA
topic model to judge whether it is enough to distinguish target
and background at the current level, that is to say, when
learning should stop. Because LDA topic model is not trained
as a supplement for airport features, we just only measure
the similarity degree between the detected salient regionsand
airport targets using LDA model. We construct LDA model
by the same features as ones in the reinforcement learning
stage. First, we train LDA model using color features of
training images in CIELab space and get the topic model of
backgroundp (z|b) and airport (foreground)p (z|f). Then, for
the saliency map in each level, we calculate the topic model
p(z|si) of salient superixeli. We will end the learning process
when Eq. (14) is satisfied.

sim(p (z|si) , p(z|f)) < sim(p(z|si), p(z|b)), ∀si ∈ S, (14)

wheresim(A,B) means cosine distance of vectorA andB.
And si is a salient region in saliency mapS. We can see from
Eq. (14), if all of the salient regions are more like to target
samples rather than background ones, then there is strong
reason to believe that the entire background region has been
suppressed totally and the reinforcement learning processhas
finished.

By the end of this hierarchical learning process, we can get
the final saliency mapSfinal:

Sfinal = ST , (15)

whereST is the saliency map obtained fromTth learning layer,
andT is the total layer number.

III. E XPERIMENTS

To validate our proposed method, we construct a database
of RSIs which include real images taken by GaofenII
satellite with resolution of 3.2m/pixel and a dataset with
multi-resolution taken by Google Earth. Our database of RSIs
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Fig. 3. LDA-based learning stop criterion.

Fig. 4. Multi-scale superpixel segment results.

include 730 images containing 40 different airports , which
have an image size of 500×600 pixels and multi-resolution
varying from 30m to 50m. Furthermore, these images contain
large cover regions with complicated background such as
forest, sea, land and buildings, existing various viewpoints
and illumination intensity. We carry out all experiments on
this database. Ground-truth dataset was manually formed by
marking tarmac and main runways. During the experiments,
we compare our method with other 18 saliency detection
models (wCtr [23], AIM [24], CA [25], DSR [14], FT [19],
GBMR [15], GC [12], HC [26], RC [26], HS [27], Itti [9],
GB [18], LC [28], LR [29], MSS [30], RA [31], SF [11] and
SR [13]) and 6 other airport detection approaches ( [8], [17],
[6], [32], [7], [33]).

A. Parameter setting

For the hierarchical learning structure model, one key prob-
lem is how to determine the superpixel number in each level.
Suppose that we segment input imageIt into mt superpixels
in the tth level, then the superpixel number in each level is
subjected to:

m1 ≥ m2 ≥ · · · ≥ mt ≥ · · · ≥ mT . (16)

Here, as shown in Fig. 4, a fine-to-coarse framework is used
in the scale selection of SLIC method considering accuracy
and rapidity. In the process of feature learning, a prior fine
segment can capture the tiny differences of boundary precisely.
By features reinforcing, these differences become obvious.
Therefore, the coarse segment later can also get these region
differences with a lower computational cost at the same time.

For training learning stop criteria, we construct training
samples set by randomly selecting 100 images from RSI

dataset, training LDA topic model with one positive sample
patch (20×20) and two negative patches in each training
image.

For each saliency map we need to select salient regions to
judge learning progress. And salient regions are determined by
doing thresholding to the saliency map with thresholdth set
as 0.25. If the salient value of one superpixel is larger thanth,
we consider it as a salient region and put it into LDA model
to learn its topic features.

B. Comparison on saliency detection performance

Similar to [23], we use precision-recall curve (PR-curve)
to evaluate these saliency models, and adopt mean absolute
error (MAE) as a supplement toPR-curve. Just like definitions
in [15] and [23], precision shows the proportion of actual
salient targets in the salient regions, while recall represents the
detected proportion in actual salient targets. ThePR-curves are
plotted with the binary saliency map whose threshold varies
from 0 to 255. We defineMAE to measure average pixel
difference between saliency map and ground truth as:

MAE =
1

W ×H

W
∑

x=1

H
∑

y=1

|Sfinal(x, y)−GT (x, y)|, (17)

whereW andH represent image width and height respectively.
And Sfinal (x, y) is the saliency value in pixel(x, y) andGT
means ground truth. ThePR-curve results are shown in Fig.
5. We find out thatPR-curve of our method begins with a
high recall, which is because our saliency maps are based
on superpixel level and maximum of gray image can always
hit the target regions. At the same time, this phenomenon
also reflects high detection rate of our model. However, those
recent popular saliency models that have high detection accu-
racy for natural images hold a low precision value generally,
which means that they are not quite suitable for RSIs. Because
there are significant differences between natural images and
RSIs. The natural image datasets applied to saliency detection
are most close shot photography with big and distinct target.
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Fig. 5. Comparison onPR-curves of various methods.

