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Robust sea-land segmentation in optical remote sensing images is challenging because
of the complex sea-land environment and scene diversity. Here, we propose a novel
multi-feature sea-land segmentation method via pixel-wise learning for optical remote
sensing images. Multiple features like grayscale, local statistical information, edge,
texture and structure, are first extracted from each pixel in training images and then
used to learn a multi-feature sea-land classifier, which transforms the segmentation
issue into pixel-wise binary classification problem. In our approach, a new multi-feature
sea-land segmentation algorithm is put forward based on the approximation of Newton
method. Experiments on Google-Earth, VRSS-1 and Gaofen-1 images demonstrate
that the proposed approach yields more robust and accurate sea-land segmentation
results.
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1. Introduction

With the development of optical remote sensing techniques, marine target detection
based on optical remote sensing images has gradually obtained more attention
(Liu et al. 2014; Yang et al. 2014; Tang et al. 2015). However, complex sea-land
environment usually poses difficulty in fields like ship detection (Corbane et al.
2010) and oil leakage detection by introducing massive false targets in land area.
In this context, sea-land segmentation in optical remote sensing images becomes a
key step to marine target detection since good segmentation between sea and land
would enhance the detection accuracy and efficiency by removing false targets in
land area.

Currently, sea-land segmentation methods can be broadly classified into two cat-
egories, i.e. geographic information based methods and non-geographic information
based methods. Researches in the first category mainly rely on geographic infor-
mation database of global harbors and coastlines as standard reference. After the
determination of several geographic coordinates in one particular optical remote
sensing image, image matching between geographic information database and this
image is used to conduct sea-land segmentation. However, the accuracy of geo-
graphic coordinates is highly demanding in these above methods. Besides, new
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artificial coasts and islands are difficult to be identified correctly because they are
usually not included in the above database.

For sea-land segmentation methods in the second category, geographic informa-
tion database is not required. To date, several non-geographic information based
methods have been proposed based on features like grayscale and texture, etc.
Grayscale represents only intensity information which varies from black at the
weakest intensity to white at the strongest. According to grayscale values, pixels
in optical remote sensing images are classified into two categories representing sea
and land separately. In grayscale-based methods, You et al. (You and Li 2011) pro-
posed a sea-land segmentation method based on OTSU (Otsu 1979) and Gaussian
statistical sea model, in which the threshold was determined by statistical rela-
tionships among pixels. Combining two thresholds, Zhang (Zhang and Wang 2010)
put forward an improved minimum filter method to reduce the negative influence
of sea surface texture. However, thresholds usually cannot be determined appro-
priately especially when applied to images with evenly distributed grayscale. Be-
sides, grayscale could not reflect the spatial distribution information in images. As
another description of sea-land segmentation, texture mainly gives us regional ar-
rangement information to reflect surface property in images. In relevant researches,
Zhu et al. (Zhu et al. 2010) applied local multiple patterns, a texture operator, to
protrude edge and thus enhanced the representation ability of feature set. C. Sagiv
et al. (Sagiv, Sochen, and Zeevi 2006) proposed a texture segmentation algorithm
based on geodesic and edgeless active contours model. But one drawback of the tex-
ture feature is that it can be easily interfered by external factors such as sunlight,
reflection and resolution, etc.

In addition, the above traditional feature-based sea-land segmentation methods
also have the following limits:

(1) Traditional methods usually need human intervention to set special segmen-
tation criteria, to establish the statistical models or tune parameters, which
lacks flexibility in complex environments.

(2) Those above methods are mainly based on simple features, and thus unable
to discriminate features of sea and land in complex scenario.

