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Abstract—Traditional airport detection methods usually uti-
lize geometric characteristics to locate targets, but theyare
not suitable for low-resolution remote sensing images. Takg
both low and high resolution into account, we present a novel
hierarchical reinforcement learning (HRL) saliency model to
detect airport target. Different from conventional saliency models
focusing on nature images, our HRL model is more effective
for multi-resolution remote sensing images. According to aport
characteristic, we design a reinforcement learning struatre to
suppress background and highlight interesting airport regons
level by level. To generate a final saliency map, we fuse botte
up region features with top-down line feature based on targe
attribute, which can restrain other salient regions exceptfor
airports. Moreover, a learning stop criterion based on Latent
Dirichlet Allocation (LDA) topic model is proposed at each kvel
to judge the state of saliency detection, thus learning pragss
can be adaptively controlled. Besides, a back-level propagon
mechanism is employed to reinforce airport target betweendvels.
HRL saliency model can take the advantage of hierarchical
structure to quickly locate interest regions in remote sernisig
images with large cover area. Furthermore, HRL is robust
for illumination and resolution variety. Extensive experimental

results on a remote sensing dataset containing 730 images o

40 different airports demonstrate that the proposed HRL mockl
outperforms 18 state-of-the-art saliency models in terms fotwo
popular evaluation measures. Besides, it has significantlgigher
detection rate than other 6 airport detection methods.

Index Terms—airport detection, multi-resolution , hierarchical
reinforcement learning, LDA topic model, back-level propagation
mechanism.

I. INTRODUCTION

ITH the increasingly development of sensor techno

ogy, the application area of remote sensing imagesq
more and more abroad, such as scene classification ([1], [
semantic annotation [3], target detection [4]. And autdama
airport detection technology plays an important role irgear
detection, attracting more and more attention in militang a
civil application, such as precision guidance, aerial neco
naissance, security monitoring. Because airports arellysu

located on cluttered ground surroundings including boidi

mountains, rivers or vegetation, accurate airport degacti

al. [5] searched for elongated rectangles in the image, then
considered these detected rectangles as runways. Zhu et al.
[6] applied long straight line as airport top-down featurel a
the method in [7] used parallel information to determine the
interest regions. However, these methods could be harély us
to locate airport regions in low-resolution images because
linear feature of airport has some problems such as zigzag
broken or parallel lines overlap by the resolution restitt

Tao et al. [8] proposed an improved SIFT matching strategy
to detect regions of interest (ROIs), being followed by a
SVM classifier to refine detection result. But searching and
matching in the whole image, can undoubtedly cause extensiv
computation.

In recent years, various saliency models were put forward
to detect targets, which are most designed for nature images
Traditional saliency models ([9], [10]) are based on the
biological vision mechanism, such as Itti model [9], which
calculates global or local center-surround feature diffiees
#o determine saliency maps. But it is very hard to suppress
complicated backgrounds. Perazzi [11] (SF model) and Cheng
[12] (GC model) choose element uniqueness and its distribu-
tion as features to generate saliency map. SF model [11ktrea
superpixel as basic element to perform the operation, while
GC model in [12] uses Gaussian Mixture Models (GMM)
to decompose an image to get basic elements. Besides that,
there are some saliency models using frequency character-
istics. The prominent superiority of these methods is their
easy operability. Hou and Zhang [13] (SR model) extract
fhe spectral residual of an image in the spectral domain, and
Qtain saliency map by inverse transform of spectral regidu

R model [14] computes dense and sparse reconstruction
frors putting the boundary pixels as background according
to the pre-knowledge hypothesis that most of targets ysuall
appear in the center of an image while surrounding outer
boundary are the background regions. While Yang et al.
415] (GBMR model) combines background and foreground
queries to generate saliency map by using the background
prior information. GBMR can effectively resolve the proile

becomes a challenging problem under the influence of varidfjét targets appear on the edge of an image by computing

disturbance factors.