TABLE I
COMPARISON OFMAES.

Method AIM CA DSR GBMR LC
MAE 0.135 0.205 0.104 0.224 0.081
Method GC FT SR RC SF
MAE 0.175 0.088 0.096 0.213 0.118
Method HC wCtr HS Itti GB
MAE 0.230 0.073 0.259 0.289 0.178
Method BSCA LR MSS HRL
MAE 0.232 0.106 0.050 0.019

These images usually have high contrast, bright color, clear
outline and simple texture. Therefore, edge detection, feature
difference about color and texture can be used to detect salient
regions, which makes most saliency detection models work
well. But for RSIs, especially for low-resolution RSIs, there
are no obvious boundary between airport target and back-
ground, and texture contrast is not obvious either. Moreover,
different airport targets have different texture featuresand
structure information. As a result, edge contrast and texture
information are ineffective for airport detection in RSIs.That
is the reason why the existing saliency models cannot obtain
good detection performance for low-resolution RSIs. Table
I shows theMAE value of 19 saliency detection models.
It shows that our model has a lowerMAE apparently than
others. Therefore, our proposed saliency model, specifically
designed for RSIs, has a better performance than other state-
of-the-art models on this RSIs dataset. And Fig. 7 presents
saliency detection results of several representative models,
which can give us intuitive understanding for the performance
of these models. As shown in Fig. 7, it is difficult to precisely
highlight airport target as salient regions for other saliency
models in RSIs which usually contain large cover regions with
complicated background such as forest, sea, and land. But our
saliency model can better suppress complex background to
ensure highlighting airport.

C. Comparison of detection performance at different resolu-
tions

HRL saliency model is designed for low-resolution RSIs,
furthermore, taking into account multi-resolution RSIs, which
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Fig. 6. The statistical result of precision and recall of HRLmodel in RSI
dataset.

TABLE II
PRECISION AND RECALL IN DIFFERENT RESOLUTIONS.

Resolution 5.3m 6.4m 8m
Image size 4380×4146 3650×3455 2920×2764
Precision 0.7345 0.7255 0.7694

Recall 0.9428 0.9338 0.9446
Resolution 10.7m 16m 32m
Image size 2190×2073 1460×1382 730×691
Precision 0.7879 0.7031 0.6878

Recall 0.9207 0.8773 0.9575

is aimed at quickly and precisely locating airport regions in
large cover area. Detection results can get from saliency maps
by thresholding with 0.25. Fig. 6 describes the statistic results
of our HRL model in term of precision and recall in RSI
dataset, from which the high recall value reflects accuracy
hitting in airport location using this method. With reference
to [6], we defined it as a successful detection if precision is
higher than 0.4 and recall is higher than 0.3. That is to say, if
the detected regions contain more than 30% of the precisely
labeled ground truth, and the ground truth contains more
than 40% of the detection regions, it is defined a successful
detection in our model. Thus, our HRL model has obtained
detection rate of 91.22%, with the 67.68% precision and
77.44% recall in average on the basis of the statistic results of
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(a)Input (b)CA[25] (c)DSR[14] (d)GBMR[15] (e)HS[27] (f)GB[18] (g)MSS[30] (h)SF[11] (i)ours (j)Ground truth

Fig. 7. Comparison results of several saliency models for airport detection in RSIs.

Fig. 6. It indicates that HRL model can get a good robustness
no matter how illumination and resolution change. Fig. 8
shows several experiment results of HRL model under the
condition of different resolution and illumination intuitively,
which indicates that the adaptive ability for multi-resolution
images is a superiority of our model.

Similarly, our approach has the good adaptability for high-
resolution RSIs. As shown in Fig. 9(a), high-resolution RSI
is acquired from GaofenII satellite with the resolution of
3.2m/pixel and the size of 7300× 6910 pixels. First, this image
is reduced to different size by down-sampling, then HRL
model is applied to do target detecting. Fig. 9(b) shows the
down-sampling images and their detection results in different
resolutions, and Table II describes the precisions and recalls of
the corresponding detection results. From Table II, we find out
that HRL model is robust to resolution variation, which can get
similar high precisions and recalls no matter high-resolution
or low-resolution. Based on the analysis of experiment results,
HRL model can exactly detect airport targets for various
resolutions images. Therefore, we provide a good solution
saving more calculating time for RSI with massive data, which
can quickly locate airport region in small size image with low-
resolution by down-sampling.

D. Comparison with other airport detection methods

The following measure is used for performance evaluation
of airport detection: detection rate (DR). We defineDR similar

TABLE III
COMPARISON OF AIRPORT DETECTION RESULTS.