To tackle the above limits, more robust and adaptive methods for non-geographic
information based sea-land segmentation need to be further explored. Supervised
learning methods have been widely applied to object detection and classification
(Huang, Wang, and Wang 2015; Han et al. 2015; An and Shi 2015). Supervised
learning benefits in automatically learning rules and crucial information from large
amount of training data, which could create models that are more robust than that
determined by special artificial criteria (Li et al. 2014). Therefore, sea-land seg-
mentation methods based on supervised learning would be superior to traditional
methods. As another advantage of supervised learning methods, using multiple fea-
tures like grayscale, local statistical information, edge, texture and structure, can
depict complex sea-land information more efficiently than using simple features. It
is noticeable that in most of these supervised learning methods patches were set
as learning units. These patches are usually rectangular for targets like pedestri-
ans and faces, and designed according to the object size (Zhao et al. 2016; Man,
Dong, and Guo 2015). However, in sea-land segmentation problem, the size of sea
and land is not fixed in different geographic environments. Meanwhile, the contour
of sea and land is amorphous, which does not match with traditional rectangular
patches. Therefore, it is necessary to design a new approach for sea-land segmenta-
tion based on pixel-wise learning. In this paper, considering all the above factors,
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we propose a new supervised learning based sea-land segmentation method. Pixel-
wise multiple features are first extracted from the whole image and are then used to
learn a robust sea-land classifier which finally transform the segment problem into
a binary classification problem. Concretely, the sea-land segmentation problem is
converted to optimization problem and is finally solved by the approximation of
Newton method which is of low computational complexity and fast convergence.

The rest of this paper is structured as follows. Section 2 elaborates multi-feature
sea-land segmentation approach based on pixel-wise learning, including feature ex-
traction, the designing and application of multi-feature sea-land classifier. Section
3 presents an experimental validation of multi-feature sea-land segmentation ap-
proach. Finally, conclusions are shown in Section 4.

2. multi-feature sea-land segmentation approach based on pixel-wise
learning

Here, a supervised learning based method successfully converts sea-land segmenta-
tion issue into a binary classification problem. The proposed multi-feature sea-land
segmentation approach based on pixel-wise learning contains three steps (as shown
in Figure 1). First, pixel-wise features are extracted from training images. In this
step, it is pixel rather than patch that is regarded as the learning unit, because
there is hardly any patches with appropriate sizes and shapes that could match
various sea-land boundaries. Pixel-wise features including grayscale, local statisti-
cal information, edge, texture, and structure, are extracted to form a feature data
cubic.

Second, multi-feature sea-land classifier is trained based on the whitened feature
data. Here, the designing of multi-feature sea-land classifier is transformed to an
optimization problem. In designing process, the feature data cubic is processed by
centering and whitening. Whitening is essentially decorrelation followed by scaling,
making the whitened feature variables have unit variance and be mutual uncorre-
lated. Then, Logistic cost function is selected as measure function to minimize the
classification error, because it is conceptually simple and has appealing statistical
properties, especially robustness. Meanwhile, a multi-feature sea-land segmenta-
tion algorithm based on the approximation of Newton method is proposed to solve
the above optimization problem. It is noticeable that the challenging calculation
of inverse of Hessian is simplified by centering and whitening. Therefore, the pro-
posed algorithm does not need Hessian matrix inversion and has roughly the same
convergence speed with the real Newton method.

Third, the classifier is used to conduct sea-land segmentation in testing images.
Here, we need to extract the same feature data cubics from testing images and
conduct centering and whitening process at first. Then we apply the trained multi-
feature sea-land classifier to the whitened data cubics and get candidate maps.
Finally some post-processing operations are used to modify previous results to
obtain the final segmentation maps.

2.1. The construction of multi-feature data

Feature extraction plays an important role in sea-land segmentation problem. In
general, informative features greatly facilitate the training process. To obtain a
robust multi-feature sea-land classifier, five different features (grayscale, local sta-
tistical information, edge, texture and structure) are used to represent different yet
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Figure 1. Workflow of multi-feature sea-land segmentation based on pixel-wise learning.

complementary characteristics of the whole image. Details of the feature extraction
are introduced as follows.

2.1.1. Grayscale

Grayscale is a commonly used and powerful feature in sea-land segmentation since
there is usually big grayscale difference between sea and land. In this paper,
grayscale feature can be extracted from each pixel and form one feature plane.
Afterwards, the feature plane is normalized by subtracting its mean value over the
entire image.

