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Abstract—Generative adversarial network (GAN) has made
great progress in recent natural image super-resolution tasks.
The key to its success is the integration of a discriminator
which is trained to classify whether the input is a real high-
resolution (HR) image or a generated one. Arguably, learning
a strong discriminative prior is essential for generating high-
quality images. However, in remote sensing images, we discover
through extensive statistical analysis that there are more low-
frequency components than natural images, which may lead
to a “discrimination-ambiguity” problem, i.e. the discriminator
will become “confused” to tell whether its input is real or not
when dealing with those low-frequency regions, and therefore, the
quality of generated HR image may be deeply affected. To address
this problem, we propose a novel GAN-based super-resolution
algorithm named Coupled-Discriminated Generative Adversarial
Networks (CDGAN) for remote sensing images. Different from
the previous GAN-based super-resolution models in which their
discriminator takes in a single image at one time, in our model,
the discriminator is specifically designed to take in a pair of
images: a generated image and its HR ground truth, to make
better discrimination of the inputs. We further introduce a dual
pathway network architecture, a random gate, and a coupled
adversarial loss to learn the better correspondence between the
discriminative results and the paired inputs. Experimental results
on two public datasets demonstrate that our model can obtain
more accurate super-resolution results in terms of both visual
appearance and local details compared with other state-of-the-
arts. Our code will be made publicly available.

Index Terms—Super-resolution, remote sensing images, deep
convolutional neural networks, generative adversarial networks
(GAN), coupled adversarial training

I. INTRODUCTION

Image super-resolution, as an important image processing
technique that recovers high-resolution images from low-
resolution ones, has been received great attention in recent
years and has been widely used in many fields such as
medical image enhancement [1] and small object detection
[2]. In the field of remote sensing analysis, high-resolution
images play an important role in many applications, including
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target detection [3–5], semantic labeling [7, 8, 14, 15], and
scene analysis [9]. Apart from developing physical imaging
technologies, image super-resolution provides an alternative
way to effectively produce high-resolution remote sensing
images [6, 10, 12, 16].

The essence of image super-resolution can be considered as
the learning of an “universal” prior from image data, and then
recovering the missing details of the low-resolution images by
using this prior knowledge. In a remote sensing image super-
resolution task, most of the previous methods are borrowed
from the computer vision community without considering the
nature of the remote sensing imaging process. Some early
methods include sparse reconstruction based methods [6, 13]
and discrete wavelet transform based methods [10]. These
methods are designed by using low-level features and thus
their performance is limited. In recent years, deep learning
methods have played an important role in image super-
resolution by constructing hierarchical convolutional archi-
tectures and learning high-level feature representations [16–
18]. More recently, the residual dense model and recursive
block are also introduced to further improve the performance
of super-resolution [19–21]. Most of these methods simply
focus on minimizing the mean squared reconstruction error
and are evaluated by peak signal-to-noise ratios (PSNR). As a
result, their super-resolved outputs may have very high PSNR,
but may still suffer from an “over-smoothed” results [23–
25]. To this end, the Generative Adversarial Networks (GAN)
[26], has been introduced to image super-resolution more
recently to perceptually improve the reconstruction results
[22, 25, 29, 31].

GAN was originally proposed by A. Goodfellow et al. in
2014, and has then received great attention. GAN has achieved
impressive results in various tasks such as image generation
[26, 44], image style transfer [27, 28] and image superreso-
lution [25, 33]. The key to GAN’s success is the idea of an
adversarial training framework under which the two networks,
a generator G and a discriminator D, will contest with each
other in a minimax two-player game and forces the generated
data to be, in principle, indistinguishable from real ones. In
a GAN-based image super-resolution task, a generator aims
to generate high-resolution (HR) images from low-resolution
(LR) ones while the discriminator aims to tell whether its
input is real or not. Arguably, learning a discriminator D
with a strong discriminating ability is essential for generating
high-quality images. However, in remote sensing images, we
discover through extensive statistical analysis that there are
more flat regions and more low-frequency image components
than the natural images, e.g. the areas of the desert and beach.
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Fig. 1. To better understand the “discrimination-ambiguity” problem in a
GAN-based super-resolution model, let’s play a game. There are two groups
of image patches, wherein each group, there is only one LR image patch and
the rest are all HR ones. If you were a well-trained “discriminator”, can you
tell them apart? Obviously, one can easily identify that the last patch in the
group (a) is an LR patch, but as for the group (b), things are not that easy.

This may lead to a “discrimination-ambiguity” problem in
which it will become more difficult for a discriminator to tell
whether these image regions are generated or sampled from
real HR images, even for human eyes. As a result, the quality
of generative HR image may be deeply affected if we directly
apply the above GAN-based super-resolution frameworks to
remote sensing images.

To better understand this problem, let’s play a game. In
Fig. 1, we have two groups of image patches sampled from
a natural image (a) and a remote sensing image (b). In each
group, there is only one LR patch and the rest are HR ones.
If you were a well-trained “discriminator”, can you tell them
apart? Obviously, one can easily identify that the last patch in
the group (a) is an LR patch, but as for the group (b), things
are not that easy. This is because even in an HR remote sensing
image, it may still contain a large amount of low-frequency
regions, which could bring unexpected bias to the adversarial
training.

