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Abstract—Global land cover (GLC) products can be utilized
to provide geographical supervision for remote sensing repre-
sentation learning, which has significantly improved downstream
tasks’ performance and decreased the demand of manual annota-
tions. However, the time differences between remote sensing im-
ages and GLC products may introduce deviations in geographical
supervision. In this paper, we propose a Geographical supervision
Correction method (GeCo) for remote sensing representation
learning. Deviated geographical supervision generated by GLC
products can be corrected adaptively using the correction matrix
during network pre-training and joint optimization process is
designed to simultaneously update the correction matrix and
network parameters. Additionally, we identify prior knowledge
on geographical supervision to guide representation learning
and restrict the correction process. The prior knowledge named
“minor changes” implies that the geographical supervision may
not change significantly, whereas the prior knowledge named
“spatial aggregation” implies that land covers are aggregated
in their spatial distribution. According to the prior knowledge,
corresponding regularization terms are proposed to prevent
abrupt changes in geographical supervision correction process
and excessive smoothing of network outputs, thereby ensuring the
adaptive correction process’s correctness. Experimental results
demonstrate that our proposed method outperforms random
initialization, ImageNet pre-training, and other representation
learning methods on a variety of downstream tasks. In particular,
when compared to the method that learns representations directly
from deviated geographical supervision, it is proved that our
method can eliminate the influence of deviations and further
improve the effect of representation learning.

Index Terms—representation learning, remote sensing images,
scene classification, semantic segmentation, object detection,
cloud / snow detection

I. INTRODUCTION

The deep learning method has possessed a high capacity
for feature learning and demonstrated remarkable performance
in remote sensing scene classification [1, 2], object detection
[3–6] and semantic segmentation [7–11]. However, its effect
depends on a large number of manual annotations, and the
process of producing annotations is time- and labor-intensive.
Expert domain knowledge is also required for remote sensing
images, making large-scale annotation more difficult.

To alleviate deep learning’s reliance on large number of
manual annotations, considerable recent researches have been
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conducted on self-supervised representation learning methods.
These methods usually follow a two-stage paradigm, including
network pre-training and fine-tuning. During the first stage,
they automatically extract supervision information from the
data itself or the external environment by designing various
pretext-tasks, thereby completing the network pre-training. No
manual annotated data is necessary during this stage. For the
second stage, the corresponding annotated data will be used
to fine-tune the pre-training model for downstream tasks. It
can improve downstream tasks’ performance and decrease the
reliance on annotated data.

The critical factor affecting self-supervised representation
learning’s performance is the ability of pretext tasks to extract
effective supervision information. The straightforward way to
design a pretext task is to obtain supervision information
via image transformation [12–19], such as image colorization
[17, 18] and inpainting [15, 16]. However, the performance of
the pre-training model obtained in this manner is limited and
cannot be expected to exceed that of the widely used ImageNet
[20] pre-training model. This could be because, in the absence
of manual annotations, the supervision information obtained
through image transformation methods is always biased to-
ward a particular level of representations, making it difficult
to ensure the model’s generalizability when transferred to
downstream tasks. To address this issue, contrastive learning
methods [21–31] construct positive and negative samples
from multiple images and improve representation learning’s
performance by maximizing differences between positive and
negative samples. Recent contrastive learning methods have
outperformed ImageNet [20] pre-training on a variety of
downstream tasks. Another methods of constructing pretext
tasks are to obtain supervision information from the external
environment or multi-modal data, such as by combining voice
and text with corresponding images [32–34].

In contrast to general image representation learning, remote
sensing images frequently contain a large number of similar
land covers. It may affect the contrastive learning performance
as narrowing the discrepancies between positive samples and
negative samples. Additionally, remote sensing images lack
auxiliary data such as sound and text. But they usually contain
associated geographical knowledge that can be used to perform
remote sensing image processing and representation learning
[35–37]. The geographical knowledge includes geographical
location, global land cover (GLC) products, open street map
[38] and etc. They can be utilized to provide geographical
supervision for remote sensing image processing tasks, such as
using open street maps [38] to provide annotated information
for semantic segmentation. The GeoKR method [39] lever-
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ages geographical location information and global land cover
(GLC) products [40] to generate geographical supervision for
representation learning, which can improve downstream tasks’
performance and reduce reliance on annotated data.

However, there are certain discrepancies between GLC
products and remote sensing images in terms of producing
times, resolutions and etc. As a result of these discrepancies,
a significant amount of deviations may be introduced into the
generated geographical supervision, impairing the effective-
ness of remote sensing representation learning. To mitigate
the effect of deviations, we propose a deviated Geographical
supervision Correction method (GeCo) to improve the per-
formance of remote sensing representation learning. During
the networks pre-training, a correction matrix W is developed
to correct the geographical supervision adaptively. Joint opti-
mization process is designed to update correction matrix and
networks parameters simultaneously.

To ensure that the corrected geographical supervision is
more closely aligned with its actual distribution, we conduct a
systematic analysis of the generated geographical supervision
and discover two priors. They are named as “minor changes”
and “spatial aggregation”, which can restrict the correction
process. The prior knowledge “minor changes” reflects the
fact that geographical supervision may not change signifi-
cantly over time. We propose a regularization term to ensure
that geographical supervision correction adheres to this prior
knowledge by bringing the correction matrix close to the
identity matrix. The prior knowledge “spatial aggregation”
reflects the fact that land covers present an aggregated state in
the spatial distribution. We propose a regularization term that
lets networks produce uneven predictions, ensuring that the
prior “spatial aggregation” is satisfied. In addition, it can also
keep the network from producing excessively smooth results
and ensure the effectiveness of representation learning.

We adopt Levir-KR dataset [39] and three GLC products,
GLobeLand30 [40], GLCFCS30 [41] and FromGLC30 [42],
for representation learning. We demonstrate our method’s
effectiveness in scene classification, semantic segmentation,
and object detection of remote sensing images. GeoKR [39],
ImageNet pre-training method [20], and contrastive learning
methods including Moco [21], SimCLR [22], and BYOL [23]
are selected as comparison methods. Our experimental results
demonstrate that our method effectively reduces the interfer-
ence of deviated geographical supervision on representation
learning and enhances the performance of downstream tasks.

The contributions can be summarized as follows:

• An adaptive correction method of deviated geographical
supervision is proposed to improve the performance of
representations learning in remote sensing images. The
correction matrix is designed to correct the deviated
geographical supervision adaptively while network pre-
training.

• Regularization terms are proposed to ensure that the
corrected geographical supervision conforms to prior
knowledge of land cover change and spatial distribution,
therefore preventing the geographical supervision correc-
tion and representation learning process from collapsing.

• Experimental results prove that method can eliminate the
influence of deviations and further improve the perfor-
mance of representation learning.

The rest of this paper is organized as follows. In Section
II, we introduce the related work. In Section III, we give a
detailed introduction of our proposed method. In Section IV,
the experimental results are presented. Conclusions are drawn
in section V.

II. RELATED WORK

A. Self-supervised Representation Learning

Self-supervised representation learning divides the deep
learning-based image processing problem into two stages. In
the first stage, several pretext tasks are designed to extract
supervision information from the data itself or the external
environment in order to construct an appropriate loss function
and finish network pre-training. Due to the fact that this
procedure does not require manual annotations, any scale
dataset can be utilized for pre-training. In the second stage,
a small quantity of annotated data is used to fine-tune the
pre-training model for specific downstream tasks (image clas-
sification, object detection, semantic segmentation and etc.). It
can improve the performance of downstream tasks and reduce
their demand for manual annotations.

Prior to self-supervised representation learning, the Ima-
geNet pre-training model + fine-tuning paradigm is typically
adopted. Its issue is that because the ImageNet [20] dataset
is manually annotated, it is extremely challenging to continue
expanding its scale. Self-supervised learning does not require
manually labeled data during the pre-training stage, so it has
the ability to exploit an infinite amount of data. However, it
is highly dependent on the efficiency of pretext tasks. Pretext
tasks that are well-designed can aid the network in extracting
effective representation. They can be classified into three
categories based on the way they get supervision information:
from single image [12–19, 43], from multiple images [21–31],
and from external environment [32–34].