four independent saliency maps in four side areas. The above

Most of existing airport detection methods usually ado&lentioned saliency models have good performance for Hatura

geometrical characteristics of airport such as straighparr

allel line feature aiming at high-resolution images. Liu e
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images, which can quickly locate target regions. So, sejien
odels are introduced to airport detection in RSIs with mass
data, which can greatly reduce searching time. But these mod
els cannot get the same accuracy for remote sensing images
(RSIs), due to the significant differences between RSIs and
natural images in the aspect of resolution, texture, sirect

and illumination intensity. The natural image datasetdiagp



to saliency detection are most close shot photography.eTh@seanwhile, other salient targets and background are all ef-
images usually have high contrast, bright color, clearioatl fectively suppressed. That is to say, special advantageiof o
and simple texture. Therefore, edge detection, differenamodel is that it can only detect airport target rather thdn al
about color and texture can be used to detect salient regiogeient targets in RSls compared with other saliency models
which makes most saliency detection models work well. But (3). We design a judgment strategy to autonomously deter-
for RSIs, especially for low-resolution RSIs, there are nmine the number of learning level and the time of learning sto
obvious boundary between airport target and backgrourd, applying LDA topic model. It can intelligently control lear
texture contrast is not obvious either. Moreover, différeiing processing by identifying the similarity between sadig
airport targets have different texture features and girect regions and training airport target features in each level.
information. Due to the differences, existing saliency eied

designed for natural images cannot be used directly in RSIs. Il. HRL SALIENCY MODEL

This is because edge and texture features are ineffective to ) ) . . .
detect airport in low-resolution RSIs, it is difficult to get HRL saliency model consists of hierarchical learning pro-
accurate detection result cess and learning stop judgment. As for the learning part, we

Therefore the general structure that airport detectior‘nme%use the bottom-up latent feature with top-down objectedas
ods based on saliency model is designed to be a saliency deté@iUre to highlight airport target. And we reinforce these
tor followed by a classifier aiming at high-resolution RSTke  cONSPicuous regions and suppress background by hierafchic
saliency detectors either employ the existing saliency ehod®@Ming structure. For estimating learning processing, w
or make a slight change on it. Just as those methods propo€§9n an adaptive learming stop criteria using LDA topic
in [16], [17] and [6], they apply saliency model to extracfmdel which are trained in advance. Fig. 1 shows the flowchart
ROIls containing an airport, and then use a classifier to refi%Our HRL saliency model.

these regions until airport was detected. [16] and [6] use th

GBVS saliency model [18] to detect ROIs , which views map&. Reinforcement learning saliency model

as a graph model, using Markovian algorithm to search keyFor each level of HRL saliency model, as shown in Fig.

locations. And Yao et al.[17] employs the FT saliency mod«il(a)’ by bottom-up and top-down saliency detection and fea-

prt_)posed in [19], which chooses a ba_md pass filter t_o elireinthe fusion, we get a saliency map of corresponding level.
noises af‘d backgrounds and retaln_ salient regions. Th‘f'ﬁrough back-level propagation mechanism among levels, as
unsupervised model becomes supervised through reflnemﬁ%wn in Fig. 1(b), the saliency difference between targett a

process, which increases the training samples and comtpleyj, . qround is reinforced. Specific implementation detaits
of algorithm undoubtedly. But it is difficult to acquire high as follows

resolution images in many aviation reconnaissance mission 1) B : ) : :
ottom-up saliency map: a) Superpixel clustering
Therefore, the problem of how to fast accurately detecoaisp For capturing the structural information of an image and

n Iow—rt(_asollutlor_] RSI.S becorr:_estgrgent, which we ShOUIdEseq’educing computational complexity, we first cluster all gi&x
In practical engineering application. into different regions to form superpixels using the simple

hTO Is olyef above prtolblem_s, th|s|.paper pr%ptlni,es datnew Tr'erlﬁ{éar iterative clustering (SLIC) algorithm [21]. Accang) to
chical reinforcement learning saliency model to deteq@lr ., roatyres and space distance constraints, similatpare

target in terms of airport imaging characteristic. HRL rﬂOd(?:Jartitioned into the same superpixel region which has alwio

gostlonlthaﬁ facciu(rjately detect_aqlport :egltt)n n Iow(—jretsortu consistency in structure. So, superpixel segmentationoigem
S which ncludes many simriar structures and textureg, ,q,,cive to highlight the structural information of theage
but also can fast locate airport target in high-resoluti@IsR