Models Ref [6] Ref [8] Ref [17]
Average precision 0.9340 0.4048 0.6175
Average recall 0.2994 0.3242 0.3865

DR 43.27% 40.46% 57.06%
Models Ref [32] HRL

Average precision 0.5798 0.6768
Average recall 0.4958 0.7744

DR 67.75% 91.22%

to [6]:

DR = x/N × 100%. (18)

In Eq. (18),N means the total image number, andx is the
number of images that have successful detection. As defined
above, if a detection result is satisfied that precision is higher
than 0.4 and recall is higher than 0.3, it is defined as a
successful detection. We compare our airport detection method
with other four methods ([8], [17], [6], [32]) in terms of
DR. The codes of these four methods are realized by us or
received from the authors, and parameters in them are adjusted
according to the corresponding dataset.

Table III shows the comparison results with other four
airport detection methods. On the basis of the definition of
successful detection that precision is higher than 0.4 and recall
is higher than 0.3, we can see that our method has a high
airport DR by statistical analysis of experimental results. For
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Fig. 8. Experimental results of the HRL model. (a) Images of relatively high space resolution, (b) Images of relatively low space resolution, (c) Images of
condition on light deficiency.

Fig. 9. Detection results of a high-resolution image.

the method in [8], which has a high average precision but low
average recall, its results are unable to correctly distinguish
most of airport and background. However, other three methods
with both low average precision and average recall can hardly
accurately locate airport region. All in all, as the methodsin
[6], [8], [17] and [32] are designed for high-resolution images
in which line feature is significant, it is hard to highlight
airport target from the complex background because of lacking
texture features of airport regions in low-resolution images.
Consequently, it is undisputed for them to hold a lowDR
value, which also is consistent with detection results in Fig.
10.

We also test the methods in [7] and [33] on our RSI dataset.
And due to their excessive reliance on line feature, they could
hardly detect any airport targets in low-resolution RSI dataset.
Therefore, the results of [7] and [33] have not been filled into
Table III.

We have successfully detected 671 images in the RSIs

dataset with the total of 730. Comparison results of several
airport detection algorithms are shown in Fig. 10. As it
shows, our model has a better ability of edge preservation no
matter for sample or complex background than other detection
algorithms. Taking the sixth row in Fig. 10 for example, when
airport target locates in complicated scene with sea and land,
saliency models in [6] and [17] treat coast line as target
regions and the method in [32] also gives wrong detection
result. Although the method in [8] can always hit the target
due to the SIFT feature matching strategy, but the ability of
target edge segmentation is not good enough. Because these
detection methods have been designed for high-resolution
natural images, which have excessive reliance on line features
and abundant textures, they could hardly fully detect airport
targets in low-resolution RSI dataset. Our method combines
bottom-up color features in LAB space and top-down line
feature to generate saliency map, which take background pre-
knowledge to suppress land and sea background simultaneous-
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(a) Ref [8] (b) Ref [17] (c) Ref [6] (d) Ref [32] (e) HRL (f) Ground truth

Fig. 10. Comparison results of several airport detection algorithms.

ly. Furthermore, proposed hierarchical reinforcement learning
structure is helpful to accurately distinguish airport target from
the complex background and other salient regions, which can
selectively approximate airports areas level by level by a back-
level propagation mechanism of saliency map. Our strategy
can ensure airport target as most salient regions. As discussed
above, our model is suitable for low-resolution images with

very large cover areas, it can be used to quickly locate airport
targets in large size RSIs, but other methods just like [8], [17],
[6], [32], [7] and [33] only can be used in high-resolution
images with the small field of view.



11

IV. CONCLUSION

A hierarchical reinforcement learning saliency model for
multi-resolution airport detection is presented in this paper.
By combining bottom-up latent feature map driven by low-
level cues with top-down line density map driven by task,
the proposed HRL model can gradually reinforce feature
difference degree between target and background using hierar-
chical learning structure, which make it more adaptive to low-
resolution RSIs. Moreover, HRL model can accurately find
airport target and quickly exclude other salient regions and
background in comparison with other saliency model, which
employs a novel learning stop criterion based on LDA topic
model to control learning process. Comparisons of qualita-
tive and quantitative analyses of the experimental resultsare
implemented, which validate the effectiveness of our method
for detecting airport target in multi-resolution RSI dataset.
Not only our HRL model has more remarkable detection
performance for low-resolution airports than the other latest
saliency models, but also it can be applied for high-resolution
RSIs with huge data to quickly locate airport by dimension
reduction, which is one of our important contributions. In the
future work, we will extend this model to automatically detect
multiclass salient remote sensing targets at the same time.
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