• from single image
The majority of early researches obtains supervision and

constructs loss functions from a single image transformation.
For instance, use the input color image as the label, convert
it to grayscale image, and create a pretext task based on the
image coloring task [17, 18]. Occlude a random portion of
the image and use the image inpainting task as a pretext task
for completing the network’s pre-training [15, 16, 19]. These
pretext tasks are also frequently used image processing tasks,
which can be completed effectively only when the network
understands the image, allowing for the extraction of effective
representations. However, the pre-training model generated by
these methods is prone to overfitting, and the effect is generally
inferior to the ImageNet pre-training model.

• from multiple images
Contrastive learning [21–31] is the most frequently used and

effective method. During network pre-training, the contrastive
learning method constructs the loss function using the rela-
tionship between representations of multiple images. Firstly,
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positive samples of the input image are obtained through data
augmentation, and negative samples are re-selected from the
training data. Then, the input image’s representation and the
positive sample’s representation are constrained to be close
to one another, while the input image’s representation and
negative sample’s representation are constrained to be far
apart.

Contrastive learning significantly improves self-supervised
learning’s performance and outperforms the ImageNet [20]
pre-training model in a variety of downstream tasks. The divi-
sion of positive and negative samples, particularly the selection
of negative samples, is critical for contrastive learning to be
effective. [25] proposes that negative samples be saved and
updated in a memory bank, which can significantly increase
the number of negative samples during pre-training stage and
improve the quality of negative samples. However, this method
requires a large amount of memory to save the memory bank,
and updating the negative samples might take a long time. On
this basis, he et al. propose MoCo [21, 26, 44] series methods
that save and update negative samples using a momentum
encoder rather than a memory bank, which not only saves
memory but also improves the quality of negative samples and
significantly improves the effect of comparative learning. [22]
proposes an end-to-end contrastive learning method in which
each image is treated as a positive sample and the remaining
data as negative samples, but experiments demonstrate that
this method requires a larger batch size.

• from external environment
Along with the methods outlined above, supervision infor-

mation can be gleaned from external data such as text and
sound that closely match the image [32–34]. For instance,
[33] collects some images and text data concurrently on the
Internet, use text to supervise image representation learning,
and achieve favorable results.

B. Representation Learning for Remote Sensing Images

Due to the fact that self-supervised learning does not require
annotated data, the efficiency of representation learning is rela-
tively low. To replicate the ImageNet pre-training effect, some
additional information must be added, such as the relationship
between multiple images or external text and sound data.
However, it is nearly impossible to obtain the corresponding
text and other data for remote sensing images. Additionally,
due to the similarity of land covers, a large number of remote
sensing images exhibit similar visual characteristics, making
it difficult to ensure sufficient discrimination between positive
and negative samples. The majority of researches on remote
sensing representation learning makes reference to some form
of geographical knowledge that cannot be acquired through
general image representation learning. As a result, learning
representations for remote sensing images is distinct from
learning representations for other types of images.

[35, 37] select positive and negative samples using geo-
graphical location information as a reference, which makes
the selection more rational and enhances the effectiveness
of representation learning. [36] creates a new head with
geographical location based on the original self-supervised

representation learning framework. Additionally, [39] incor-
porates global land cover products and geographic location as
geographical knowledge to provide supervision for representa-
tion learning. It has the potential to enhance the effectiveness
of self-supervised learning. However, due to the differences in
producing times, the supervision provided by the geographical
knowledge will invariably introduce deviations and distort the
effect of the pre-training model.

III. METHOD

In this section, we detail our method for deviated
Geographical supervision Correction (GeCo) to improve the
performance of remote sensing representation learning. The
overall is shown in fig. 1 1.

A. Overall Framework

We use GlobeLand30 2020, FromGLC30 2017, and
GLCFCS30 2020 to generate geographical supervision for re-
mote sensing images. The process for generating geographical
supervision is identical to that described in section III-B.

Because remote sensing images and GLC products have
different producing times and resolutions, deviations may still
be introduced into the generated geographical supervision.
The learning process can be expressed as follows under the
guidance of deviated geographical supervision:

min
θ
L(X,A | θ), (1)

where L represents the loss function for representation learn-
ing. X and A represent input image and its corresponding
deviated geographical supervision, respectively. θ denotes net-
work parameters.

To reduce the impact on deviations, we propose an adaptive
correction method of deviated geographical supervision during
network pre-training in order to maximize the stability and ef-
fectiveness of representations. We define the correction matrix
W , which is capable of correcting the deviated geographical
supervision A into :

Ã = AT ×W. (2)

In general, at the spatial level, deviations manifest them-
selves as variations in the spatial distribution of various land
covers. The specific form of deviation at the level of geo-
graphical supervision is the difference between the proportion
of land covers in the entire dataset obtained using GLC
products and the actual proportion of land covers, which can
be described as D = A− Ã.

Simultaneously, we develop a joint optimization method for
optimizing both the network parameters θ and the correction
matrix W . The optimization process can be described as
follows:

min
θ,W

L(X, Ã | θ,W). (3)

To make the correction process more stable and to prevent
it collapsing, regularization terms are devised to constrain

1Some figures of geographical knowledge cites from [40–42]
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Fig. 1. Detailed structure of the proposed method. As the generated geographical supervision contains deviations, the proposed method is designed to learn
effective representations from deviated geographical supervision. It can adaptively correct deviated geographical supervision. Regularization terms can help
to keep the adaptive correction process from collapsing.
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adaptive correction of geographical supervision based on two
priors, named as “minor changes” and “spatial aggregation”.
The prior knowledge “minor changes” reflects the fact that
geographical supervision may not change significantly over
time, while prior knowledge “spatial aggregation” reflects
the fact that land covers present an aggregated state in the
spatial distribution. However, large deviations caused by major
changes do occur on occasion. To cope with major changes,
we adopt the reasonable geographical supervision generation
strategy (see section III-B), the mean-teacher network structure
and the stable correction matrix update method (see section
III-D) to ensure that the network can ignore the impact of
major changes as much as possible during the pre-training
stage.

The mean-teacher structure [45], which has been exten-
sively utilized in noise labels [46] and representation learning
[21], consists of student and teacher networks. Student and
teacher networks both have a similar structure. We begin with
ResNet50 [47] as the backbone f(. . . ) and add a single fully
connected layer to serve as the projection head h(. . . ). The
outputs of student and teacher networks are represented as Os
and Ot.

The following formula expresses the total pre-training loss
function:

L = αm ∗ LM + αc ∗ LC + αt ∗ LT + αp ∗ LP . (4)

LM is the student networks’ prediction loss function in the
form of mean square error (MSE):

LM = ‖Os − Ã‖22, (5)

where Os represents prediction of student networks and Ã
represents the corrected geographical supervision. LC denotes
the consistence loss function that may cause teacher networks
to restrict the update magnitude of student networks in order
to ensure a smooth training process:

LC = ‖Os −Ot‖22, (6)

where Os and Ot represent outputs of student networks and
teacher networks, respectively.
LT and LP denote the regularization terms that constrain

network pre-training and automatic supervision correction,
where will be introduced in section III-C.

B. Geographical Supervision Extraction

Global land cover (GLC) products we use in this paper
include GlobeLand30 [40], GLCFCS30 [41] and FromGLC30
[42]. Table I depicts detailed information about these products.

GlobeLand30: The GlobeLand30 [40] version of 2000 and
2010 become open access in 2014. The Ministry of Natural
Resources launched GlobeLand30 update in 2017. The latest
version is GlobeLand30 2020. It includes 10 land cover types
in total, namely cultivated land, forest, grassland, shrubland,
wetland, water bodies, tundra, artificial surface, bare land,
permanent snow and ice. The whole product is divided into
hundreds of regular tiles. Each tile contains a complete record
of an area’s land covers, which are saved as a separate TIF
image.

GLCFCS30: GLCFCS30 [41] contains 30 types of land
covers, which was first released in 2015 and updated in 2020.
The whole product is also composed of hundreds of tiles.

FromGLC30: FromGLC30 [42] is available in three ver-
sions of 2010, 2015 and 2017. It contains the same ten
common land cover types as GlobeLand30.

To conduct a unified analysis of various land cover products,
we design land cover merging rules that primarily merge
the land covers in GLCFCS30 to make them identical to
GlobeLand30 and FromGLC30. Table II contains information
about the types of land covers and the rules for merging them.

As they are not intended to be used with deep learning
methods, we need to extract the appropriate information from
these products and convert it to geographical supervision.
Geographical supervision can be used to build loss functions
for deep learning, ensuring that the pre-trained model is useful
for subsequent remote sensing image processing tasks. The
procedure for extracting geographical supervision is depicted
as follow.