: . . ) : _than in pixels.
with massive data and wide field of view. So, the adaptive Given the input imagé, we use SLIC to segment it inio

ability for multi-resolution images is conspicuous supsty : . :

of our model. Furthermore, Latent Dirichlet Allocation (Rp superpixels (regions), getting the global featureBats
[20] model is embedded into our saliency model rather than P ={p1,p2,- s Pm}- 1)
following behind saliency detection. Thus, our saliencydelo . .
can efficiently detect certain type of salient target defremd " EQ- (1), p: represents feature vector of regionin this

on the particular task demands. paper, we select the color features in CIELab color space as
The main contributions of our approach are summarized € feature vector because of the physical characterisissd
three aspects below: on CIELab which is provided with the wide color gamut and

(1). We propose a novel hierarchical reinforcement IeayniﬁiCh chroma. The feature_vectpr of e_ach_region is defined as
structure which can selectively approximate airports treal 2verage color feature of .plxels it consists in each colonokh
by level by a back-level propagation mechanism of salien&y CIELab space. That is, for the regiopfeature vectomp;
map. It is helpful to better suppress complex background aR@n Pe described as
g::gr salient targets and highlight airport region at thmesa pi = (s, a5, b;) )

(2). We build a saliency detection model which fusewherel;, a;, b; represent the average color of all pixels in
bottom-up lower-features map with top-down object-basedgioni of L, A, B color channel respectively.
feature map. Thus, airports region can be highlighted well; b) Background pre-knowledge
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Fig. 1. Flowchart of HRL saliency model.

As we known, RSIs usually contain complicated backackground regions usually are located in the image bound-
ground such as sea, forest and land in one image. In thesies, we can construct a background data set using feature
situations, it is difficult to guarantee airport target aesd vectors of boundary regions. Thus, background temdie
regions according to human visual attention mechanism. Sepresented as
background pre-knowledge is introduced to our model, which

has been used to saliency detection in natural images. decor B ={by,by,--,b;,--- ,b},0<n<m, 3)
ing to this principle, we suppose that interesting targbtays
tend to appear at central regions of an image. b; = (I;,a;,b;),1 < j <n, (4)

As for RSI, especially low-resolution RSI often contain
large cover area in which most of the area is the backgrounheren is the number of image boundary regions, dnd
only a small fraction is the target. Moreover, the posdipili represents feature vector of the background regidecause
of target appear on image boundary is very small, so it iBose superpixels locating in the boundaries are considzse
reasonable to treat image edges as the background in R8&gtkground which can almost cover all kinds of background
Even if the target appears in one boundary, it cannot appé@atures, our model can better suppress complex background
in four boundaries simultaneously. Consequently basettien tto ensure highlighting airport.
assumption that targets will appear in the image centerewhil c) Similarity measure



becausep; tends to preferably represebj to obtain a small

; error. Otherwise, if there is large difference betweendhe®

. P regions, that isp; has a fair chance to be a target regipn,
cannot represert; perfectly and3;; tends to take a high value

to meet withb;'s projection. For this reason, salient targets
can be distinguished from background areas due to its higher
Bij-value than other regions’.

For each row of the similarity coefficients above, we define
latent features; as the average of the similarity coefficients
on all global superpixels, implying distributing equal gkt
X to each coefficient

n

Fig. 2. Similarity measure map. Bi = Z ﬂz‘j /n (8)

Jj=1

Up to now, we have got the global dataFeand background ~ Then, the latent feature map 18 = (81, B2, - -+ , Bm)- EQ.
datasefB. Next, we mine the latent feature of each region iB) denotes that the latent feature is calculated by avegagi
global data set by compare it with background information.the similarity coefficients on all global superpixels, iyipig