To further illustrate the “discrimination-ambiguity” prob-
lem, we run a well-trained discriminator [25] on two groups of
datasets, a collection of natural image datasets (“Set5” [34],
“Set14” [35], “BSD100” [36] and “Urban100” [37]), and a
remote sensing image dataset “UCMerced” [45]. The output
probabilities (how likely this region is identified that it belongs
to a HR image) of the discriminator on a large set of random
regions of each of two datasets are recorded. Fig. 2 shows
their output distributions. We can see that for natural images,
there are more output values close to probability 1, while for
a remote sensing image, more outputs are close to probability
0. This indicates that remote sensing images contain more
“ambiguity area” for a discriminator than natural ones.

Fig. 3 gives another example of the “discrimination-
ambiguity” problem. We randomly select two images from
the above two datasets, where the right half of each image
has been down-sampled x4 and then up-sampled by using
bicubic interpolation. The output scores of the discriminator
on a random set of image regions are recorded. We can see
that in the natural image (a), the HR part and LR part have
a clear difference in their output values. However, in the
remote sensing image (b), these image patches cannot be well
distinguished, i.e. even in an HR part, the discriminator still
gets relatively low outputs which are much close to that of an

Fig. 2. The output distributions of a well-trained discriminator [25] on some
natural image datasets: Set5 [34], Set14 [35], BSD100 [36] and Urban100
[37], and a remote sensing image datasets: UCMerced [45].

LR one.
To address the above problem, we propose a novel GAN-

based super-resolution algorithm for remote sensing images,
where we re-examine the discriminator under a totally different
point of view, i.e. to formulate it as a coupled discrimina-
tive training process. We refer to our method as Coupled-
Discriminated Generative Adversarial Networks (CDGAN).
Different with all previous GAN based super-resolution mod-
els in which their discriminator takes in a single input image
at one time, in our model, the discriminator is specifically
designed to take in a pair of images: a generated image and
its HR ground truth reference to make better discrimination of
the inputs, especially for the low-frequency image regions. On
this basis, we further introduce several technical components
including a “dual pathway network architecture”, a “random
gate”, and a “coupled adversarial loss function” to our model.
Specifically, the dual pathway network and the random gate
are designed to take in paired inputs for learning the better
discrimination, while the coupled loss function is designed
for learning better correspondence between the discriminative
results and the paired inputs. We conduct our experiments
on two publicly available datasets. Compared with other state
of the art methods, our method obtains more accurate super-
resolution results in terms of both visual appearance and local
details.

The contributions of our work are summarized as follows:
• We propose a new GAN-based image super-resolution

method named CDGAN for remote sensing images. In
previous methods, the discriminator takes in a single input
image at one time, while in our model, the discriminator
is specifically designed to take in a pair of images to
better discriminating its inputs especially for the low-
frequency regions in a remote sensing image.

• We further introduce three additional technical compo-
nents including a “dual pathway network architecture”,
a “random gate”, and a “coupled loss function” in our
discriminator in order to obtain better discrimination
ability and learn the better correspondence between the
outputs and the input pairs.

The rest parts of this paper are organized as follows. In
Section II, we give a detailed description of the proposed
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Fig. 3. Output probability (how likely a image patch belongs to a HR image)
of a well-trained discriminator [25] on (a) a natural image, and (b) a remote
sensing image.

method, including the network architectures, loss functions,
and the implementation details. In Section III, we give a
detailed description of our experimental datasets, evaluation
metrics, ablation analysis and experimental results. The con-
clusions are drawn in Section IV.

II. METHODOLOGY

In this section, we will first give a brief introduction to the
previous GAN-based image super-resolution methods. Then
we will introduce the proposed method including the design of
the network architectures, loss functions, and implementation
details.

A. GAN-based image super-resolution

A typical GAN consists of two neural networks: a generator
network G and a discriminator network D. The generator aims
to learn a mapping G(z) from a latent space z ∈ Z to a
particular data distribution of interest. The discriminator, on
one hand, aims to discriminate between instances from the true
data distribution x ∼ pdata and those generated ones G(z), on
the other hand, feeds its output back to G to further make the
generated data indistinguishable. The training of a GAN can
be considered as as the following min-max problem:

min
G

max
D
L(G,D) = Ez∼pz(z){log(1−D(G(z)))}

+ Ex∼pdata
{logD(x)},

(1)

where x and z represent a true data point and an input random
noise

In a GAN-based image super-resolution task [25, 33], the
above random noise z will be replaced by a low-resolution
image x. In addition, the generator G and the discriminator D
are usually constructed based on deep convolutional networks.
In this case, the G is trained to map a LR image x to a HR
one, and the D is trained to distinguish a real HR image from
a generated one. The G and D are trained to compete with
each other. Their objective function can be rewritten as the
follows:

min
G

max
D
L(G,D) = Ex∼p(x){log(1−D(G(x)))}

+ Ey∼p(y){logD(y)}
(2)

where x and y represent a LR image and the corresponding
HR ground truth. As the adversarial training progresses, the D
will have more powerful discriminative ability and thus the HR
images generated by G will become more and more realistic.

