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Abstract—Cloud detection is a significant pre-processing for
remote sensing images. In recent years, many methods based
on deep learning are proposed to detect clouds and multi-
scale feature fusion is often used in these methods. However,
most existing methods fuse features through concatenation and
element-wise summation, which are simple and can be improved
in spatial information recovery. Therefore, we explore the way of
fusing features to recover the missing spatial information more
sufficiently. Besides, we also observe that some cloud detection
results are not accurate enough near the boundary of clouds.
In view of the above observations, in this paper, we propose a
cloud detection network, ABNet, which includes All-scale feature
Fusion modules and a Boundary point Prediction module. The
All-scale feature Fusion module can optimize the features and
recover spatial information by integrating features of all scales.
And the Boundary point Prediction module further remedies
cloud boundary information by classifying the cloud boundary
points separately. Experimental results demonstrate that our
method improves the accuracy of cloud detection compared with
other methods.

Index Terms—cloud detection, feature fusion, boundary points

I. INTRODUCTION

Cloud detection is an essential pre-processing for remote
sensing images. Clouds prevent optical satellite sensors from
obtaining clear ground information and decrease the visibility
of images, affecting the subsequent processing and application
of remote sensing images. Therefore, it is worthwhile to
investigate cloud detection to address cloud coverage problems
[1], [2].

In the past few decades, many researchers have studied and
developed cloud detection methods based on spectral threshold
[3], [4]. These methods calculate threshold by various charac-
teristics such as cloud reflectivity and brightness. Besides, ma-
chine learning is also being used for cloud detection [5], which
extracts features such as cloud texture, color, and geometric,
and then designs and trains classifiers. However, these methods
require setting appropriate thresholds or designing various
features manually for different instances, which demand a lot
of specialized knowledge and are not robust enough.
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CNN(Convolutional Neural Network) possesses a powerful
ability to learn proper features, then does not require manual
feature selection. Accordingly, many methods using CNN are
proposed to detect the clouds, mainly based on fully convolu-
tional networks(FCN) [6]. Most cloud detection methods using
FCN carry out down-sampling and up-sampling operations
many times, sometimes known as the encoding stage and
decoding stage. The down-sampling operations result in the
loss of spatial information. Consequently, researchers often
consider how to recover spatial information in the up-sampling
stage.

As a classical encoder-decoder structure, the U-Net [7]
fuses the corresponding features of the encoding and decoding
processes by skip-connection to retrieve spatial information.
CS-CNN [8], RS-Net [9], CloudFCN [10] are cloud detection
models based on the U-net architecture.

In addition to skip-connection, multi-scale feature fusion is
also widely used to optimize features and remedy the missing
spatial information. MF-CNN [11] and CDnet [12] use feature
pyramid modules. FECN [13] and MSCFF [14] resample
different scale features to output sizes and then fuse them.

In multi-scale feature fusion methods, however, most exist-
ing methods fuse features through concatenation [11], [13],
[14] or element-wise summation [12], [14]. These feature
fusion methods merely perform fixed linear aggregations of
feature maps [15], which are simple and could be less effective
[16]. Therefore, they could not be the best choice and still have
room for improvement in the degree of spatial information
recovery. Moreover, we also observe that some cloud mask
results are not accurate enough near the boundary of the
clouds. Compared with ground truth, some boundary detection
results have missed or redundant detection errors. As a result,
it is necessary to investigate how to fuse features to recover
the missing spatial information more sufficiently and further
remedy cloud boundary information.

Inspired by the previous research and our observations,
in this paper, we propose a novel cloud detection network,
ABNet, which includes All-scale feature Fusion modules and a
Boundary point Prediction module. The AF modules can fill in
the missing information of the down-sampling process. They
are based on the error feedback mechanism from the deep back
projection technology. By effectively integrating the features
of all levels, the modules make better use of information
of each resolution. The BP module also serves to remedy
the information of cloud boundary, which extracts boundary
point features and classifies them. The module improves the
cloud boundary accuracy by predicting the boundary points
separately.
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Fig. 1. The workflow of the proposed network. Fig. 1(a) indicates the network with the encoding stage and decoding stage. Fig. 1(b) shows a basic convolution
block, Residual Dense Block(RDB). The AF module exists in each decoder level, and its inputs come from the features of the encoder levels lower than it
and the features of the decoding levels higher than it. 16-256 represents the number of channels in each level.