2.1.2. Local statistical information

For sea-land segmentation, one can observe two facts: 1. land area usually has
higher intensity compared with sea because of its larger reflectivity. 2. sea feature
has generally smoother surface and lower intensity variance than those of land area.
Here, we use the local mean value and local variance value to describe the local
statistical information. They can be written as

M(i) =
1

W

W∑
j∈R(i)

Ij (1)

V(i) =

√√√√ 1

W

W∑
j∈R(i)

(Ij − I)
2

(2)

where I is the input image, M(i) and V(i) represent the mean and variance value
of pixel i, R(i) is a local window, W is the total pixel number in R(i). In practical
application, R(i) is usually a square window with its center at pixel i. In our
experiments, the window width of is R(i) set to 3, 7, 11, yielding 6 filter responses
at each pixel.

2.1.3. Edge

Edge information is introduced to help determine sea-land boundaries. Edge can
be defined as any pixels within images whose intensities are higher or lower than

4



December 20, 2016 International Journal of Remote Sensing tRES-sea-land

those of surrounding pixels. Since sea-land boundaries are usually of high intensity
difference, edge information should be used for sea-land segmentation. To obtain
edges, sobel operator (Kanopoulos, Vasanthavada, and Baker 1988) is applied to
detect edges of four directions {0◦, 45◦, 90◦, 135◦}, yielding 4 filter responses at
each pixel.

2.1.4. Texture

In general concept, images can be regarded as the combination of textural part
and structural part (Aujol et al. 2006). Textural part, with some periodicity and
oscillatory nature, represents fine-scale spatial arrangement information in images.
For sea-land segmentation, multiple land cover types exist in land area usually
contain more complex texture information than sea area in optical remote sensing
images.

The texture information is obtained through grayscale distribution of pixel and
neighborhoods around. In this paper, we choose Gabor filter (Mehrotra, Namuduri,
and Ranganathan 1992) to extract texture feature. Since Gabor filter is sensitive
to the edge of images and has wide adaptation to illumination variation, it has
been widely applied in texture extraction. Gabor filter could be written as:

g(x, y;λ, θ, σ) = exp(−x
′2 + y′2

2σ2
) exp(i(2π

x′

λ
)) (3)

where x′ = x cos θ+y sin θ, y′ = −x sin θ+y cos θ. Here, λ represents the wavelength
of the sinusoidal function, θ represents the orientation, σ is the standard deviation
of the Gaussian envelope.

In this paper, the wavelength of the sinusoidal function is defined as 1, the
standard deviation of Gaussian envelope is set as 1, and the orientation is set as
{0◦, 45◦, 90◦, 135◦}. Therefore, we could obtain 4 responses for each pixel.

2.1.5. Structure

Regardless of fine scale-details, structural part corresponds to the main large ob-
jects in images (Aujol et al. 2006). As a holistic description, it can provide infor-
mation about main large boundaries in sea-land images. Here, we use a joint static
and dynamic guidance model (Ham, Cho, and Ponce 2015) to exploit the struc-
ture information in an input image. The model takes advantages of both static
and dynamic guidance, which can effectively control image structures at different
scales and can handle a variety of types of data from different sensors (Ham, Cho,
and Ponce 2015). In structure feature map, textures are penalized much more than
informative structures, making main structure information salient. Here, we obtain
6 structure maps with different scales by empirically using different regularization
parameters which adjust the scale feature.

All the above 21 feature maps are stacked to form original feature data. In next
two sections, details of multi-feature sea-land classifier designing and application
are provided.

2.2. The design of multi-feature sea-land classifier

Based on the above feature data cubics, we design a multi-feature sea-land classi-
fier by minimizing the classification error between the data and their labels. Here,
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multi-feature sea-land segmentation algorithm is proposed and details of the pro-
posed algorithm could be mathematically analyzed as follows.