B. Coupled Discriminated GAN

To address the above mentioned “discrimination-ambiguity”
problem in remote sensings, we propose a new GAN-based
super-resolution method named Coupled Discriminated GAN.
The flowchart of the proposed method is shown in Fig. 4. Our
model consists of a generator G and a coupled discriminator
D. Suppose X represents and LR image domain, Y represents
an HR image domain. In this way, xi ∈ X represents an LR
remote sensing image and yj ∈ Y represents its corresponding
HR ground truth.

Generator: We design its architecture by referring to some
recent image super-resolution methods [25, 32, 33] which
achieve state-of-the-art performance in natural images. Instead
of making any interpolation of the LR images before feeding
it in the generator, we directly use it as the input to reduce
additional computational overhead. A set of convolution and
upsampling blocks are designed for the reconstruction. We
further integrate the idea of residual learning [42] to ease the
training. The ReLU activation function [38] is used after each
layer of convolution only except for its output layer. We use
the fractional-strided convolution [44] (a.k.a. the transposed
convolution) for the upsampling of the feature maps. The
details of the residual block and the upsample block are shown
in the right part of Fig. 4 and the lower part of Table I. We
use 16 residual blocks in the generator.

Coupled Discriminator: In this part, we will introduce the
core of the proposed method: the coupled discriminator. The
inputs of our discriminator consists of a super-resolved image
produced by the generator and a HR ground truth reference.
The coupled discriminator will be trained to distinguish which
one is a real HR image and which one is generated. To
learn better correspondence between the input pair and the
discriminative outputs, the paired inputs are first fed into a
random gate ψz(t1, t2) that randomly shuffles the order of the
two images and then produce a corresponding bool random
variable dz (dz = 0 or 1) according to their input order, which
is defined as follows:

(I1, I2, dz) = ψz(t1, t2) =

{
(t1, t2, 1), if z ≥ 0.5

(t2, t1, 0), if z < 0.5
(3)

where z is uniformly distributed random variable in the range
of [0, 1] to randomly adjust orders of the two input images I1
and I2. We set t1 = y and t2 = G(x), where G(x) represents
a super-resolved image and y represents a corresponding HR
ground truth.

The two images are then fed into a dual-pathway network to
extract features of the input image pairs. Then the feature maps
of the two images are concatenated together and are further
proceeded to produce the decision outputs. The lower-left part
of Fig. 4 shows the structure of the dual-pathway network.
As is suggested by [44], we use strided-convolutional layers
instead of pooling layers, and use Leaky ReLU [39] activation
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Fig. 4. An overview of the proposed method. The upper left part of this figure shows the architecture of our generator. The lower left part of this figure
shows the architecture of our coupled discriminator. A detailed configuration of our model is shown in Table I.

function after all convolutional layers in our discriminator,
except for the output layer, which uses sigmoid to convert
the logits to probabilities.

C. Loss function

We frame the training of our coupled discriminator under a
binary classification paradigm and we use dz as its reference
class id. When I1 = y and I2 = G(x), dz is set to 1, and in
this case the discriminator is trained to produce a high output
probability that close to 1: D(ψz(y,G(x)))→ 1. In contrast,
when I1 = G(x) and I2 = y, dz is set to 0, and in this case
the discriminator is trained to produce a low output probability
that close to 0: D(ψz(y,G(x)))→ 0.

The objective function of our coupled discriminator can be
considered as the sum of the binary cross-entropy function,
and thus can be written as follows:

Ladv(D) = Ex,y∼pdata
{dz log(D(ψz(y,G(x))))

+ (1− dz) log(1−D(ψz(y,G(x))))}.
(4)

Our discriminator can be trained by maximizing the above
objective function. As for the generator, it is trained to let D
make more mistakes. Therefore, its objective function has a
similar form with (4), while the only difference is to exchange
their ground truth labels dz and (1− dz):

Ladv(G) = −Ex,y∼pdata
{dz log(1−D(ψz(y,G(x))))

+ (1− dz) log(D(ψz(y,G(x))))}.
(5)

The adversarial training process of G and D can be essen-
tially considered as a minimax optimization process, where G
tries to minimize its objective while D tries to maximize it:
G?, D? = argminG maxD Ladv(G) + Ladv(D).