The contributions of this work are summarized as follows,
1)We propose a novel cloud detection network called AB-

Net, design a new feature fusion method named All-scale
Feature Fusion module and enhance the utilization of cloud
boundary information by a Boundary point Prediction module;

2)We experiment and analyze that the AF modules and
the BP module. The experimental results have shown the
AF modules can improve the accuracy of cloud detection
by recovering spatial information more sufficiently. The BP
module can remedy erroneous boundary points and generate
more accurate cloud masks;

3)Our proposed network performs better than other state-
of-the-art methods on two cloud detection datasets.

II. PROPOSED METHOD

A. Overview

Fig. 1 shows the workflow of the proposed method. The
ABNet contains an encoder and a decoder containing the AF
modules and the BP module. The encoder is mainly composed
of Residual Dense Blocks and convolutional layers. In the en-
coding stage, the convolutional layers are gradually deepened
and the feature maps learn high-level semantic information.
The decoder is mainly comprised of the AF modules, Residual
Dense Blocks, transposed convolutional layers, and the BP
module. In the decoding stage, the feature maps gradually
recover and integrate the information of full scales to help
the recovery of details. The AF module exists in each decoder
level, and its inputs come from the features of the encoder
levels lower than it and the features of the decoding layers
higher than it. Take for example the AF module of D3 level,
which fuses the inputs from ER

1 , E
R
2 , D

R
4 , D

R
5 . The curved

arrows in Fig. 1(a) represent the inputs of the AF modules, i.e.,
the features to be fused by the AF modules. As a basic block
of convolution, the Residual Dense Block(RDB) is composed

of four dense connected convolutional layers and a channel
attention layer [17]. Besides, the outputs of RDB in DR

1 and
DR

2 layers are entered into the BP module, then concatenate
and obtain the prediction of cloud boundary points.

B. All-scale Feature Fusion Module

As shown in Fig. 1, we add the AF module in each level
of the decoder. The AF module enables each level in the
decoder to integrate the features of all resolutions. And it
is designed based on the error feedback mechanism from
the deep back projection technology [18]. The deep back
projection, derived from super-resolution reconstruction. It
guides image reconstruction by learning the reconstruction
error between the low-resolution input lt−1 and the generated
high-resolution result ht0. The reconstructed image is ht, and
the reconstruction process is shown in Eq. 2.

ht0 =U(lt−1) (1)

ht = ht0+U(D(ht0)− lt−1) (2)

where U means up-sampling and D means down-sampling.
Inspired by this, we use the error feedback mechanism to

design the fusion way of different scale features. Specifically,
the module first obtains the differences between the current
level and other levels through convolution or deconvolution
and then integrates these differences back to the original
features. The process can enhance the features of the current
level by fusing low-level features and high-level features. As
a result, the AF module achieves better feature fusion and
makes better use of the feature information. And the ablation
experiment also proves the effectiveness of the module.

The AF module of the i-th layer in the decoder is defined
by Eq. 3.

D4
i = AF (D0

i , {DR
5 , . . . , D

R
i+1, E

R
i−1, . . . , E

R
1 }) (3)
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Fig. 2. The feature fusion process of the AF module from the third layer
decoder D3. In Dt

i , t represents the t-th feature fusion (t = 0, . . . , 4), and
i represents the feature level (i = 1, . . . , 5). ER
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R
i+1, . . . , D

R
5

are the RDB outputs of the encoder and decoder.

where D0
i is the feature before feature fusions. D4

i is the
feature through four feature fusions by the AP module (i =
1, . . . , 5, i is the feature level). The levels of feature fusion
include the high-level features (DR

5 , . . . , D
R
i+1) from the RDB

output of decoders and the low-level features (ER
i−1, . . . , E

R
1 )

from the RDB output of encoders.