Given data pairgp;,b;), wherep, € P andb; € B, we distributing equal weight to each coefficient. When back-
use Eq. (5) to calculate the s|m||ar|ty Coeﬁicimy between ground consists of more than one texture structure in RSIs,
each global region (that i;) and each background one (thaffor example, background is composed of land and sea.) this

is, b;), strategy uniformly treating all background regions carnrrea
a;j = argmin ||bj — a;; |, (5) approximately equal latent features for different backagih
@ij Meanwhile, these latent features background holding avero

We define the model in Eq. (5) as Least Distance Similarif)an target regions’. Therefore, we calculate latent feass
Measure (LDSM) operator. And,; is the learning coefficient Ed. (8), and its value shows the possibility that regide a
of p; corresponding tdb;. As shown in Fig. 2, taking 2D target. The bigges; is, the more likely region to be a target.
feature space for example, it describes three feature ngecto 2) top-down saliency map: Considering that the airport is a
including one background regiob{) and two global regions special kind of remote target with many particular chanacte
(p: andpy). If a global vector is similar to background onesistics, among which straight line represents most significa
just asp; and by in Fig. 2 (By projecting between two feature of airport target. Compared with mussy land, forest
vectors we can have an intuitive understanding of two vectagover and calm sea, airport regions consist of lots of dgnsel
similarity.), the similarity coefficienty; is approximate to 1. straight lines, which are long or short, parallel or intets®.
When p; equals tob;, «;; equals to 1 exactly. While there So, we think that these regions with higher linear density
is a great difference (difference on angle or length of vejto distribution are most likely the airport area. For distirging
between global and background regions, juspasindb; in  airport target from many salient regions, we introduce a top
Fig. 2,0, tends to be bigger or smaller than 1. Therefore, wédown strategy driven by certain task to build our saliency
can define the similarity measure of each region to backgroumodel which extract linear feature to construct airporsdh
features with the difference betwees; and 1. To standardize feature map.
and simplify it, we normalize the learning coefficient; to The line detection operator (LSD) [22] is a linear-time
Bi; as follows. line segment detector that gives accurate results, a dimuro
Bij =N (Jai; — 1)), (6) number of false detections, and requires no parametergunin
We use LSD to detect line segment in input images. Due to
T . . . the differences between high and low resolution in RSlgethe
malization, the closef;; is to 0, the corresponding superpixe re no obvious long straight lines after LSD detecting on-low

region 1 _closer_ 0 chkgro_und. ... resolution image. Instead, it will produce some problenthsu
: By so!v!ng this optimization problem, we can get a similaryg zigzag broken or parallel lines overlap. It is difficulféom

ity coefficient matrix: accurate saliency map using high-density broken shortline
B11 B2 - Bin Thus, we adopt line density map as top-down feature to reflect
Bor1 Paz -+ Pon linear characteristics of airport area. Then we calculadine

5 (7)  density of each superpixel. In theory, line distributioroshl

where N (z) denotes normalizing into [0,1]. After this nor-

: : ' ' be dense in airport region. Though there are no clear rules
Bmi Pmz o Bmn of these line distributions, the line density of these ragis
where theith row is a learning vector representing the difusually higher than other regions, that is to say, densecaea
ferences of all background regions to regioim global data be considered as proposal of airport target in line densag.m
set. Each element shows the relevance between a backgrotinerefore, we use line density information as the particula
region and a global region. It will get a low value for elementharacteristic of airport to distinguish it from other eali
Bi; when there is a strong correlation betwepnandb; targets.



For the initial input imagel, we use LSD model obtain in the 2*? level. In this way, we can construct hierarchical
the line information of the whole image. Then, correspogdiriearning structure, that is,
superpixel segment above, we get line density in each region

by a statistic about line length in one superpixel. For thygare I = 1; - Ry, (13)

i, the line densityd; can be calculate as where I; and I;;; mean the input images itth andt+1th
Ny (region(i)) . level respectively, ande; represents the reinforcement matrix

di = N(region(d) "'~ L,2,--,m, (9) in tth level. By above updating, the new input imafje; has

) larger salient pixel values in target regions and furthaitiits
where Ny, (region(i)) denotes the number of pixels on th%ackground area.