As is suggested by previous GAN-based super-resolution
works [33, 58], in addition to the adversarial objective func-
tions, we also introduce a “content loss” by minimizing the
mean square error between a HR ground truth image and
a generated one. This is because when we only use the
adversarial loss for training, the model will usually introduce

TABLE I
A DETAILED CONFIGURATION OF OUR MODEL

Layer names Input #Kernels Sizes/Strides

G
en

er
at

or
C1 Image 64 3× 3/1

m Res blks C1 − −/−
C2 Res blk out 64 3× 3/1

Upsample C2+C1 − −/−
C3 Upsample 64 3× 3/1
C4 C3 3 3× 3/1

D
is

cr
im

in
at

or

P1/C1 Image 64 3× 3/2
P2/C1 Image 64 3× 3/2
P1/C2 P1/C1 128 3× 3/2
P2/C2 P2/C1 128 3× 3/2
P1/C3 P1/C2 256 3× 3/2
P2/C3 P2/C2 256 3× 3/2

C4 P1/C3+P2/C3 256 3× 3/2
C5 C4 256 3× 3/2

FC6 C5 − −/−

R
es

bl
k C1 Input 64 3× 3/1

C2 C1 64 3× 3/1
Res add Input+C2 − −/−

U
ps

am
pl

e DC1 Input 64 3× 3/2
C1 DC1 64 3× 3/1

DC2 C1 64 3× 3/2
C2 DC2 64 3× 3/1

some undesired artifacts and make the generated image dis-
torted since the generator simply ignores holding on the low-
frequency contents (such as the structures and colors) while
only focusing on high-frequency components. The content loss
function is defined as follows:

Lcontent(G) = Ex,y∼pdata
{‖G(x)− y‖22}. (6)

We compute the mean square error ‖G(x)−y‖22 in their pixel
space.

Our final objective function L(G,D) is defined as follows:

L(G,D) = Ladv(G) + Ladv(D) + λLcontent(G), (7)

where λ > 0 controls the balance between the adversarial loss
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and the content loss. We aim to solve:

G?, D? = argmin
G

max
D
L(G,D). (8)

When λ is set to a very large value, the proposed method
will degenerate into a standard mean square error based super-
resolution method.

D. Implementation Details

Our training samples are a set of 64×64 image patches that
are randomly cropped from HR images and their correspond-
ing LR ones. The training images are augmented by making
random flip and rotation during training. We set λ = 104.

Table I gives a detailed configuration of the coupled discrim-
inator and the generator, where “C” represents a convolution
layer, “FC” represents a full-connected layer, “DC” represents
a fractional-strided convolution layer, and “Pi” (i=1 or 2) rep-
resents the i’th pathway. The slope of Leaky ReLU activation
in the coupled discriminator is set to 0.2.

As for the optimization, we train our model from scratch
with Xavier initializer by alternatively updating D and G.
we use the Adam optimizer [47] with the initial learn rate
= 10−4, the weight decay = 10−4, and the mini-batch size
= 16. Specifically, we first pre-train our generator only based
on the content loss (6) for 105 iterations to provide a better
initialization for the subsequent adversarial training, and then
train our model based on the whole objective function (7)
for 105 iterations where the learn rate decreases to half every
2.5×104 iterations. A complete training process of our method
is summarized as follows:

• Stage I. Pre-train the generator G by minimizing the
content loss Lcontent(G) for 105 iterations.

• Stage II. Alternatively update the discriminator D and
the generator G based on (7) for 105 iterations:
1) Fix G and update D by maximizing L(G,D).
2) Fix D and update G by minimizing L(G,D).
3) Repeat 1) and 2) until reach the max-iteration number.

III. EXPERIMENTAL RESULTS AND ANALYSES

In this section, we will give a detailed description of our
experimental datasets, evaluation metrics, ablation analysis,
and experimental results.

A. Experimental Dataset

We use two public datasets, “UCMerced” [45] and “WHU-
RS19” [46], which have been commonly used in previous
remote sensing image super-resolution literature [16, 18], to
evaluate our method. For each dataset, we randomly select
40% images for training, 10% images for validation, and the
rest for test. The original images are considered as HR images
and we down-sample each image x4 as LR ones.

• UCMerced dataset [45]. This dataset consists of 21
classes of remote sensing scenes, including: agricultural,
airplane, baseball-diamond, beach, etc. There are 100
images for each class. All images are in 256×256 pixels
with a spatial resolution of 0.3m/pixel.

Fig. 5. An visual comparison of the three metrics: PSNR, PI [51], and LPIPS
[56]. As suggested by some recent works [23–25], an algorithm may have high
PSNR but suffer from an over-smoothed super-resolved output. In contrast,
the evaluation ranking of PI and LPIPS are more consistent with their visual
quality. (Zoom in for a better view.)

• WHU-RS19 dataset [46]. This dataset consists of 1,005
images in 19 classes of remote sensing scenes, including:
airport, beach, bridge, commercial, etc. All images are
in 600 × 600 pixels. The spatial resolution is up to
0.5m/pixel.

Furthermore, we test our method on some real-world multi-
spectral images (3.2 m/pixel) from GaoFen-2 (GF-2) satellite.
The three visible bands of these images are extracted and
stacked into a pseudo-RGB for experiments. Since there are no
corresponding high-resolution references, the super-resolved
results are displayed and compared with other methods visu-
ally.

B. Evaluation Metrics

The PSNR has been widely used in image super-resolution
community [32, 58] as a standard evaluation metric. Since the
definition of PSNR is 10 log10

max2
I

MSE , minimizing mean square
loss is equal to maximizing PSNR. However, as suggested
by some recent works [23–25], people notice that sometimes
an algorithm may have high PSNR, but tends to get over-
smoothed results and may also lack realistic visual appearance.
To this end, apart from PSNR, we also use the Perception
Index (PI) [51] and the Learned Perceptual Image Patch
Similarity (LPIPS) [56] as two additional evaluation metrics
in our experiments. The PSNR and LPIPS are implemented
in Python and the PI is implemented in Matlab1. All the
super-resolved results of the proposed method and comparing
methods are evaluated by the same set of code.