2.2.1. Robust estimation

Based on features extracted above, we could get multi-feature vector x ∈ RL×1 for
each pixel (L represents the total number of features).

x =
[
x1 x2 · · · x(L−1) xL

]T
(4)

Given a feature data set X ∈ RL×N (N is the number of pixels), the training
data set D can be written as

D = {(x1, z1), (x2, z2), ..., (xN , zN )} (5)

where xi ∈ RL×1 denotes multi-feature vector for i-th pixel in training data and
zi ∈ {0, 1}Ni=1 is label for the i-th pixel. xi belongs to land or sea if the label zi = 1
or 0.

In the proposed method, weight vector w ∈ RL×1 is designed to categorize pixels
as sea or land. For feature vector of each pixel, the residual error turns out to be

ei = wTxi − zi, i = 1, ..., N (6)

In such circumstance, the cost function G(e) could be defined as

G(e) ≡ G(wTx− z) (7)

Through the minimum of cost function for training data set, the optimal weight
vector w∗ can be calculated.

w∗ = arg min J(w) (8)

where J(w) ≡ 1
N

N∑
i=1

G(wTxi − zi). Here, J(w) could also be formulated using an

expectation form.

J(w) ≡ E[G(wTx− z)] (9)

In traditional method, squared Euclidean distance is frequently regarded as cost
function. However, squared Euclidean distance has some drawbacks in practice,
when its value has to be estimated from a measured sample. The main problem
is its high sensitivity to outliers. Therefore, the squared Euclidean distance may
not be a robust measure of cost function. To solve the above problem, a robust
cost function need to be selected. It is noteworthy that robust cost function should
satisfy the following properties:
� nonnegative valued, G(e) ≥ 0,∀e;
� even symmetric, G(e) = G(−e);
� nondecreasing for e ≥ 0;
� has unique minimum at the origin, G(0) = 0;
� has first two derivatives piecewise continuous.
In general, one obtains more robust estimators when choosing a cost function

that does not grow too fast with increasing residual error. Proper cost function can
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give a very good compromise between the properties of computational complexity
and robustness, which is conceptually simple, fast to compute, and have appealing
statistical properties, especially robustness.

Under careful consideration, we select Logistic cost function as the substitute for
squared Euclidean distance. The Logistic cost function is written as follows and
has proved very useful:

G(e) =
1

β
ln(cosh(βe)) (10)

where β is a constant (usually set as 1).
The first order derivative g and second order derivative g′ of the Logistic cost

function are

g(e) = tanh(βe) (11)

g′(e) = β(1− tanh2(βe)) (12)

After the selection of robust cost function, the design of multi-feature sea-land
segmentation is converted to a convex optimization problem.

2.2.2. The multi-feature sea-land segmentation algorithm

Gradient descent is one of the most common approaches to the unconstrained
problem of minimizing cost function. However, the convergence rate of gradient
descent is sensitive to learning speed. Besides, when the optimization problem is
ill-conditioned, the gradient descent will have slow convergence. Newton method
is an efficient way to solve above problems, since it provides an optimal quadratic
way to converge in a small number of steps.

For the minimization problem of cost function

w∗ = arg min J(w) = arg min
1

N

N∑
i=1

G(wTxi − zi) (13)

Newton method can be expressed as

w← w − [
∂2J(w)

∂w2
]−1∂J(w)

∂w
(14)

However, it is obvious that Newton method is computationally much more de-
manding per iteration than the gradient descent. The inverse of the Hessian has to
be calculated at each step, which is very difficult for high dimensional problems.
Besides, the Hessian matrix may also happen to be ill-conditioned or close to a sin-
gular matrix at some step of the algorithm, which may introduce numerical errors
into the iteration.

To solve the above problems, we use diagonal matrix as the approximation of Hes-
sian matrix to increase the computational speed and stability. Concretely, multi-
feature data is processed by centering and whitening without affecting the esti-
mation of multi-feature sea-land classifier. After the above processing, the feature
data become statistically uncorrelated and the covariance converts to unit matrix.