We extract the geographical location of each remote sensing
image Xi firstly, which is represented by a vector as follows:

GTi = [lons, delta lon, 0, lats, 0, delta lat], (7)

where lons and lats represent the longitude and latitude of the
image’s upper-left corner. delta lon and delta lat denotes the
pixel resolution, or the change in longitude and latitude caused
by a single pixel movement.

As tiles are used to store GLC products, we should locate
the tile that contains the remote sensing image Xi, denoted
by Tj . Because the coverage area of each tile is significantly
larger than the coverage area of the remote sensing image, we
hypothesis that tile Tj contains the remote sensing image Xi

as long as the latitude and longitude of the image’s upper-left
corner are contained within the tile. GTj is used to represent
the geo-location of tile Tj . Additionally, because GlobeLand30
is projected using the UTM coordinate system, we first convert
the UTM coordinates of each tile to latitude and longitude
coordinates.

The region of tile Tj that corresponds to the remote sensing
image Xi can be cropped. Assuming the width and height of
Xi are represented as w and h, the latitude and longitude of
the image’s bottom-right corner can be calculated using the
following formulas:

lone = GTi(0) +GTi(1) ∗ w, (8)

late = GTi(3) +GTi(5) ∗ h. (9)

The corresponding coordinates of the region in the tile can
be calculated as follows using the position information for the
image’s upper-left and lower-right corners.

xmin = (GTi(0)−GTj(0))/GTj(1), (10)

ymin = (GTi(3)−GTj(3))/GTj(5), (11)

xmax = (lone −GTj(0))/GTj(1), (12)

ymax = (late −GTj(3))/GTj(3). (13)
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TABLE I
DETAIL INFORMATION ABOUT SELECTED GLOBAL LAND COVER (GLC) PRODUCTS, INCLUDING GLOBELAND30, GLCFCS30 AND FROMGLC30.

GLC Product Region Versions Number of types Satellite Resolution

GlobeLand30 [40] Global 2000, 2010, 2020 10 Landsat, HJ-1 30 meter
GLCFCS30 [41] Global 2015, 2020 30 Landsat 30 meter
FromGLC30 [42] Global 2010, 2015, 2017 10 Landsat 30 meter

TABLE II
DETAIL INFORMATION ABOUT THE TYPES OF LAND COVERS AND THE

RULES FOR MERGING THEM.

GlobeLand30 FromGLC30 GLCFCS30

Cultivated land Cropland

Rainfed cropland
Herbaceous cover

Tree or shrub cover (Orchard)
Irrigated cropland

Artificial surface Impervious surface Impervious

Bareland Bareland
Bare areas

Consolidated bare areas
Unconsolidated bare areas

Waterbodies Water Water body

Forest Forest

Evergreen broadleaved forest
Deciduous broadleaved forest

Open deciduous broadleaved forest
Closed deciduous broadleaved forest

Evergreen needle-leaved forest
Open evergreen needle-leaved forest

Closed evergreen needle-leaved forest
Deciduous needle-leaved forest

Open deciduous needle-leaved forest
Closed deciduous needle-leaved forest

Mixed leaf forest

Grassland Grassland

Grassland
Lichens and mosses

Sparse vegetation
Sparse herbaceous

Wetland Wetland Wetlands

Permanent snow & ice Snow/Ice Permanent ice and snow

Shrubland Shrubland

Shrubland
Evergreen shrubland
Deciduous shrubland

Sparse shrubland

Tundra Tundra ————————

Cropping tile Tj with the obtained position information
yields the land cover coverage map Mi of Xi. For GLCFCS30,
it is necessary to merge the land covers using merging rules.
We use Mi(k) to represent the number of land cover k and
Ai(k) to represent the proportion of land cover k in the image
Xi, where

∑
k Ai(k) = 1.

Using the preceding procedure, geographical supervision
for the image Xi can be generated using the three selected
GLC products, GlobeLand30 2020, GLCFCS30 2020 and
FromGLC 2017, denoted as AGlobei , AGLCi and AFromi . The
final supervision information is obtained by evaluating the
average of them:

Ai = {AGlobei +AGLCi +AFromi }/3. (14)

During pre-training stage, Ai is utilized to calculate loss
functions with corresponding image Xi.

C. Prior Knowledge and Corresponding Regularization Terms
We also need to teach the network the prior knowledge

unrelated to the image content, such as prior knowledge
of land cover change and spatial distribution. The prior
knowledge can be deduced from the geographical supervi-
sion of the whole pre-training dataset, as denoted as A =
{A1, A2, . . . , Ai, . . . , AM}. M is the number of images in
the pre-training dataset. The deduced prior knowledge are
named “minor changes” and “spatial aggregation”, which are
described as follow.

The prior knowledge “minor changes”: As the producing
times of GLC productions are significantly different from
ones of remote sensing images, this may result in the gen-
eration of deviated geographical supervision. In this paper,
a correction matrix W is proposed to correct the deviated
geographical supervision: Ã = AT ×W. The prior knowledge
“minor changes” represent the fact that deviations between the
corrected geographical supervision and deviated geographical
supervision should be as small as possible. This can be
interpreted intuitively as meaning that land covers may not
change significantly over times. For example, while cities,
cultivated land and water bodies may change slightly along
their edges, they rarely appear or vanish entirely, especially
on a short time scale.

The prior knowledge “spatial aggregation”: This prior
knowledge is deduced from the fact that the spatial distribution
of land covers is uneven, with noticeable spatial aggregation.
For example, the fact that artificial surfaces comprise an
absolute majority around cities, whereas forests and bareland
occupy a minority. Forests and grassland dominate in moun-
tainous locations, with artificial surfaces accounting for just a
minor portion.

We design two corresponding regularization terms in order
to apply the prior knowledge to representation learning.

Regularization term LT : The regularization term LT is de-
duced from the prior knowledge “minor changes”, which states
that the majority of land covers do not change significantly
over time. By restricting the correction matrix W , it assures
that adaptive correction of geographical supervision adheres
to this prior. This regularization term is solely applicable to
the correction matrix W , which is constructed as follows:

LT = ‖W− IW ‖2F , (15)

where IW denotes the unit diagonal matrix. During the
network pre-training, the prediction loss function tends to
update W in response to the network’s outputs, whereas the
regularization term tends to maintain the geographical super-
vision unchanged. Finally, a trade-off will be reached, which
implies that correction of deviated geographical supervision
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are made on the premise that the network can learn effective
representations of geographical supervision.

Regularization term LP : The regularization term LP is
derived from the prior knowledge “spatial aggregation”, which
states that land covers have an aggregated state in their spatial
distribution and the majority of remote sensing images contain
just one or two dominant land covers. It is accomplished by
instructing student networks to output uneven predicted results
using the following formula:

LP = −P ∗ logP, (16)

where P denotes the softmax value generated by the stu-
dent network, P = softmax(Os). W and θ represent the
correction matrix and network parameters θ. It can also be
regarded as a regularization term, denoted as LP , to constrain
the network pre-training and correction matrix updating. When
all elements in P have the same value, LP takes the maximum
value. Conversely, when just one element in P is 1 and the
others are 0, LP is assigned the minimum value 0. Since
network predictions participate in both the process of updating
of W and network parameters θ, this regularization term
can ensure that corrected geographical supervision meets the
requirement “spatial aggregation” by updating W . Addition-
ally, by directing the predictions of networks to satisfy the
prior knowledge, it can prevent the network from producing
excessively smooth results, hence avoiding the collapse of
network pre-training.

D. Joint Optimization

We design a joint optimization process that includes network
parameters θ and correction matrix W . It can ensure geograph-
ical supervision is corrected concurrently while network pre-
training. It divided the parameter updating process into two
stage: 1) updating θ with fixed W and 2) updating W with
fixed θ.

Updating θ with fixed W : In the first stage, we fix the
correction matrix W and update the network parameters θ.
The network parameters θ can be divided into student network
parameters θs and teacher network parameters θt. During the
network’s pre-training, θt does not participate in backward
process, but instead receives updates from the student network
using the moving average method at a predetermined interval:

θt = α ∗ θt + (1− α) ∗ θs, (17)

where α controls the update speed of the teacher networks. The
student network parameters θs are updated using the random
gradient descent method.