1The implementation of the evaluation metrics can be found in the
following websites. PSNR: https://github.com/scikit-image/scikit-image,
PI: https://github.com/roimehrez/PIRM2018, LPIPS: https://github.com/
richzhang/PerceptualSimilarity.
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The PI was originally introduced as a no-reference image
quality assessment method based on the low-level statistical
features and is recently used in some super-resolution works
[33, 51], by incorporating the criteria of “MA” [53] and
“NIQE” [54]:

PI =
1

2
((10−MA) + NIQE), (9)

In an image super-resolution task, a lower PI indicates a better
super-resolved result.

Since PI is a no-reference measurement, we further use a
full-reference metric named Learned Perceptual Image Patch
Similarity (LPIPS) [56] as an alternative evaluation metric.
The LPIPS measures perceptual image similarity using a
pre-trained deep network, which can be computed as the l2
distance between a super-resolved images G(x) and an HR
reference image y in their feature space:

LPIPS(y, ŷ) =
∑
l

1

Nl
‖ωl � (φ(y)l − φ(ŷ)l)‖22, (10)

where φ(·)l represents a feature space constructed by a well-
trained deep CNN of its l’th layer, and Nl is the number of
elements in φ(·)l . ωl is a learned weight vector and � is the
channel-wise product operation. A lower LPIPS indicates a
better super-resolved result.

Fig. 5 gives an visual comparison of the three metrics. The
two example images are from UCMerced dataset and WHU-
RS19 dataset. The output of bicubic interpolation, SRCNN
[58], and our method on the three different metrics are
recorded. We can observe the results of SRCNN have a higher
PSNR than our CDGAN but they suffer from a “blurring
effect”. In contrast, the evaluation ranking of PI and LPIPS
are more consistent with their visual quality. Nevertheless, in
our following experiments, we still use PSNR as a reference.

In Fig. 6, we show the evolution of these three metrics on the
UCMerced validation dataset. For PSNR, larger values indicate
better. For PI and LPIPS, smaller values indicate better. Fig.
6 (a) shows the PSNR curve in the pre-training phase of the
generator, and Fig. 6 (b)-(d) show the PSNR, PI and LPIPS
curves in the alternative training phase of the generator and
the coupled discriminator. It should be noticed that although
the PSNR decreases along with the alternative training, the
perceptual quality of super-resolved images keeps improving,
which is suggested by the decrease of the PI and LPIPS.

C. Ablation Studies

The ablation studies are conducted to analyze the impor-
tance of each component of the proposed method, including
the coupled adversarial loss (Cp-Adv-Loss) and the content
loss (Cont-Loss), as is shown in Table II. We also compare
with a baseline GAN-based method that is only trained with
the standard adversarial loss (Std-Adv-Loss). A weak base-
line method, bicubic interpolation, is first evaluated, then we
gradually integrate these techniques. All evaluations of the
ablation analyses are performed based on the same set of
configurations.

Fig. 6. The metric curves including PSNR, PI and LPIPS in the training
phase.

TABLE II
RESULTS OF THE ABLATION ANALYSIS ON: COUPLED ADVERSARIAL

LOSS (CP-ADV-LOSS), CONTENT LOSS (CONT-LOSS), AND STANDARD
ADVERSARIAL LOSS (STD-ADV-LOSS). ALL METHODS ARE TRAINED

AND EVALUATED ON UCMERCED DATASET.

Cp-Adv-Loss Cont-Loss Std-Adv-Loss PSNR / PI / LPIPS

× × × 25.34 / 7.483 / 0.464
X × × 16.21 / 8.918 / 0.558
× X × 27.56 / 8.012 / 0.297
× X X 26.07 / 4.855 / 0.195
X X × 26.63 / 4.933 / 0.137

• Cp-Adv-Loss: we only train our generator based on the
coupled adversarial loss Ladv(G)+Ladv(D) without any
help of content loss.

• Cont-Loss: we only train our generator based on the
image content loss Lcontent(G) without any help of
adversarial training, which is similar to the SRCNN [58].

• Cont-Loss + Std-Adv-Loss: we train our generator based
on content loss Lcontent(G) and a standard adversarial
loss, which is similar to the SRGAN [25].

• Cont-Loss + Cp-Adv-Loss: we train our generator based
on content loss Lcontent(G) and our proposed coupled
adversarial loss Ladv(G) + Ladv(D).

Table II shows their evaluation accuracy. For each evaluation
metric, the best result is marked as bold and the second best
is marked with an underline. As we can see, the integration of
the “adversarial training” and “content loss” yields noticeable
improvements of the reconstruction accuracy on LPIPS and PI.
Particularly, when we apply the proposed “coupled adversarial
loss”, we obtain the best result on LPIPS. Fig. 7 shows two
examples with the different combinations of loss functions.
Our method obtains more accurate super-resolution results in
terms of both visual appearance and local details.
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Fig. 7. Some super-resolved outputs of our ablation experiments. Image from the first row and the second row are from UCMerced dataset and WHU-RS19
dataset respectively. (Zoom in for a better view.)