lines in regioni and N (region(i)) is total number of pixels
in regioni. Then, the target feature map (that is, line densit : I
map) isD = (dy,dz,- - ,d.,). Airport regions consist of nu- e Learning stop criteria based on LDA
merous line structures, which is very important charastieri ~ BY hierarchical feature learning, we can distinguish salie
Although it is difficult to extract the geometric characgtiss regions from background according to the feature valuenThe
of these lines (such as parallel, vertical) in low-resointi @ criterion is needed to judge whether the target regions are
image, the line density can imply more useful informatiofalient enough to segment them from background regions.
in locating airport targets. Therefore, we believe thatstho At the beginning of hierarchical learning process, some
regions with higher line density are the airport targetshwitbackground regions cannot be suppressed totally whiletarg
greater probability. regions are highlighted, which means that salient regions
3) Top-down and Bottom-up feature fusion: Next, in order contain target as well as part of background at this moment.
to bring in airport information to feature maps for highligly ~ As the learning going on, background regions are suppressed
airport regions meanwhile suppressing other targets, we filgradually level by level until totally, when the learningpess
the latent feature map with line density mafD as Eq. (10), Will complete.
To realize these, we design a stop criteria based on LDA
S=D-F (10) topic model to judge whether it is enough to distinguish earg
where *’ means element-wise product, aBdneans the result and background at the current level, that is to say, when
map after feature fusion. This step can be seen as puttleg'ning should stop. Because LDA topic model is not trained
mask over latent feature map. For the salient regior,iii s & supplement for airport features, we just only measure
the corresponding value i is large, its salient characteristicthe similarity degree between the detected salient regiods
can be retained. That is, we keep those regions which &@igoort targets using LDA model. We construct LDA model
salient in both saliency map and airport-based feature m&)y. the same features as ones in the reinforcement learning
Otherwise, if it is inconspicuous in line feature map, thétage. First, we train LDA model using color features of
corresponding region would be suppressed. As a result, tHining images in CIELab space and get the topic model of
feature fusion procedure can be seen as a filtering airpbackground (z|b) and airport (foreground) (z|f). Then, for
step from a series of salient targets. For achieving our aff¢ saliency map in each level, we calculate the topic model
and simplicity, we choose multiplex operation for fusioréne P(2s;) of salient superixel. We will end the learning process
And careful adjustment for the features is implementedrduri when Eq. (14) is satisfied.

constructing reinforcement matrix process following. sim(p (2]s:) , p(z|f)) < sim(p(z]s:), p(2|)), ¥s; € S, (14)

B. Hierarchical reinforcement learning structure wheresim(A, B) means cosine distance of vectarand B.

d s; is a salient region in saliency m& We can see from

The fused feature map above reflects the feature diﬁerer@% 14). if all of th lient . like to t i
between airport target and background, which we can use 8 (14), if all of the salient regions are more like to targe

reinforce input image and enlarge the contrast of foregdouﬁ"’lmpIes rather than background ones, then there is strong

and background. And the implementation details are as fbgason to believe that the entire background region has been
lows suppressed totally and the reinforcement learning procass

Firstly, we stretch the fused feature using a uadrafiished. o . _
functior¥ gad By the end of this hierarchical learning process, we can get
) R=f(S) = [%2} . (11) the final saliency ma ¢ipq::
In Eq. (11),z; means any element in matr& Selecting Sfinal = ST, (15)

polynomial transformation for element stretching in maffi whereSy is the saliency map obtained frofth |earning layer,
can suppress background meanwhile remain object featusg® T is the total layer number.

unchanged approximately. We define the featRran above
equation as reinforcement matrix, and use it to reinforpain I1l. EXPERIMENTS

'mage, To validate our proposed method, we construct a database

of RSIs which include real images taken by Gaoféh
We treat the imagé, getting froml as a new input of next satellite with resolution of 3.2m/pixel and a dataset with
layer, and use the similar procedures above to learningfest multi-resolution taken by Google Earth. Our database o6RSI

L=I-R. (12)
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b dataset, training LDA topic model with one positive sample
"y ) ) ¢ ¢ o mmm) patch (20<20) and two negative patches in each training
: : image.