Updating W with fixed θ: To ensure the stability of the
correction matrix W update process and to avoid the impact
of violent fluctuations in deviated geographical supervision
correction during network pre-training, we employ the gradient
accumulation method to gradually accumulate the gradients
of W . After accumulating to a certain interval, we update W
using the gradient descent method.

E. Implementation Details

We can obtain a pre-trained model of the networks following
the pre-training stage. Model parameters that have been pre-
trained contain information about remote sensing images and
their associated geographical knowledge. We then design
distinct deep learning networks for each remote sensing image
processing task. Each of these networks is built on the same
structure’s backbone network f . The backbone network is
initialized using the parameters of the teacher network in the
pre-trained model. Each task necessitates the creation of a head
network, with the parameters in the head initialized randomly.

We develop our codes using Pytorch-1.7. The input image
is 256 × 256 pixels in size. For loss function’s coefficients,
we set αm = αc = 100 and αt = αp = 10. The learning rate
is set to 0.001 for updating network parameters and 0.0005
for updating correction matrix. The training batch size is set
to 114 and gradient’s cumulative step for updating correction
matrix is set to 8.

Due to the fact that shrubland and tundra are underrepre-
sented and poorly distinguished from other land covers, we do
not include them in the generation of geographical supervision.
Consequently, there are eight land covers for representation
learning, including cultivated land, artificial surface, bare land,
water bodies, forest, grassland, wetland and permanent snow
& ice. Therefore, the correction matrix W has dimensions of
8×8. The correction matrix is independent of the input remote
sensing images and is related to land covers. Consequently, the
final optimized correction matrix documents the correction of
various land cover across the entire dataset.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We will conduct thorough evaluation of our method based
on the following aspects. The generated geographical super-
vision is first analyzed to determine the plausibility of our
proposed prior knowledge. Then, to validate the effect of
our method, we compare it to contrastive learning methods
in computer vision and representation learning methods in
remote sensing images on downstream tasks such as scene
classification, semantic segmentation, and object detection. To
visually analyze the effect of our method, we also visualize the
initial features of the pre-trained models obtained by different
methods on the downstream dataset. Finally, we conduct
ablation experiments to assess the impact of various strategies.
The pre-training dataset, the used comparison method, the
dataset, the network structure, and implementation details on
downstream tasks are all described below.

The remote sensing images in the pre-training dataset orig-
inate from the Levir-KR dataset, which is described in detail
in [39]. Images are captured using a variety of sensors and
resolutions, including gaofen-1 multi-spectral sensor (GF1-
PMS) with resolution of 2 meters, gaofen-2 multi-spectral
sensor (GF2-PMS) with resolution of 0.8 meters, gaofen-1
wide file of view (GF1-WFV) with resolution of 16 meters,
and gaofen-6 wide file of view (GF6-WFV) with resolution
of 16 meters. All images are converted to RGB images with
256× 256 pixels for processing convenience.
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TABLE III
RMSE VALUES BETWEEN VARIOUS LAND COVERS IN GLC PRODUCTS WITH DIFFERENT RELEASE TIME.

Cultivated
Land

Artifical
Surfaces Bareland Waterbodies Foreast Grassland Wetland Permanent

Snow

GlobeLand30
2010 and 2020 0.2812 0.2356 0.0421 0.2057 0.0675 0.1240 0.1252 0.0135

GLCFCS
2015 and 2020 0.1894 0.1179 0.0.0467 0.1451 0.0.0774 0.1220 0.1528 0.0071

TABLE IV
MAE VALUES BETWEEN VARIOUS LAND COVERS IN GLC PRODUCTS WITH DIFFERENT RELEASE TIME.

Cultivated
Land

Artifical
Surfaces Bareland Waterbodies Foreast Grassland Wetland Permanent

Snow

GlobeLand30
2010 and 2020 0.1117 0.0810 0.0035 0.0552 0.0072 0.0212 0.0195 0.0003

GLCFCS
2015 and 2020 0.1095 0.0539 0.0083 0.0437 0.0131 0.0561 0.0593 0.0004

Cultivated Land

Artificial Surfaces

Bareland

Waterbodies

Foreast

Grassland

Wetland

Permanent Snow

GlobeLand30 2020 GlobeLand30 2010

0.00

0.10

0.20

0.30

0.40

0.50

0.60

GlobeLand30 2020 GlobeLand30 2010

a) Change comparison of land cover proportions over time for GlobeLand30 2010 and GlobeLand30 2020

b) Change comparison of land cover proportions over time for GLCFCS30 2015 and GLCFCS30 2020

Cultivated Land

Artificial Surfaces

Bareland

Waterbodies

Foreast

Grassland

Wetland

Permanent Snow

GLCFCS 2020 GLCFCS 2015

0.00

0.10

0.20

0.30

0.40

0.50

0.60

GLCFCS 2020 GLCFCS 2015

随时间变化的比较

Fig. 2. (better view in color) Change comparison of land cover proportions over times. a) For GlobeLand30 2010 and GlobeLand30 2020. b) For GLCFCS30
2015 and GLCFCS30 2020.

We validate our method’s effectiveness in remote sensing
image scene classification, semantic segmentation, cloud /
snow detection and object detection tasks using the corre-
sponding downstream datasets. Different proportions of train-
ing data are used in order to evaluate the effect of different
methods on different scale data. Comparison methods are
grouped into three types. The first group includes random
initialization and ImageNet pre-training. They are the widely

used initialization methods. The second group includes three
recent contrastive learning methods: MoCo [21], SimCLR
[22], and BYOL [23]. Finally, the third group of comparison
method is GeoKR [39] method for remote sensing image
representation learning. It can be regarded as the method that
learn representations from deviated geographical supervision.
All pre-training methods obtained from methods in the last two
groups are performed on the identical Levir-KR dataset [39],
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and the same comparative experiment employs the identical
training strategy.

For scene classification task, UCMerced [48] and RSSCN7
[49] datasets are used to fine-tune various pre-training models.
The UCMerced dataset is divided into 21 categories, each
of which contains 100 images measuring 256 × 256 pixels
in size. Its resolution is 0.3 meters. The RSSCN7 dataset is
divided into seven categories, each of which contains 400
images measuring 400 × 400 pixels in size. For processing
convenience, we downsample them to 256×256. Each dataset
is divided into a training set and a test set in a 3:1 ratio. In
terms of network settings, we add a fully connected layer for
classification after the global pool of pre-training networks.
The learning rate is set to 0.005, and the model is trained for
a total of 200 epochs. The final evaluation index is the average
accuracy of all categories.

For semantic segmentation tasks, we use the Vaihingen [50]
dataset with resolution of 0.09 meters to examine our method’s
effect. As cloud and snow detection are fundamentally related
to the remote sensing semantic segmentation problem, we
select Levir CS dataset [51] to evaluate our method’s per-
formance on cloud and snow detection task. The Vaihingen
dataset contains six categories of land covers. We divide it
into a training set, a validation set, and a test set in the
ratio 3:1:1, and then crop each image into patches measuring
256× 256 pixels in size. Levir CS is a dedicated dataset for
cloud and snow detection in remote sensing images, which are
captured from Gaofen-1 WFV with resolution of 16 meters.
We proportionately divide it into training, validation, and test
sets, and then down-sample each image to 256×256 pixels. In
terms of network configuration, the portion of the pre-training
network following global pooling is removed and replaced by
up-sampling and convolution layers. For the Vaihingen dataset,
the learning rate is set to 0.005 and for the Levir CS dataset, it
is set to 0.001. Each model is trained for 200 epochs, with the
learning rate decreasing to 90% after every 20 epochs. During
training, the mIoU (mean average of Intersection-over-Union)
of the validation set is calculated after every 20 epochs, and
the model with the highest mIoU is retained as the final result.

In addition, we use the Levir dataset [52] with resolution
0.2 to 1 meters to validate our method’s performance on the
object detection task. Three objects are included in the Levir
dataset: airplanes, ships, and oil tanks. The dataset is divided
into a training set, a validation set, and a test set in the ratio
3:1:1. In terms of network configuration, the CenterNet [53]
network structure is used. The learning rate is set to 0.005.
After 200 epochs, the learning rate drops to 90%. Each model
is trained for 2000 epochs. We calculate the mAP (mean
average precision) of the validation set every 50 epochs trained
and save the best model as the final result.