D. Comparison with Other Methods

We further compare our method with some state of the
super-resolution methods including SRCNN [58], LGCNet
[16], EDSR [59], RCAN [60] and SRGAN [25] on UCMerced
dataset and WHU-RS19 dataset. Among these methods, SR-
CNN, LGCNet, EDSR and RCAN are recently proposed
CNN-based methods that minimize the content loss (L2 loss
or L1 loss). SRGAN is a more recent GAN-based method that
integrates content loss and the standard adversarial loss. All
these methods are fully optimized on our train + validation
data to obtain their best performance for a fair comparison.

Table III and Table IV shows the comparison results of dif-
ferent methods on UCMerced dataset and WHU-RS19 dataset
respectively. Our method achieves the best LPIPS performance
on both datasets, with the lower PI and LPIPS comparing with
the CNN-based methods and with the higher PSNR and the
lower LPIPS comparing with SRGAN. Fig. 8 shows some
super-resolved examples, where the images of the rows (a)-(b)
are from UCMerced dataset and the images of the rows (c)-(d)
are from WHU-RS19 dataset. Comparing with other methods,
the proposed method obtains better perceptual performance
with more details and textures. Although SRGAN achieves
the lowest PI, its super-resolved results are often affected by
undesired artifacts.

In Fig. 9, we show some super-resolution reconstruction
results of the GF-2 satellite data. Here, we use two non-
reference image quality metrics, i.e., NIQE[54] and SSEQ[55],
to assess these super-resolved results. For either of the two
indicators, a lower score indicates a better reconstruction re-
sult. Compared with some CNN-based methods, e.g., SRCNN,
LGCNet, EDSR and RCAN, the proposed CDGAN obtains
lower NIQE and SSEQ with more clear edges. It also should
be noted that although SRGAN achieves the lowest NIQE and
SSEQ, it suffers from some checkerboard artifacts.

In Table V, we report three different indices on model
efficiency, i.e., the number of model parameters, the number

of floating-point operations (FLOPs)2 and the inference time
(in GPU and CPU mode). We use the WHU-RS19 dataset to
compute FLOPs and inference time, where the sizes of LR
images and HR ground truth reference images are 125× 125
and 600× 600 pixels respectively. The GPU runtime is tested
with an Nvidia GeForce GTX 1080Ti graphics card and the
CPU runtime is tested with an Intel i7-6700K CPU and 32GB
RAM. Comparing with other methods, the runtime of the
proposed method in GPU mode is the smallest one and the
runtime in CPU mode is only larger than SRCNN. It should be
noted that since the inference time for GAN-based methods is
determined by their generator, we here only list the parameters
of the generator in Table I. As shown in Table V, although the
proposed CDGAN has 20 times parameters than the SRCNN,
it has less inference time. We believe the reason behind this
phenomenon is the different input size of the two networks. In
our experiments. The proposed CDGAN uses a 125×125 LR
image as its input. However, the SRCNN uses a 600 × 600
image as its input by firstly upsampling the 125 × 125 LR
image to the same size of a HR one before feeding it into the
network. The larger input size will inevitably cause a heavier
computational overhead for the SRCNN although it has less
parameters.

IV. CONCLUSION

We proposed a new GAN-based super-resolution method
named Coupled Discriminated GAN for remotes sensing im-
ages. Previous GAN-based image super-resolution methods
suffer from a “discrimination-ambiguity” when dealing with
the low-frequency image regions, and thus the quality of the
super-resolved images could be deeply affected. Different from
a previous GAN-based method where the discriminator only
takes in a single image at one time to classified whether it is a
real HR image or a generated one, our discriminator takes in

2The model parameters and FLOPs can be counted by the following
repository: https://github.com/Lyken17/pytorch-OpCounter
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Fig. 8. A Comparison of the super-resolved outputs with different methods: Bicubic, SRCNN [58], LGCNet [16], EDSR [59], RCAN [60], SRGAN [25],
and the proposed method. (Zoom in for a better view.)
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TABLE III
A COMPARISON OF DIFFERENT METHODS ON THE UCMERCED TEST SET. FOR PSNR, A HIGHER SCORE INDICATES BETTER. FOR PI AND LPIPS, A

LOWER SCORE INDICATES BETTER.