Centering means making multi-feature vector has zero mean. For data x ∈ RL×1,
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centered data x̂ ∈ RL×1 is obtained from the following equation:

x̂ = x− E[x] (15)

where E[·] calculates the expectation.
Whitening is essentially decorrelation followed by scaling, which implies that

it can be achieved by a linear operation mathematically. For a zero-mean random
vector c = [c1, · · · , cn]T , it is whitened vector when its covariance is the unit matrix
(E[ccT ] = I), which means its elements ci are uncorrelated. For multi-feature vector
x̂, its whitened vector x̃ ∈ RL×1 could be obtained with the following equations:

x̃ = ED−1/2ET x̂ (16)

where E = (e1, · · · , en) is the orthogonal matrix of eigenvectors of E[x̂x̂T ] and
D = diag(d1 · · · dn) represents the diagonal matrix of its eigenvalues.

In such circumstance, the covariance of whitened vector is the unit matrix:

E[x̃x̃T ] = E[(ED−1/2ET x̂)(ED−1/2ET x̂)T ]

= E[ED−1/2ET x̂x̂TE(D−1/2)TET ]

= ED−1/2ETE[x̂x̂T ]ED−1/2ET

= ED−1/2ETEDETED−1/2ET

= I

(17)

After the processing, whitened feature data cubic for each image is obtained and
then used to train classifier. In this context, the cost function is rewritten as

G(ẽ) ≡ G(wT x̃− z) (18)

Then the optimization problem turns out to be:

w∗ = arg min J(w) = arg min
1

N

N∑
i=1

G(wT x̃i − zi) (19)

where J(w) ≡ E[G(wT x̃− z)].
The first and second order derivatives of G in (18) are

∂G(wT x̃− z)
∂w

= g(wT x̃− z)x̃ (20)

∂2G(wT x̃− z)
∂w2

= g′(wT x̃− z)x̃x̃T (21)

Then the first and second order derivatives of J(w) could be written as

∂J(w)

∂w
= E[g(wT x̃− z)x̃] (22)

∂2J(w)

∂w2
= E[g′(wT x̃− z)x̃x̃T ] (23)
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Algorithm 1 Pseudocode of multi-feature sea-land segmentation Algorithm
Initialization:

1: Center the multiple feature data x to make its mean zero. x̂ = x− E[x]
2: Whiten the data and make the covariance of x̃ the unit matrix.

x̃ = ED−1/2ET x̂
3: Choose an random initial vector w of unit norm.

Repeat:
4: w← w − E[g(wT x̃− z)x̃]/E[g′(wT x̃− z)]
5: If not converged, go back to step (4).

Output: the optimal multi-feature sea-land classifier w.

To simplify the inversion of ∂2J(w)
∂w2 matrix, we decide to approximate ∂2J(w)

∂w2 .
Since the data is sphered, a reasonable approximation seems to be

∂2J(w)

∂w2
= E[g′(wT x̃− z)x̃x̃T ]

≈ E[g′(wT x̃− z)]E[x̃x̃T ]

= E[g′(wT x̃− z)]I

(24)

Therefore, ∂2J(w)
∂w2 is approximated to a diagonal matrix, and can be easily in-

verted. Therefore, using (19) and (21), we can obtain the following approximative
Newton iteration:

w← w − E[g(wT x̃− z)x̃]/E[g′(wT x̃− z)] (25)

Based on the special property of feature data after centering and whitening, one
can find that multi-feature sea-land segmentation algorithm does not need a matrix
inversion but still converges roughly with the same number of iterations as the real
Newton method. Note that the convergence of our proposed algorithm means that
the distance between the former and new values of w is very close, and here we set
the distance as 0.00001.