B. Prior Knowledge Assessment
This section will examine the rationality and effectiveness

of prior knowledge. Calculating the degree of deviations
quantitatively explains the rationality of the proposed prior
knowledge ”minor changes.” The effectiveness of the prior
knowledge ”spatial aggregation” is demonstrated through an
analysis of the image’s dominant land cover.

Root mean squad error (RMSE) and mean absolute error
(MAE) are used as indicators to measure the land cover
distribution of different products, with each single image
serving as the smallest analysis unit. The following is the
calculation formula:

RMSE =

√√√√ 1

n

n∑
i=1

(Axi −A
y
i )

2, (18)

MAE =
1

n

n∑
i=1

|Axi −A
y
i |, (19)

where Axi and Ayi represent generated supervision information
of ith image with different GLC products x and y. Addi-
tionally, for the convenience of the subsequent analysis, we
specify that the total number of land cover j generated by GLC
product x in the pre-training dataset is Sx(j), as calculated
using the following formula:

Sx(j) =

n∑
i=1

Axi (j). (20)

We use Px(j) to represent the proportion of land cover j,
which is calculated as follows:

Px(j) = Sx(j)/
∑
k

Sx(k). (21)

In the following experiment, we depict Px as a histogram and
log(Sx) as a radar chart to intuitively show comparison of
land covers with varying proportions.

1) Analysis of Land Cover Changes over Time: We analyze
land cover changes over time using the GlobeLand30 versions
released in 2010 and 2020, as well as the GLCFCS30 versions
released in 2015 and 2020. Tables III and Table IV list RMSE
and MAE values between various land covers. Fig. 2 illustrates
a comparison of land cover proportions over time.

As can be seen, GlobeLand30 and GLCFCS30 exhibit
consistency with time change, as evidenced by the fact that
the change proportion is roughly equal for each land cover.
Additionally, the evolution of various land covers over time
demonstrates some differences. But even the most changed
land covers such as cultivated land, artificial surfaces, and
waterbodies, the changes are still minor in comparison to
the total amount. The analysis above demonstrates that the
majority of land covers undergo only minor changes on
a spatial or temporal scale, and rarely undergo significant
changes.

2) Analyses of Land Covers’ Spatial Aggregation: For
each remote sensing image Xi, we compute the geographical
supervision Ai and sort it by the proportion of each land
cover in descending order. The land cover with the highest
proportion is denoted by the symbol Ri,1, while the one with
the lowest proportion is denoted by Ri,8. We use the following
formula to calculate the average proportion value of the kth
largest land covers for all images in the pre-training dataset.

Rk =
1

n

n∑
i

Ri,k, (22)
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TABLE V
THE DISTRIBUTION OF LAND COVERS WITH VARYING PROPORTIONS IN THE PRE-TRAINING DATASET. DIFFERENT ROWS DENOTE THE RESULT OF

VARIOUS GLC PRODUCTS, WHEREAS DIFFERENT COLUMNS DENOTE THE Rk .

R1 R2 R3 R4 R5 R6 R7 R8

GlobeLand30 2020 0.9171 0.0759 0.0063 0.0007 0.0001 0.0000 0.0000 0.0000
GLCFCS30 2020 0.8042 0.1556 0.0321 0.0073 0.0006 0.0001 0.0000 0.0000
FromGLC30 2017 0.8294 0.1367 0.0273 0.0056 0.0008 0.0001 0.0000 0.0000

支配地物

a) The proportion change of land covers with different orders using GlobeLand30 2020.

1th 2th 3th 4th 5th 6th 7th 8th

b) The proportion change of land covers with different orders using GLCFCS30 2020.

1th 2th 3th 4th 5th 6th 7th 8th

c) The proportion change of land covers with different orders using FromGLC30 2017.

1th 2th 3th 4th 5th 6th 7th 8th

𝑅1

𝑅2

𝑅3

𝑅4

𝑅5

𝑅6

𝑅7

𝑅8 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅7 𝑅8
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Fig. 3. The proportion changes of land covers with different Rk and different GLC products. a) The proportion change of land covers with different Rk

using GlobeLand 2020. b) The proportion change of land covers with different Rk using GLCFCS30 2020. c) The proportion change of land covers with
different Rk using FromGLC 2017.
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where Ri,k refers to the kth largest land covers for ith image
in the pre-training dataset. Rk represents the kth largest land
cover proportion for the pre-training dataset.

Table V lists values of R1 to R8. Different rows denote the
result of various GLC products, whereas different columns
denote the Rk. Fig. 3 illustrates the proportional change qual-
itatively using funnel chart and pie chart. As can be observed,
the proportion of land covers with the largest proportion has
typically over 80%, while the proportion of land covers with
the third largest proportion has been less than 5%, indicating
that the majority of images contains only one or two types of
land covers.

The objective of this experiment is to demonstrate that the
spatial distribution of land covers is uneven, with noticeable
“spatial aggregation”. For example, the fact that artificial
surfaces comprise an absolute majority around cities, whereas
forests and bareland occupy a minority. Forests and grassland
dominate in mountainous locations, with artificial surfaces
accounting for just a minor portion.

Fig. 4. (better view in color) Generated land cover map. Different colors
are assigned to different land cover types. Histograms are used to display the
geographical supervision.

Fig. 4 depicts land cover maps and geographical supervision
generated using various GLC products to better illustrate the
prior knowledge of land cover changes and spatial distribution.
Each row is an illustration. The first column is the remote
sensing image, the second through fourth columns are the
visualization of land cover maps, and the fifth column is the
geographical supervision calculated based on the various land
cover maps. According to the proposed prior and assessment
of the land covers, the change of land covers is generally small,
and for the majority of images, the geographical supervision
produced by different GLCs is comparable to the results shown
in the Fig. 4.

Despite the fact that there are some deviations between the
results generated by different products, the majority of them
exist at the edges of land covers. This is likely due to the
different resolutions of the image and GLC products, as well
as the minor changes in the land covers. These deviations
have no effect on the land cover types depicted on the land
cover map and only result in minor variations in the values

of the geographical supervision counterparts. Our proposed
method can correct these deviations adaptively to enhance the
performance of representation learning.

C. Performance on Downstream Tasks

1) Scene Classification: Table VI illustrates the experimen-
tal results. Different columns in Table VI represent various
training proportions. Methods marked with ? indicate that the
representation learning starts from the ImageNet pre-training
model.

As demonstrated by the experimental results, when com-
pared to random initialization, our method significantly im-
proves scene classification performance, especially when train-
ing data is scarce. At the same time, despite the fact that
the ImageNet [20] pre-training model is not obtained with
remote sensing images, it outperforms random initialization,
indicating that it can provide some general image representa-
tions. Additionally, while contrastive learning methods are also
pre-trained with remote sensing images, their performance is
harmed by the problem of unstable training due to the large
number of images with similar land covers. The performance
of remote sensing representation learning can be significantly
improved by incorporating geographical knowledge. However,
when compared to the effect of GeoKR, it is clear that there are
some deviations in the supervision information generated by
geographical knowledge, which impairs representation learn-
ing performance. Our method can effectively mitigate these
deviations and improve performance of downstream tasks.

2) Semantic Segmentation: Table VII presents the segmen-
tation results for the Vaihingen dataset, while Table VIII and
Table IX present the cloud and snow detection results. The
first row of tables indicates the various training proportions.

The experimental results demonstrate that our method out-
performs random initialization and ImageNet pre-training,
particularly when training data is scarce. The comparison
to GeoKR demonstrates that our method has the potential
to significantly improve segmentation performance. This im-
provement is more noticeable when the training dataset is
smaller. Indeed, when sufficient training data is available, we
can observe a gradual narrowing of the gap between different
methods. This demonstrates that having sufficient annotation
data can also help mitigate the issue of deviated geographical
supervision.

Fig. 5 displays the semantic segmentation results of various
methods applied to the Vaihingen dataset [50]. As shown
in the figure, our method improves the overall performance
of semantic segmentation similar to the effect demonstrated
by the quantitative results. Compared to contrastive learning
methods, our method can improve discrimination accuracy
for categories with less discrimination, such as “Tree” and
“Low vegetation”. These enhancements are most evident in
the sharper segmentation edges obtained by our method. In
addition, our method is more effective at extracting edge
information from small targets, such as “car”.