class Bicubic
PSNR/PI/LPIPS

SRCNN [58]
PSNR/PI/LPIPS

LGCNet [16]
PSNR/PI/LPIPS

EDSR [59]
PSNR/PI/LPIPS

RCAN [60]
PSNR/PI/LPIPS

SRGAN [25]
PSNR/PI/LPIPS

CDGAN (ours)
PSNR/PI/LPIPS

agricultural 25.50/11.38/0.618 25.87/12.03/0.566 25.94/11.21/0.556 26.05/12.01/0.531 26.08/12.83/0.519 25.13/10.84/0.479 25.00/11.45/0.493
airplane 24.85/7.096/0.448 26.34/6.546/0.314 26.72/6.311/0.299 27.39/6.120/0.249 27.76/5.940/0.236 25.98/3.668/0.172 26.42/4.478/0.140
baseballdiamond 31.40/7.749/0.409 32.49/7.098/0.332 32.53/6.917/0.308 32.88/7.003/0.300 33.09/7.003/0.295 30.41/5.159/0.203 31.02/5.101/0.172
beach 34.22/8.281/0.335 34.90/7.831/0.269 35.07/7.295/0.244 35.30/7.856/0.240 35.55/7.804/0.234 32.43/6.692/0.198 32.94/6.076/0.155
buildings 23.12/6.935/0.460 24.90/6.730/0.299 25.28/6.506/0.277 26.10/6.622/0.220 26.41/6.084/0.197 24.44/3.732/0.169 24.66/4.840/0.153
chaparral 23.45/8.349/0.575 24.35/9.859/0.448 24.48/10.08/0.430 24.81/15.33/0.435 24.90/16.50/0.427 22.95/6.085/0.198 23.69/11.58/0.220
denseresidential 23.74/7.071/0.488 25.31/7.725/0.324 25.67/7.449/0.300 26.35/7.438/0.251 26.78/7.254/0.228 24.70/3.730/0.179 25.08/4.927/0.161
forest 25.90/7.576/0.615 26.43/7.611/0.537 26.48/7.551/0.514 26.60/8.105/0.537 26.65/8.623/0.518 24.95/3.534/0.271 25.46/4.632/0.260
freeway 25.66/8.583/0.437 26.97/8.862/0.321 27.32/8.478/0.303 28.04/9.079/0.252 28.48/9.057/0.232 26.56/5.659/0.185 26.67/6.055/0.170
golfcourse 33.28/8.058/0.368 34.48/7.337/0.291 34.62/7.174/0.271 34.78/7.399/0.269 34.98/7.323/0.272 31.31/5.560/0.174 32.61/5.454/0.120
harbor 19.41/7.373/0.444 20.62/6.899/0.297 20.88/6.845/0.273 21.72/7.074/0.215 22.10/6.502/0.180 20.77/5.436/0.199 20.40/5.317/0.148
intersection 24.62/7.139/0.479 25.81/7.172/0.347 26.02/6.974/0.327 26.53/6.912/0.282 26.91/6.774/0.242 25.06/3.528/0.198 25.18/4.472/0.194
mediumresidential 23.73/7.003/0.524 25.05/7.228/0.366 25.32/7.053/0.341 25.92/6.910/0.305 26.32/6.731/0.280 24.22/3.136/0.200 24.68/4.473/0.189
mobilehomepark 20.38/7.210/0.539 21.93/8.267/0.349 22.17/8.101/0.330 22.96/7.145/0.268 23.43/7.042/0.234 21.68/3.993/0.207 21.67/5.021/0.205
overpass 23.27/8.079/0.520 24.21/8.304/0.405 24.61/7.915/0.376 25.46/7.581/0.298 24.99/6.686/0.264 24.29/4.345/0.212 24.41/5.005/0.215
parkinglot 19.73/7.164/0.441 20.90/6.994/0.307 21.08/6.753/0.293 21.54/6.542/0.246 22.08/5.598/0.177 20.74/3.853/0.178 20.41/5.166/0.162
river 26.60/7.544/0.532 27.30/6.937/0.455 27.39/6.506/0.429 27.47/7.015/0.424 27.49/6.811/0.412 25.92/4.060/0.269 26.25/4.314/0.251
runway 26.62/8.434/0.420 27.82/8.091/0.319 28.46/7.597/0.297 29.37/9.031/0.247 29.42/8.672/0.245 27.91/6.519/0.184 28.14/6.632/0.158
sparseresidential 27.13/7.155/0.445 28.39/6.643/0.328 28.58/6.645/0.311 29.05/6.767/0.303 29.26/6.561/0.300 26.88/3.369/0.185 27.53/4.213/0.163
storagetanks 28.06/7.311/0.432 29.44/6.742/0.312 29.76/6.575/0.289 30.39/6.385/0.241 30.46/6.159/0.229 28.42/4.455/0.187 28.55/4.667/0.162
tenniscourt 27.58/7.271/0.423 28.81/6.921/0.293 28.99/6.771/0.277 29.65/6.688/0.227 30.01/6.663/0.214 27.58/3.607/0.183 27.97/4.338/0.162

average 25.63/7.751/0.474 26.78/7.706/0.356 27.02/7.462/0.336 27.54/7.857/0.302 27.77/7.743/0.283 25.82/4.807/0.211 26.13/5.629/0.193

TABLE IV
A COMPARISON OF DIFFERENT METHODS ON THE WHU-RS19 TEST SET. FOR PSNR, A HIGHER SCORE INDICATES BETTER. FOR PI AND LPIPS, A

LOWER SCORE INDICATES BETTER.