2.3. Application of multi-feature sea-land classifier

To verify the efficiency of multi-feature sea-land classifier, same feature extraction
and processing steps need to be conducted in testing images at first. Then we apply
the optimal weight vector w to the feature data to distinguish sea and land.

y(x̃) = wT x̃ (26)

where x̃ represents the feature data. For each pixel, an output score y(x̃) could be
obtained through equation (26). Theoretically, the output score should be close to
pixel label, which means score values of land pixels should be larger than that of
sea pixels (the label of sea and land pixels are set as 0 and 1 in the training data
respectively).

To further obtain binary images for sea-land segmentation, we are expected to
determine threshold to distinguish sea and land. Here, the histogram of candidate
image is of bimodal distribution, in which there are two peaks, one appears in a
low-level value and the other in a high-level value. In this context, OTSU method,
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an image thresholding algorithm, appears to be one appropriate choice since it
could divide images with bimodal distribution into two categories, and make their
interclass variance maximized. Though many improved method based on OTSU
have been widely used in thresholding, we still adopt OTSU method to determine
the appropriate threshold in histogram with bimodal distribution due to its low
calculation and rapid computing.

Assuming the threshold value in OTSU method is t, it should be expressed as

t = arg max
t
{ω0(µ0 − µ)2 + ω1(µ1 − µ)2} (27)

where ω0 = N0/N, ω1 = N1/N, µ0 =
t∑

i=1
i · pi, µ1 =

256∑
i=t

i · pi, µ = ω0µ0 +ω1µ1. Here,

N0, N1 and N are respectively the number of sea pixels, land pixels and whole
pixels, respectively. pi is the frequency of gray level i. µ0, µ1 and µ respectively
represent mean gray values of sea, land and the whole image. For sea-land seg-
mentation in RGB color image, t will be an value between 1 and 256. Traversal
strategy is adopted to obtain the result. Therefore, we could obtain a segmentation
map Rseg using the Otsu’s threshold, and it is written as:

Rseg
(i) =

{
1, G(i) ≥ t

0, otherwise
(28)

where t is the calculated threshold value using Otsu’s method. Here, land and sea
pixels are respectively labeled with value 1 and 0.

Here, Figure 2 shows the detailed application of the multi-feature sea-land clas-
sifier and Figure 2(a) is the original Google-Earth image. As illustrated in Figure
2(b), the whole output score results could form a candidate map, where pixels
of sea area are darker than that of land area. To further obtain binary images
for sea-land segmentation, the output score is then compared with a threshold t: if
y(x̃) ≥ t, x̃ belongs to the land area, else, x̃ belongs to the sea. Here, the histogram
of candidate image is of bimodal distribution. In this context, OTSU method, an
image thresholding algorithm, is one appropriate choice to obtain the threshold
value T since it could divide images with bimodal distribution into two categories,
and make their interclass variance maximized (Otsu 1979).

As shown in Figure 2(c), binary image for sea-land segmentation is obtained,
and the result is more obvious compared with Figure 2(b). However, as shown in
Figure 2(c), the land area is distributed with tiny black holes. Besides, some tiny
interferences still exist in sea area. These interferences on land and sea should be
removed to obtain optimal sea-land segmentation.

To address the above problems, two image processing approaches will be im-
plemented. First, morphological close operator (Soille 2004) is used on the binary
map, which is comprised of two fundamental morphological operators: image di-
lation and corrosion. The close operator could fill small holes and smooth the
boundaries without changing the shape much. Here, a mask of disk shape with
radius 3 is applied. Second, tiny interferences on sea area are removed based on
similar method in (An and Shi 2015). Concretely, the pixel number of each region
is counted and the region will be recognized as tiny interference if the number is
smaller than a given constant. After the implementation of above two procedures,
the final sea-land segmentation result is obtained as shown in Figure 2(d).
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Figure 2. The detailed application of multi-feature sea-land classifier. (a) is the original Google-Earth
image. (b) is the candidate map directly obtained from multi-feature sea-land classifier. (c) is the binary

map obtained from OTSU method. (d) is the final sea-land segmentation map after using morphological

close operator and removing tiny objects.