Fig. 6 illustrates the cloud and snow detection performance
of various methods. As can be seen, various methods for
cloud detection are effective. However, when it comes to snow
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TABLE VI
SCENE CLASSIFICATION RESULTS ON UCMERCED AND RSSCN7 DATASET. BEST RESULTS ARE MARKED IN BOLD. EACH COLUMN SHOWS VARYING

PROPORTIONS OF TRAINING DATA, WHEREAS EACH ROW REPRESENTS CLASSIFICATION ACCURACY OF DIFFERENT METHODS. METHODS MARKED WITH
? INDICATE THAT THE REPRESENTATION LEARNING STARTS FROM THE IMAGENET PRE-TRAINING MODEL.

UCMerced RSSCN7
5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

Random 0.4247 0.5238 0.6362 0.7689 0.9105 0.4790 0.6143 0.6610 0.7179 0.8357
ImageNet 0.6622 0.8273 0.8806 0.9022 0.9562 0.6752 0.7829 0.8276 0.8593 0.9229

MoCo [21] 0.6533 0.7911 0.8381 0.9073 0.9378 0.6819 0.7790 0.8329 0.8710 0.9024
SimCLR [22] 0.5746 0.7403 0.8127 0.9168 0.9365 0.6914 0.7581 0.7919 0.8138 0.8710
BYOL [23] 0.5702 0.7632 0.8787 0.8737 0.9422 0.6948 0.7748 0.7733 0.8252 0.8714

GeoKR [39] 0.6229 0.7867 0.8368 0.8978 0.9416 0.8029 0.8548 0.8843 0.8924 0.9005
GeoKR? [39] 0.7048 0.8470 0.9092 0.9549 0.9695 0.8448 0.8933 0.8933 0.9152 0.9419

GeCo 0.6959 0.8063 0.8781 0.9384 0.9613 0.8286 0.8581 0.8900 0.9176 0.9391
GeCo? 0.7448 0.8425 0.8933 0.9632 0.9746 0.8514 0.8625 0.9054 0.9304 0.9404

TABLE VII
SEMANTIC SEGMENTATION RESULTS ON VAIHINGEN DATASET. MIOU IS USED AS THE EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD. EACH

COLUMN SHOWS VARYING PROPORTIONS OF TRAINING DATA, WHEREAS EACH ROW REPRESENTS MIOU OF DIFFERENT METHODS. METHODS MARKED
WITH ? INDICATE THAT THE REPRESENTATION LEARNING STARTS FROM THE IMAGENET PRE-TRAINING MODEL.

0.25% 0.5% 1% 2% 5% 10% 20% 50% 100%

Random 0.3054 0.3369 0.3846 0.3757 0.4194 0.4727 0.5106 0.6309 0.6448
ImageNet 0.2974 0.3575 0.3470 0.4050 0.4640 0.4455 0.5177 0.6611 0.7015

MoCo [21] 0.3295 0.3463 0.4800 0.4354 0.5450 0.5929 0.6128 0.6406 0.6819
SimCLR [22] 0.3270 0.3349 0.4102 0.4450 0.5098 0.5939 0.5979 0.6417 0.6651
BYOL [23] 0.2325 0.3179 0.3976 0.4913 0.5925 0.6447 0.6829 0.6870 0.7271

GeoKR [39] 0.3634 0.4285 0.5165 0.5783 0.6209 0.6423 0.6796 0.6861 0.7110
GeoKR? [39] 0.3607 0.4155 0.5150 0.5665 0.6390 0.6397 0.6978 0.7159 0.7268

GeCo 0.3802 0.4411 0.5323 0.5800 0.6355 0.6582 0.6807 0.7108 0.7203
GeCo? 0.3754 0.4466 0.5297 0.5758 0.6462 0.6641 0.7175 0.7228 0.7277

Impervious
surfaces

Low
vegetation Tree CarBuilding Clutter /

background

Image Random ImageNet GeCo∗Label MoCo SimCLR BYOL GeoKR∗  

Fig. 5. (better viewed in color) Semantic segmentation results on Vaihingen dataset. The first column represents the input image, while the second column
represents the label. The final seven columns depict results of different methods.
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TABLE VIII
CLOUD DETECTION ON LEVIR CS DATASET. IOU IS USED AS THE EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD. EACH COLUMN SHOWS
VARYING PROPORTIONS OF TRAINING DATA, WHEREAS EACH ROW REPRESENTS CLOUD DETECTION ACCURACY OF DIFFERENT METHODS. METHODS

MARKED WITH ? INDICATE THAT THE REPRESENTATION LEARNING STARTS FROM THE IMAGENET PRE-TRAINING MODEL.

0.5% 1% 2% 5% 10% 20% 50% 100%

Random 0.6582 0.6364 0.6198 0.6905 0.6764 0.6889 0.7093 0.7320
ImageNet 0.6892 0.6586 0.7077 0.6817 0.6618 0.7219 0.7026 0.7344

MoCo [21] 0.6703 0.6611 0.6920 0.6755 0.6816 0.6853 0.7210 0.7338
SimCLR [22] 0.5994 0.6581 0.6363 0.6690 0.6532 0.7128 0.6651 0.7256
BYOL [23] 0.6712 0.6830 0.7020 0.7078 0.6881 0.7230 0.7349 0.7359

GeoKR [39] 0.6905 0.6954 0.7130 0.7181 0.7371 0.7563 0.7484 0.7622
GeoKR? [39] 0.6930 0.6989 0.7099 0.7337 0.7233 0.7332 0.7510 0.7507

GeCo 0.6941 0.7010 0.7219 0.7355 0.7474 0.7530 0.7646 0.7765
GeCo? 0.6898 0.7018 0.7121 0.7333 0.7409 0.7587 0.7502 0.7617

TABLE IX
SNOW DETECTION ON LEVIR CS DATASET. IOU IS USED AS THE EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD. EACH COLUMN SHOWS
VARYING PROPORTIONS OF TRAINING DATA, WHEREAS EACH ROW REPRESENTS SNOW DETECTION ACCURACY OF DIFFERENT METHODS. METHODS

MARKED WITH ? INDICATE THAT THE REPRESENTATION LEARNING STARTS FROM THE IMAGENET PRE-TRAINING MODEL.

0.5% 1% 2% 5% 10% 20% 50% 100%

Random 0.0057 0.1578 0.2513 0.2928 0.3190 0.4154 0.4012 0.4447
ImageNet 0.2326 0.2743 0.3425 0.2911 0.3115 0.3670 0.4060 0.4700

MoCo [21] 0.2631 0.3088 0.3176 0.3176 0.2750 0.3288 0.4349 0.4447
SimCLR [22] 0.1630 0.2599 0.2747 0.2942 0.3237 0.2635 0.3304 0.4031
BYOL [23] 0.2669 0.2704 0.3491 0.3722 0.3558 0.4221 0.4361 0.4486

GeoKR [39] 0.2025 0.3059 0.3778 0.4070 0.4749 0.5421 0.5102 0.5730
GeoKR? [39] 0.2532 0.3566 0.3938 0.4526 0.4006 0.4628 0.5055 0.4992

GeCo 0.1389 0.3101 0.3943 0.4664 0.4903 0.5266 0.5547 0.5778
GeCo? 0.2261 0.3342 0.3857 0.4411 0.5005 0.5454 0.5455 0.5375

TABLE X
OBJECT DETECTION ON LEVIR DATASET. MAP IS USED AS THE

EVALUATION INDEX. BEST RESULTS ARE MARKED IN BOLD. EACH
COLUMN SHOWS VARYING PROPORTIONS OF TRAINING DATA, WHEREAS
EACH ROW REPRESENTS OBJECT DETECTION ACCURACY OF DIFFERENT

METHODS. METHODS MARKED WITH ? INDICATE THAT THE
REPRESENTATION LEARNING STARTS FROM THE IMAGENET

PRE-TRAINING MODEL.