class Bicubic
PSNR/PI/LPIPS

SRCNN [58]
PSNR/PI/LPIPS

LGCNet [16]
PSNR/PI/LPIPS

EDSR [59]
PSNR/PI/LPIPS

RCAN [60]
PSNR/PI/LPIPS

SRGAN [25]
PSNR/PI/LPIPS

CDGAN (ours)
PSNR/PI/LPIPS

airport 26.12/6.709/0.438 27.29/5.901/0.296 27.44/5.939/0.293 28.09/5.812/0.267 28.22/5.577/0.257 32.89/3.113/0.214 27.31/3.755/0.170
beach 42.41/8.399/0.125 40.62/7.038/0.141 42.51/7.560/0.086 42.16/7.765/0.086 43.58/7.961/0.093 32.86/7.369/0.120 40.93/6.351/0.054
bridge 31.48/7.288/0.290 32.90/6.257/0.210 33.17/6.328/0.205 34.26/6.431/0.197 34.44/6.434/0.198 21.73/4.523/0.205 32.91/4.673/0.135
commercial 22.04/7.066/0.552 23.20/6.451/0.391 23.29/6.472/0.382 23.78/6.583/0.370 23.90/6.434/0.350 26.16/3.346/0.239 23.13/4.848/0.259
desert 38.32/8.242/0.359 37.80/7.060/0.297 38.73/7.247/0.279 39.09/7.794/0.277 39.40/7.790/0.274 26.36/7.435/0.414 37.63/6.024/0.165
farmland 33.86/7.598/0.374 34.56/7.007/0.288 34.71/7.014/0.284 35.33/7.185/0.267 35.49/7.157/0.253 35.62/5.435/0.258 33.51/4.777/0.190
footballfield 25.69/6.624/0.418 27.05/5.841/0.286 27.24/5.920/0.283 28.03/5.793/0.257 28.19/5.633/0.240 31.29/2.868/0.204 27.17/3.644/0.169
forest 25.72/7.362/0.565 26.28/7.202/0.476 26.30/7.201/0.477 26.45/7.528/0.487 26.47/7.340/0.474 22.45/3.214/0.339 25.49/4.762/0.282
industrial 24.44/6.982/0.476 25.68/6.504/0.328 25.83/6.515/0.321 26.58/6.573/0.297 26.73/6.419/0.282 26.11/3.258/0.216 25.68/4.633/0.199
meadow 34.53/7.948/0.417 34.91/7.255/0.341 35.06/7.284/0.341 35.34/7.622/0.355 35.41/7.547/0.353 25.06/6.301/0.308 33.25/4.643/0.193
mountain 22.15/7.316/0.682 22.72/7.262/0.585 22.75/7.221/0.575 22.89/7.431/0.591 22.91/7.156/0.568 24.69/2.885/0.341 22.42/4.888/0.390
park 26.50/6.880/0.519 27.38/5.978/0.400 27.46/5.997/0.390 27.92/6.090/0.389 28.02/5.942/0.380 32.78/2.741/0.266 26.97/3.685/0.235
parking 24.66/6.910/0.369 26.10/6.380/0.228 26.21/6.386/0.228 27.18/6.526/0.189 27.54/6.542/0.181 25.19/3.557/0.196 25.99/4.553/0.133
pond 29.65/6.823/0.355 30.55/5.646/0.272 30.62/5.693/0.268 31.03/5.747/0.268 31.09/5.819/0.270 28.82/3.541/0.210 29.81/3.507/0.155
port 24.03/6.689/0.416 25.27/5.871/0.286 25.37/5.931/0.281 26.01/5.839/0.267 26.11/5.907/0.256 24.49/3.233/0.201 25.17/4.008/0.182
railwaystation 23.61/6.959/0.496 24.88/6.217/0.347 25.05/6.280/0.341 25.62/6.314/0.316 25.77/5.887/0.294 24.13/3.489/0.226 25.06/4.713/0.201
residential 21.19/7.384/0.555 22.55/7.388/0.383 22.69/7.372/0.373 23.36/7.221/0.360 23.53/7.137/0.340 21.96/3.696/0.210 22.74/5.518/0.253
river 26.75/6.730/0.496 27.56/5.775/0.386 27.61/5.849/0.383 27.94/5.860/0.394 27.99/5.885/0.393 26.11/2.897/0.258 26.95/3.569/0.232
viaduct 23.85/6.916/0.473 25.28/6.462/0.315 25.44/6.502/0.310 26.30/6.319/0.277 26.53/5.876/0.257 24.45/2.983/0.201 25.57/4.400/0.180

average 27.74/7.201/0.441 28.56/6.500/0.329 28.81/6.564/0.321 29.33/6.654/0.311 29.54/6.550/0.301 27.01/3.994/0.244 28.30/4.576/0.199

paired inputs to learn better discriminative ability for remote
sensing images, especially for those low-frequency regions.
We further design a dual pathway network architecture, a
random gate, and a coupled adversarial loss in order to learn
the better correspondence between the discriminative outputs
and the paired inputs. We conduct our experiments on two
public datasets and GF-2 satellite data. The ablation analysis
suggests the effectiveness of the proposed couple adversarial
training framework. Our method achieves better results than
other state of the art methods in terms of both evaluation
metrics and visual quality.
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