For each saliency map we need to select salient regions to
judge learning progress. And salient regions are detehiige
doing thresholding to the saliency map with threshibldset
include 730 images containing 40 different airports , whic@s 0.25. If the salient value of one superpixel is larger tian
have an image size of 5800 pixels and multi-resolution we consider it as a salient region and put it into LDA model
varying from 30m to 50m. Furthermore, these images contd learn its topic features.
large cover regions with complicated background such as
fores_t, sea, I_and_ and _buildings, existing various _vievvm)inB_ Comparison on saliency detection performance
and illumination intensity. We carry out all experiments on . . .
this database. Ground-truth dataset was manually formed b3§|m|lar to [23], we use precision-recall curveR-curve)
marking tarmac and main runways. During the experimenfg, evaluate these saliency models, and ado_pt mean _absolute
we compare our method with other 18 saliency detectidi™©" MAE) asasupple_rr_]ent BR-curve. Just I|ke_ definitions
models (WCtr [23], AIM [24], CA [25], DSR [14], FT [19], in [15] and [2_3], precision shgws the.proporuon of actual
GBMR [15], GC [12], HC [26], RC [26], HS [27], Itti [9], salient targets |n.the.sallent regions, while recall repmésthe
GB [18], LC [28], LR [29], MSS [30], RA [31], SF [11] and detected proportion in actual salient targets. PRecurves are

SR [13]) and 6 other airport detection approaches ( [8],,[17‘{1'(;);2‘3% ‘f{"(;thzgge &Za;ye;?gal%’ gag](g;%?g te:]\/trs;goédp\iligles
[6], [32], [7], [33]). )

difference between saliency map and ground truth as:

A. Parameter setting 1

W H

For the hierarchical learning structure model, one key prob MAE = W x H Z Z |Spinai(z,y) = GT(z,y)l, (17)
lem is how to determine the superpixel number in each level. e=ly=1
Suppose that we segment input imagento m; superpixels whereW andH represent image width and height respectively.
in the tth level, then the superpixel number in each level iBnd Sy;,q1 (z,y) is the saliency value in pixdls, y) andGT
subjected to: means ground truth. ThER-curve results are shown in Fig.
5. We find out thatPR-curve of our method begins with a
high recall, which is because our saliency maps are based

Here, as shown in Fig. 4, a fine-to-coarse framework is used superpixel level and maximum of gray image can always
in the scale selection of SLIC method considering accurabit the target regions. At the same time, this phenomenon
and rapidity. In the process of feature learning, a prior firedso reflects high detection rate of our model. However,aghos
segment can capture the tiny differences of boundary plycis recent popular saliency models that have high detection-acc
By features reinforcing, these differences become obviouacy for natural images hold a low precision value generally
Therefore, the coarse segment later can also get thesenregibich means that they are not quite suitable for RSIs. Bexaus
differences with a lower computational cost at the same.tintbere are significant differences between natural imagés an

For training learning stop criteria, we construct trainingRSls. The natural image datasets applied to saliency dmtect
samples set by randomly selecting 100 images from R&ie most close shot photography with big and distinct target

Fig. 4. Multi-scale superpixel segment results.

my>mg > >my > > myp. (16)
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TABLE |

COMPARISON OFMAES.
Method AIM CA DSR GBMR LC
MAE 0.135 0.205 0.104 0.224 0.081
Method GC FT SR RC SF
MAE 0.175 0.088 0.096 0.213 0.118
Method HC wCtr HS Itti GB
MAE 0.230 0.073 0.259 0.289 0.178
Method BSCA LR MSS HRL
MAE 0.232 0.106 0.050 0.019

These images usually have high contrast, bright color,rclea
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difference about color and texture can be used to deteetsali

regions, which makes most saliency detection models WaoFlg. 6. The statistical result of precision and recall of HRiodel in RSI
well. But for RSIs, especially for low-resolution RSls, the dataset.

are no obvious boundary between airport target and back-

ground, and texture contrast is not obvious either. Morgove
different airport targets have different texture featuesxl
structure information. As a result, edge contrast and textu
information are ineffective for airport detection in RSThat

is the reason why the existing saliency models cannot obtain
good detection performance for low-resolution RSIs. Table
| shows the MAE value of 19 saliency detection models.
It shows that our model has a lowdAE apparently than
others. Therefore, our proposed saliency model, spedyfical