0.5% 1% 5% 10% 50% 100%

Random 0.0192 0.0522 0.2139 0.4678 0.7009 0.7178
ImageNet 0.0175 0.0551 0.3189 0.5250 0.7191 0.7370

MoCo [21] 0.0092 0.0589 0.3425 0.5787 0.6512 0.6826
SimCLR [22] 0.0092 0.0398 0.1632 0.5048 0.7243 0.7229
BYOL [23] 0.0071 0.0452 0.2396 0.5391 0.7215 0.7370

GeoKR [39] 0.0715 0.0729 0.3886 0.5979 0.7164 0.7288
GeoKR? [39] 0.0231 0.0740 0.3716 0.5969 0.7395 0.7632

GeCo 0.0230 0.0981 0.4048 0.5488 0.7370 0.7835
GeCo? 0.032 0.1417 0.4671 0.6297 0.7329 0.7972

detection, the various methods exhibit significant differences.
There are two primary causes of errors: one is that clouds
and snow cannot be correctly distinguished, as illustrated in
the second and third rows of the figure, and the other is that
land is misinterpreted as cloud or snow, as illustrated in the
final row. Both errors can be significantly reduced using our
proposed method. As can be seen from the results, GeCo
improves the ability to discriminate and decreases the area
of misjudgment, although there is also the issue of cloud and
snow being indistinguishable. The GeCo method, in particular,
can significantly reduce the probability of misjudging ground
objects as snow.

3) Object Detection: The results of object detection are
shown in Table X. Different columns in the table repre-
sent various training proportions. The experimental results
demonstrate that our method significantly improves the object
detection performance. When the proportion of labeled data
is between 0.5% and 1%, all methods have a relatively small
effect. It is proved that although representation learning can
enhance object detection’s effectiveness, it also requires a
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Cloud Snow Land

Image Random ImageNet GeCo∗Label MoCo SimCLR BYOL GeoKR∗  

Fig. 6. (better viewed in color) Cloud / snow detection results on Levir CS dataset. The first column represents the input image, while the second column
represents the label. The final seven columns depict results of different methods.

Image Random ImageNet GeCo∗Label MoCo SimCLR BYOL GeoKR∗  

airplane ship oiltank

Fig. 7. (better viewed in color) Object detection results on Levir dataset. The first column represents the input image, while the second column represents
the label. The final seven columns depict results of different methods.

certain amount of labeled downstream dataset. After utilizing
more than 50% of the annotated data, almost all methods pro-
duced acceptable results, and their differences are becoming
small. Our method, on the other hand, still increases object
detection accuracy by approximately 3%, demonstrating that
it can continue to increase performance without adding labels.

Fig.7 depicts the object detection results of various pre-
training methods. It is typically challenging for deep learning-
based object detection methods to identify objects with a dense

distribution and a location near the image’s edge. As shown
in the figure, various methods for detecting these challenging
targets are unstable, but our proposed method can improve
detection performance and stability. As shown in the first row
of the figure, almost all methods can accurately detect the
airplane in the middle of the image, but many methods cannot
detect the targets at the image’s edge. However, our method
may be accurate to detect them. In the second row of the figure,
the detection results of certain dense oil tanks are displayed.
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The majority of methods have issues with missed objects and
false positives, but our method performs significantly better.
In addition, our method can achieve favorable results for some
onshore ship detection tasks, as shown in the last two rows.

4) Discussion: It can be seen from the above results,
our method achieves the best results in the vast majority of
semantic segmentation task and cloud / snow detection tasks,
and in general outperforms GeoKR and other methods. On
the scene classification task, our method performs marginally
better than the GeoKR method, but in some cases, the GeoKR
method achieves better results than our method. In the two
cases with less training data, GeoKR achieves better results
than our method for the object detection task.

On the classification task of scene classification, the reason
why our method is not as effective as GeoKR in some
cases may be that the scene classification task is relatively
straightforward. Therefore, the task of scene classification may
have a relatively high tolerance for deviations in land cover. As
long as information about land covers is included in the pre-
training model, the performance of the task can be effectively
improved.

For the more difficult task of semantic segmentation and
cloud / snow detection, our method yields the best results in
almost every cases. From the visualization results, it is evident
that our method is capable of achieving more refined semantic
segmentation results. In the cloud and snow detection task, our
method significantly improves the ability to differentiate cloud
and snow and reduces the likelihood of misidentifying ground
objects as cloud and snow.

On the object detection task, although our method is inferior
to GeoKR in some cases, it is evident that the advantages of
GeoKR are not particularly apparent in these cases. Similarly,
in other cases, our method outperforms the GeoKR method
by a significant margin. Therefore, in terms of overall perfor-
mance, our method is superior and more stable. In conjunction
with the visualization results, we are able to conclude that our
method can achieve better results with more complex data.

In conclusion, when considering the overall performance
of initialization, our method outperforms other methods in
terms of both the number of cases with the best results and
the refinement degree of results. Our method is significantly
superior to other methods for improving downstream tasks,
particularly for tasks that are more closely related to land
covers or more difficult.

D. Feature Visualization

It is known that an effective initialization is crucial for
deep learning methods. In addition to directly comparing
the accuracy of pre-trained models on downstream tasks,
the initialization effects of different pre-trained models can
be visualized by visualizing their feature maps. In order
to visualize the initialization effect of various pre-training
models, we use them to extract the features of the downstream
data and obtain the heat map of the extracted features via
dimensionality reduction and normalization. The visualization
of feature maps is shown in Fig. 8. In the visualized feature
map, the larger the value, the larger the response to the

corresponding region of the image. The first row represents
the result of feature visualization on the scene classification,
which are accomplished by up-sampling the output of the
final backbone layer. The final three rows represent the feature
visualization results for semantic segmentation, cloud / snow
detection and object detection, respectively. Since these tasks
require the use of multiple layer fusion strategies, we up-
sample the outputs of the different pooling layers during
visualization and then superimpose them to obtain the final
feature map.

For the feature map of random initialization method, the
response is nearly uniformly distributed around the image’s
perimeter and does not differ significantly between images.
This demonstrates that the random initialization method can
only provide an initialization scheme that allows the network
to converge, but has no effect on the enhancement of down-
stream tasks. ImageNet initialization can provide discrimina-
tive features, but the ImageNet dataset lacks remote sensing
images. It has nothing to do with land cover and doesn’t
seem very plausible. From the feature visualization results of
contrastive learning, it is clear that these methods can learn
some discriminative information from remote sensing images,
but their level of refinement is not as good as ours. Due
to the incorporation of geographical knowledge, it is evident
that the initial features and edges generated by our method
are more realistic and distinct. This may provide a more
reasonable initialization, thereby enhancing the performance
of downstream tasks.

E. Effectiveness Analysis on Geographical Supervision Cor-
rection

We firstly conduct ablation experiments to demonstrate the
effect of each component of our method, as shown in Table
XI, Table XII, Table XIII, Table XIV and Table XV. The
baseline is constructed according to the GeoKR method [39].
The followings are the definitions of each ablation item:

• GLC. Utilize GLC products to generate geographical
supervision for representation learning. The results are
deviated from GeoKR.

• Ensemble (Ens). Utilize multiple GLC products to gen-
erate geographical supervision. Take the average value as
the final supervision A.

• Correction (Corr). The Correction matrix is added to
adaptively correct the deviated geographical supervision,
and network parameters are updated using the joint opti-
mization method.

• Regularization (Reg). The regularization terms are in-
corporated into the process of correcting geographical
supervision.

The first row of each table represents the method that
employs no strategy (baseline). ImageNet’s initialization is
served as the baseline for ablation experiment. The second
row represents the addition to the baseline of geographical
supervision by the GLC product. The third row represents
the geographical supervision obtained by integrating multiple
GLC products, while the last two rows represent the addition
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Fig. 8. (better view in color) Visualization of feature maps on downstream datasets. Different columns denote various pre-training methods.

TABLE XI
ABLATION STUDIES ON UCMERCED AND RSSCN7 DATASET. ABLATIONS ARE PERFORMED ON 1) GLC, 2) ENSEMBLE (ENS), 3) CORRECTION (CORR),

4) REGULARIZATION (REG).

Ablations UCMerced RSSCN7
GLC Ens Corr Reg 5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

× × × × 0.6622 0.8273 0.8806 0.9022 0.9562 0.6752 0.7829 0.8276 0.8593 0.9229
X × × × 0.7048 0.8470 0.9092 0.9549 0.9695 0.8448 0.8933 0.8933 0.9152 0.9419
X X × × 0.6768 0.8222 0.9054 0.9619 0.9648 0.8510 0.8890 0.8881 0.9286 0.9329
X X X × 0.7149 0.8330 0.8889 0.9562 0.9721 0.8338 0.8619 0.8714 0.9286 0.9157
X X X X 0.7448 0.8425 0.8933 0.9632 0.9746 0.8514 0.8625 0.9054 0.9304 0.9404

TABLE XII
ABLATION STUDIES ON VAIHINGEN DATASET [50]. ABLATIONS ARE PERFORMED ON 1) GLC, 2) ENSEMBLE (ENS), 3) CORRECTION (CORR), 4)

REGULARIZATION (REG).