Dt
i =

{
Dt−1

i + [(Dt−1
i ) �i−j −ER

j ] �i−j , i > j

Dt−1
i + [(Dt−1

i ) �j−i −DR
j ] �j−i , i < j

(4)

Eq. 4 shows how Dt
i fuses the features in the AP module,

where �i−j represents the up-sampling i − j times through
deconvolution, �j−i represents the down-sampling j − i times
through convolution whose stride is 2 (j = 1, . . . , 5, j 6= i).
And t means the t-th fusion in the AF module (t = 1, 2, 3, 4).
There is an example of D3 layer, which is illustrated in Fig.
2.

In the AF module, the features of each resolution are
combined with low-level features of the encoder and high-level
features of the decoder. The features of each scale in the de-
coding stage get information from the features of other scales
to recover the missing spatial information. The exchange of
information can utilize information more adequately, and both
high-resolution and low-resolution feature representations in
the decoder are strengthened.

C. Boundary Point Prediction Module

The segmentation results of cloud boundary regions are
affected by the quality of labels and the network segmentation
performance. In addition to trying to keep the labels accurate,
we also seek to improve network performance to achieve more
accurate cloud boundary detection.

To increase boundary accuracy, we can pay more attention
to the cloud boundaries than the interior areas. Accordingly,
the Boundary point Prediction module is introduced to predict
the boundaries individually.

The cloud segmentation mask is a binary image. After
considering the characteristic, we use the Sobel operation [19]
and dilation to get a bunch of boundary point coordinates.
Then the point features are extracted by the dot product of
the boundary point image and the feature map DR

1 and DR
2 .

Then they concatenate and pass through two 1 × 1 convolution
layers to predict the corresponding outputs point by point. By
the above steps, the BP module corrects the classification of
boundary details. The flow chart is shown in Fig. 3. As a result,
the loss function of the network contains two parts, the loss
function Lcloud for cloud detection of the image and the loss
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Fig. 3. The flow chart of the BP module which predicts the boundaries
individually. The point features extracted from boundary point coordinates
concatenate and predict boundary point detection results. Subsequently, we
calculate the loss with the boundary points extracted by ground truth.

function Lboundary for boundary points features. They both
are cross-entropy losses, and the formula is as follows:

Ltotal = λ1Lcloud + λ2Lboundary (5)

where λ1 and λ2 are weight parameters.

III. EXPERIMENTS

A. Datasets

We evaluate the proposed algorithm with two datasets. The
first dataset is from [13], which is collected from GF-1 images,
and the source of the second dataset [20] is Landsat8. Both
datasets contain forests, grasslands, deserts, coastal, snow, and
so on. All of the images are cropped to 256×256. Finally, we
obtain 5796 patches in the first data set and 6054 patches in
the other data set. 80 percent of these images were used for
training and 20 percent for testing.

B. Experiment Setup

Our method is implemented with PyTorch 1.4 on CentOS
7.6 and a Tesla V100 GPU card and optimized by the adaptive
moment estimation (Adam [21]). We use ’poly’ as the learning
rate policy with the initial learning rate of 0.0001. Besides, the
number of epochs is 100 in training, where the batch size is
set to 4. For the weight parameters λ1 and λ2, we set them
both to 1. In the experiments, mean Intersection Over Union
(mIOU), Overall Accuracy (OA), F1 Score, and Kappa are
selected as evaluation matrices to quantitatively evaluate the
performance of cloud detection networks.

C. Ablation Studies

The purpose of the ablation study is to evaluate the effec-
tiveness and contribution of the two modules. We set up the
following comparison experiments:1) Neither module is used,
but simple skip connections between encoder and decoder
replace all-scale feature fusion at each level. 2) Only the BP
module is used. 3) Only the AF modules are used. 4) Both the
AF and BP modules are used. The experimental results of the
above design schemes on GF1-WFV dataset [13] are shown in
Table. I, which proves the effectiveness of the two modules.
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The AF modules improve the cloud detection results more by
effective feature fusion.

TABLE I
ABLATION STUDY FOR TWO DESIGN MODULES (%)

Number Method mIoU OA F1 Kappa

1 Our CNN 85.03 95.15 91.67 83.28
2 Our CNN+BP 85.86 95.43 92.19 84.31
3 Our CNN+AF 88.70 96.47 93.87 87.72
4 Our CNN+BP+AF 89.44 96.77 94.29 88.58

Figure. 4 shows three examples from Experiment 3 and
4. Judging by the visual performance, the detection of cloud
boundary has been improved with the BP module. By learning
and predicting the point features near the cloud boundary,
the BP module reduces missed or redundant detection errors.
Consequently, the network with added the BP module achieves
better cloud boundary detection and predicts results closer to
the ground truth.