TABLE I
PRECISION AND RECALL IN DIFFERENT RESOLUTIONS

Resolution 5.3m 6.4m 8m
Image size 438R4146 3653455 292x2764
Precision 0.7345 0.7255 0.7694
Recall 0.9428 0.9338 0.9446
Resolution 10.7m 16m 32m
Image size 21902073 146(«1382 730691
Precision 0.7879 0.7031 0.6878
Recall 0.9207 0.8773 0.9575

designed for RSIs, has a better performance than other state

of-the-art models on this RSIs dataset. And Fig. 7 presents

saliency detection results of several representative tapdés aimed at quickly and precisely locating airport regions i
which can give us intuitive understanding for the perforoean large cover area. Detection results can get from saliengysma
of these models. As shown in Fig. 7, it is difficult to precjsel by thresholding with 0.25. Fig. 6 describes the statistaults
highlight airport target as salient regions for other salie of our HRL model in term of precision and recall in RSI
models in RSIs which usually contain large cover regiongwitlataset, from which the high recall value reflects accuracy
complicated background such as forest, sea, and land. But biiting in airport location using this method. With refecen
saliency model can better suppress complex backgroundtao[6], we defined it as a successful detection if precision is

ensure highlighting airport.

C. Comparison of detection performance at different resolu-

tions

higher than 0.4 and recall is higher than 0.3. That is to day, i
the detected regions contain more thar¥s36f the precisely

labeled ground truth, and the ground truth contains more
than 40% of the detection regions, it is defined a successful
detection in our model. Thus, our HRL model has obtained

HRL saliency model is designed for low-resolution RSlgjetection rate of 91.22, with the 67.68; precision and
furthermore, taking into account multi-resolution RSIdieh 77.44% recall in average on the basis of the statistic results of
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Fig. 7. Comparison results of several saliency models figroai detection in RSls.

Fig. 6. It indicates that HRL model can get a good robustness TABLE Il
no matter how illumination and resolution change. Fig. 8 COMPARISON OF AIRPORT DETECTION RESULTS
show_s_ severa_l experiment r_esults of_ HR_L n"_node_l l_Jr_1der the Models Ref6] Ref[8] Ref[17]
condition of different resolution and illumination intiviely, Average precision  0.9340  0.4048  0.6175

i indi i ili i i Average recall 0.2994 0.3242 0.3865
WhICh m_dlcates th.at _the fadaptlveda::)lllty for multi-restidn oR A39TL 40ATs  57.00%
images is a superiority of our model. N _ Vodels Ref[32]  HRL

Similarly, our approach has the good adaptability for high- Average precision  0.5798  0.6/68
resolution RSIs. As shown in Fig. 9(a), high-resolution RSI Average recall 0.4958  0.7744

DR 67.7%  91.22%

is acquired from Gaofed [ satellite with the resolution of
3.2m/pixel and the size of 73606910 pixels. First, this image
is reduced to different size by down-sampling, then HRl_ [6]:
model is applied to do target detecting. Fig. 9(b) shows the
down-sampling images and their detection results in differ DR = /N x 100%. (18)
resolutions, and Table Il describes the precisions andisaufa
the corresponding detection results. From Table I, we fiad o
that HRL model is robust to resolution variation, which cat g
similar high precisions and recalls no matter high-resotut
or low-resolution. Based on the analysis of experimentltgsu
HRL model can exactly detect airport targets for variou
resolutions images. Therefore, we provide a good solutidf
saving more calculating time for RSI with massive data, Wwhic
can quickly locate airport region in small size image witvio
resolution by down-sampling.

In Eq. (18),N means the total image number, axik the
number of images that have successful detection. As defined
above, if a detection result is satisfied that precision ghéi
than 0.4 and recall is higher than 0.3, it is defined as a
successful detection. We compare our airport detectiohaaet

With other four methods ([81, 271, [6], [32]) in terms of
8k The codes of these four methods are realized by us or
Seceived from the authors, and parameters in them are adjust
according to the corresponding dataset.