GLC Ens Corr Reg 0.25% 0.5% 1% 2% 5% 10% 20% 50% 100%

× × × × 0.2974 0.3575 0.3470 0.4050 0.4640 0.4455 0.5177 0.6611 0.7015
X × × × 0.3607 0.4155 0.5150 0.5665 0.6390 0.6397 0.6978 0.7159 0.7268
X X × × 0.3398 0.4426 0.4945 0.5425 0.6425 0.6572 0.7114 0.7253 0.7253
X X X × 0.3373 0.4478 0.4943 0.6037 0.6364 0.6841 0.7063 0.7266 0.7350
X X X X 0.3754 0.4466 0.5297 0.5758 0.6462 0.6641 0.7175 0.7228 0.7277

TABLE XIII
ABLATION STUDIES ON CLOUD DETECTION. ABLATIONS ARE PERFORMED ON 1) GLC, 2) ENSEMBLE (ENS), 3) CORRECTION (CORR), 4)

REGULARIZATION (REG).

GLC Ens Corr Reg 0.5% 1% 2% 5% 10% 20% 50% 100%

× × × × 0.6892 0.6586 0.7077 0.6817 0.6618 0.7219 0.7026 0.7344
X × × × 0.6930 0.6989 0.7099 0.7337 0.7233 0.7332 0.7510 0.7507
X X × × 0.6862 0.6926 0.7062 0.7179 0.7353 0.7485 0.7504 0.7650
X X X × 0.6949 0.6872 0.7236 0.7397 0.7284 0.7407 0.7483 0.7684
X X X X 0.6898 0.7018 0.7121 0.7333 0.7409 0.7587 0.7502 0.7617



17

TABLE XIV
ABLATION STUDIES ON SNOW DETECTION. ABLATIONS ARE PERFORMED ON 1) GLC, 2) ENSEMBLE (ENS), 3) CORRECTION (CORR), 4)

REGULARIZATION (REG).

GLC Ens Corr Reg 0.5% 1% 2% 5% 10% 20% 50% 100%

× × × × 0.2326 0.2743 0.3425 0.2911 0.3115 0.3670 0.4060 0.4700
X × × × 0.2532 0.3566 0.3938 0.4526 0.4006 0.4628 0.5055 0.4992
X X × × 0.1860 0.3145 0.3581 0.4232 0.4794 0.4967 0.5576 0.5475
X X X × 0.2440 0.3269 0.4001 0.4513 0.4931 0.5079 0.5062 0.5336
X X X X 0.2261 0.3342 0.3857 0.4411 0.5005 0.5454 0.5455 0.5375

TABLE XV
ABLATION STUDIES ON LEVIR DATASET. ABLATIONS ARE PERFORMED ON 1) GLC, 2) ENSEMBLE, 3) CORRECTION, 4) REGULARIZATION.

GLC Ens Corr Reg 0.5% 1% 5% 10% 50% 100%

× × × × 0.0175 0.0551 0.3189 0.5250 0.7191 0.7370
X × × × 0.0231 0.0740 0.3716 0.5969 0.7395 0.7632
X X × × 0.0331 0.0870 0.4411 0.6035 0.7362 0.7815
X X X × 0.0187 0.1016 0.3998 0.6169 0.7574 0.7935
X X X X 0.0320 0.1417 0.4671 0.6297 0.7329 0.7972

of our proposed adaptive correction and regularization, respec-
tively.

When evaluating ablation experiments, in addition to com-
paring the accuracy of the method in different cases, it is
necessary to consider the number of times it achieved the best
results in different cases, which is a more accurate indicator
of the method’s overall effect. The results of the ablation
experiments indicate that the method without geographical
supervision is not as effective as the method with geographical
supervision, demonstrating the effectiveness of geographical
supervision. However, the “GLC” and “Ens” methods achieve
the best results in a minority of cases. After incorporating
our proposed adaptive correction and regularization, the meth-
ods achieve the best results in the vast majority of cases,
particularly for semantic segmentation and object detection
tasks. This also demonstrates that using adaptive correction
can indeed result in the network learning a more effective
representation, although the corrected geographical scale may
no longer be practical without the addition of regularization.
Once regularization is incorporated, it is possible to ensure
that the corrected geographical supervision is more realistic.
The performance of downstream tasks can be enhanced based
on the experimental results. This demonstrates that our method
can indeed produce a better pre-trained model by preserving
the land cover information during the pre-training stage.

In order to demonstrate the effect of regularization on
geographical supervision correction intuitively, we use a his-
togram to compare the distribution of geographical supervision
obtained with and without regularization terms, as illustrated in
Fig. 10. Without regularization terms, the corrected geographi-
cal supervision varies dramatically and the proportion of some
land covers is negative, which is inconsistent with their real
physical significance. This is because, in the absence of regu-
larization terms, the network may prioritize geographical su-
pervision correction in order to promote loss function decline.
It may result in overfitting the networks, which is detrimental
to the pre-training model’s migration to downstream tasks.

Additionally, the advantage of using representation learning
with geographical supervision is that it can be used to learn
about land cover information, which is frequently associated
with specific remote sensing image processing tasks. The
regularization terms are intended to constrain the network in
order to maximize pre-training effectiveness and to ensure that
the corrected geographical supervision still corresponds to the
original distribution of land covers.
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Fig. 9. The specific values of correction matrix.

Fig. 9 displays the specific values of correction matrix. Each
column represents the correction coefficient of each land cover,
corresponding to cultivated land, artificial surface, bare land,
water bodies, forest, grassland, wetland and permanent snow
& ice respectively. In each column, the diagonal element rep-
resents the proportional change at the corresponding position,
while the other positions represent the proportion of other
land covers that are incorrectly classified as this land cover.
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Fig. 10. A histogram to compare the distribution of geographical supervision obtained with and without regularization terms. For each land cover, bars marked
with different colors from left to right are the uncorrected geographical supervision, the corrected geographical supervision with and without regularization
terms.

Consistent with the proposed prior ”minor change”, it can be
observed that the diagonal element is always the largest of all
the elements. The smaller the value of the diagonal element,
the greater the potential land cover deviation. Consequently,
greater correction efforts are necessary. In conjunction with
tables III and IV, we can observe that the diagonal element
value of the correction matrix decreases as the potential
deviations of land cover increase. For example, among all land
covers, cultivated land and artificial surface have the greatest
possible deviations, so their corresponding values in correction
matrix are the smallest. This further proves that our correction
method is effective.

The above experiments demonstrate that even though the
correction matrix we employ is linear, it can still ensure the
efficacy and rationality of correction. Nonetheless, it is still
a very worthwhile research direction to investigate various
correction matrix design schemes. We will investigate the
effect of nonlinear correction methods and the method of
embedding land cover priors in the nonlinear correction matrix
in future research.

V. CONCLUSION

We propose an adaptive correction method of deviated
geographical supervision to improve the performance of repre-
sentation learning. Deviated geographical supervision, aroused
by the disparity in producing times between GLC products
and remote sensing images, may affect the performance of
representation learning. We define a correction matrix that en-
ables adaptive correction of deviated geographical supervision
during network pre-training. The joint optimization process is
designed to ensure that both the correction matrix and network
parameters are updated in a timely and reasonable manner. We
perform a systematic analysis of the generated geographical
supervision and discover two prior terms, “minor changes”
and “spatial aggregation”, that can restrict the correction of

geographical supervision. According to the prior knowledge,
two regularization terms are constructed. The regularization
term LT is deduced from prior knowledge “minor changes”.
By bringing the correction matrix close to the identity matrix,
it guarantee that the geographical supervision not change
significantly. The other regularization term LP is deduced
from prior knowledge “spatial aggregation”. It can guide
networks to produce uneven predictions and keep networks
from producing excessively smooth results. We demonstrate
our method’s effectiveness in scene classification, semantic
segmentation, and object detection of remote sensing images.
In comparison to three different types of comparison methods,
our proposed method consistently outperformed the others
across a range of downstream tasks and training scales. Exper-
iments demonstrate that our proposed method can effectively
eliminate impact of deviations and enhances the effect of
representation learning.
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