(a) (b) (c) (d)
Fig. 4. Visual comparisons of the effects of the BP module. (a) RGB image.
(b) Ground truth labels. (c) The cloud masks of Experiment 3, Our CNN+AF.
(d) The cloud masks of Experiment 4, Our CNN+BP+AF. Black means the
background, white represents the cloud, red means the cloud misclassified as
the background and green means the background misclassified as the cloud.

Figure. 5 shows the visualization of feature maps with or
without AF modules. The contrast between Figure. 5 (b) and
Figure. 5 (c) demonstrates that the feature representations
are optimized and the spatial information is recovered more
sufficiently after all-scale feature fusion.

D. Comparisons with Other Methods

We evaluate our ABNet with some other representative
methods. UNet [9], DeeplabV3+ [22] and HRNet [23] are
popular semantic segmentation methods that can achieve cloud
detection. MF-CNN [24], RSNet [25] and CDnetV2 [26] are
cloud detection algorithms based on deep learning in recent
years. We train and test the above methods on the same
datasets with the same parameter settings.

Table. II shows the quantitative assessment results on the
GF1-WFV dataset [13]. And Table. III shows the results on the
Landsat-8 dataset [20]. Fig. 6 shows the visual performance of

(a)

(b)

(c)

Fig. 5. Visual comparisons of feature maps with or without AF modules. (a)
RGB image. (b) The feature map without all-scale feature fusion from D1

of Experiment 2. (c) The feature map after all-scale feature fusion from D1

of Experiment 4. The brighter the color, the greater the value. The feature
representations are optimized after all-scale feature fusion.

different methods. All these methods can detect most clouds,
but our method performs better for the texture and details of
clouds and is more accurate near cloud boundary. Besides,
our method has fewer missed or false detection results for
remote sensing images with complex conditions. Therefore, it
can be seen that our method has a better performance in cloud
detection.

TABLE II
QUANTITATIVE COMPARISONS WITH OTHER STATE-OF-THE-ART CLOUD

DETECTION METHODS ON GF1-WFV DATASET [13].(%)

Method mIoU OA F1 Kappa

UNet [9] 84.88 95.18 91.54 83.08
MF-CNN [24] 82.50 94.18 90.09 80.09

RSNet [25] 88.07 96.15 93.59 87.00
DeeplabV3+ [22] 88.51 96.49 93.75 87.49

CDnetV2 [26] 88.88 96.67 94.00 87.92
HRNet [23] 89.06 96.54 94.13 88.16

Ours 89.44 96.77 94.29 88.58

TABLE III
QUANTITATIVE COMPARISONS WITH OTHER STATE-OF-THE-ART CLOUD

DETECTION METHODS ON LANDSAT-8 DATASETS [20].(%)

Method mIoU OA F1 Kappa

UNet [9] 77.16 87.16 87.36 74.28
MF-CNN [24] 79.48 88.88 88.79 77.13

RSNet [25] 87.16 93.22 93.14 86.27
DeeplabV3+ [22] 84.05 91.37 91.52 82.69

CDnetV2 [26] 83.04 90.87 90.72 81.44
HRNet [23] 88.40 93.88 93.92 87.69

Ours 88.94 94.20 94.19 88.29

IV. CONCLUSION AND PERSPECTIVES

In this paper, we propose a cloud detection network that
contains All-scale feature Fusion modules and a Boundary
point Prediction module. The AF modules based on the error
feedback mechanism integrate the features of full scales. And
they recover spatial information more adequately than concate-
nation or element-wise summation. The BP module achieves
more accurate cloud boundary detection by calculating the
extra loss with the cloud boundary points. The experiment
results have proved the effectiveness of our network.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Fig. 6. Visual comparisons of different cloud detection methods. (a) RGB image. (b) Ground truth labels. (c) UNet [9]. (d) MF-CNN [24]. (e) RSNet [25].
(f) DeeplabV3+ [22].(g)CDnetV2 [26]. (h) HRNet [23]. (i) Ours.
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