Table 1ll shows the comparison results with other four
] ] . . airport detection methods. On the basis of the definition of
D. Comparison with other airport detection methods successful detection that precision is higher than 0.4 acallr

The following measure is used for performance evaluatias higher than 0.3, we can see that our method has a high
of airport detection: detection ratBR). We defineDR similar airport DR by statistical analysis of experimental results. For
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Fig. 8. Experimental results of the HRL model. (a) Imagesedftively high space resolution, (b) Images of relativedy Ispace resolution, (c) Images of
condition on light deficiency.

Ground
truth

image size: 4380 X 4146 36503455 2920X2764 21902073 1460 X 1382 730X691

resolution: 5.3m 6.4m 8m 10.7m 16m 32m

(a) original image and ground truth (b) different scalings of original image

Fig. 9. Detection results of a high-resolution image.

the method in [8], which has a high average precision but losataset with the total of 730. Comparison results of several
average recall, its results are unable to correctly disigtg airport detection algorithms are shown in Fig. 10. As it
most of airport and background. However, other three methoshows, our model has a better ability of edge preservation no
with both low average precision and average recall can hardhatter for sample or complex background than other detectio
accurately locate airport region. All in all, as the methaus algorithms. Taking the sixth row in Fig. 10 for example, when
[6], [8], [17] and [32] are designed for high-resolution iges airport target locates in complicated scene with sea and, lan
in which line feature is significant, it is hard to highlightsaliency models in [6] and [17] treat coast line as target
airport target from the complex background because of tackiregions and the method in [32] also gives wrong detection
texture features of airport regions in low-resolution iregg result. Although the method in [8] can always hit the target
Consequently, it is undisputed for them to hold a I®@®R due to the SIFT feature matching strategy, but the ability of
value, which also is consistent with detection results ig. Fitarget edge segmentation is not good enough. Because these
10. detection methods have been designed for high-resolution

We also test the methods in [7] and [33] on our RSI datas8@tural images, which have excessive reliance on line featu
And due to their excessive reliance on line feature, theyccol@nd abundant textures, they could hardly fully detect airpo

Therefore, the results of [7] and [33] have not been filled infPottom-up color features in LAB space and top-down line
Table Il feature to generate saliency map, which take background pre

We have successfully detected 671 images in the Réﬁgowledge to suppress land and sea background simultaneous
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Fig. 10. Comparison results of several airport detectigordhms.

ly. Furthermore, proposed hierarchical reinforcementrlieq very large cover areas, it can be used to quickly locate girpo
structure is helpful to accurately distinguish airporgtrfrom targets in large size RSls, but other methods just like [Bf],[
the complex background and other salient regions, which c@}, [32], [7] and [33] only can be used in high-resolution
selectively approximate airports areas level by level bpekb images with the small field of view.

level propagation mechanism of saliency map. Our strategy

can ensure airport target as most salient regions. As disdus

above, our model is suitable for low-resolution images with



IV. CONCLUSION [12]

A hierarchical reinforcement learning saliency model for
multi-resolution airport detection is presented in thipga [13]
By combining bottom-up latent feature map driven by low-
level cues with top-down line density map driven by tale‘l]
the proposed HRL model can gradually reinforce feature
difference degree between target and background usingrhiefs!
chical learning structure, which make it more adaptive to-lo
resolution RSIs. Moreover, HRL model can accurately fingde]
airport target and quickly exclude other salient regiond an
background in comparison with other saliency model, which7
employs a novel learning stop criterion based on LDA topic
model to control learning process. Comparisons of qualitﬁé]
tive and quantitative analyses of the experimental resuks
implemented, which validate the effectiveness of our methq9]
for detecting airport target in multi-resolution RSI dahas
Not only our HRL model has more remarkable detectiod’!
performance for low-resolution airports than the otheedat
saliency models, but also it can be applied for high-resmiut [21]
RSIs with huge data to quickly locate airport by dimension
reduction, which is one of our important contributions. et [22]
future work, we will extend this model to automatically dgte
multiclass salient remote sensing targets at the same time 3,
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