3. Experiments

In this section, experiments are conducted to evaluate the performance of multi-
feature sea-land segmentation approach. The proposed segmentation approach is
compared with local binary pattern (LBP) based segementation(Xia et al. 2014)
and maximum entropy (ME) based segmentation (Kapur, Sahoo, and Wong 1985)
from visual and quantitative aspects based on images obtained from Google-Earth,
VRSS-1 and Gaofen-1 satellites. We also compare with OTSU based segmentation
method (Otsu 1979) as a baseline method. The above methods served as com-
parison are all common non-geographic information based sea-land segmentation
methods. To the best of our knowledge, currently there is no supervised learn-
ing based sea-land segmentation algorithm, therefore, we propose our pixel-wise
learning based algorithm and compare it with the above traditional sea-land seg-
mentation algorithms. It should be noted that the two image processing approaches
(morphological close operator and tiny interferences removement) are applied to
all the compared methods. Each method has been adjusted to reach their optimal
parameter for sea-land segmentation.

The size of Google-Earth images is 5000 × 5000 pixels with spatial resolution
of 2.15 m. For panchromatic images obtained from VRSS-1, the size is 14078 ×
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14150 pixels with spatial resolution of 2.5 m. For panchromatic images obtained
from Gaofen-1, the size is 18192 × 18000 pixels with spatial resolution of 2 m.

Here, we choose two metrics to evaluate the performance of different algorithms,
i.e. the right rate of land area (LR) and the error rate (ER).
LR is used to measure the proportion of correctly classified land pixel numbers

to the real land pixel numbers, and it could be written as

LR =
CL

LG
(29)

where CL is the number of correctly recognized land pixels, and LG is the number
of land pixels in ground truth.
ER measures the percentage of wrong classified pixel numbers in the whole

image, and it could be expressed as

ER =
SL+ LS

TN
(30)

where SL indicates the number of real sea pixels which are misjudged as land pixels,
LS denotes the number of real land pixels which are misjudged as sea pixels, and
TN represents the whole number of pixels in the input image.

3.1. Experiments based on Google-Earth images

3.1.1. Visual analysis

In our experiments, three Google-Earth images are used to train multi-feature sea-
land classifier, and the rest twelve images are used as testing images. To reduce
the requirement for the data resource and make our approach a general application
for different image models, we calculate the mean value of three channels (RGB)
of images to get their grayscale model and just use the grayscale images in our
approach.

Here, we choose six images (three of them are simple, the rest are complex)
from testing data set to evaluate sea-land segmentation performance of different
methods. In the six testing images, three are easy for segmentation (simple); while
the rest are of complex land environment, making them difficult for correct seg-
mentation. The ground truth of Google-Earth images are obtained by manual an-
notation. Corresponding ground truth images are shown in Figure 3. Comparison
of sea-land segmentation results based on three simple images is shown in Figure
4. Rows from up to down are the original Google-Earth images, the correspond-
ing sea-land segmentation images obtained from OTSU based segmentation, LBP
based segmentation, ME based segmentation and the proposed method, respec-
tively. Columns from left to right show the comparison of results obtained from
different segmentation methods for each Google-Earth image.

As shown in Figure 4, there are big differences among results of four sea-land
segmentation methods. Compared with the ground truth shown in Figure 3(a-c),
our segmentation results outperform traditional results. First, for complex coast-
lines in Figure 4(a), sea-land boundaries shown in our segmentation images are
more distinct and complete compared with blurred ones in traditional segmenta-
tion images. In addition, segmentation images of three traditional methods contain
misjudgments to the ground truth land area. Comparing the right-most column in
Figure 4, it is noteworthy that the forest in bottom-left corner of image is misjudged
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Figure 3. The ground truth data of six Google-Earth images. (a-c) simple Google-Earth images; (d-f)

complex Google-Earth images.

in traditional methods. However, misjudgments barely exist in segmentation im-
ages obtained from our proposed method. From Figure 4(b), one can observe large
amount of texture information (streets and buildings) in land area, which brings
multiple disturbances to traditional segmentation results. However, segmentation
image obtained from the proposed method seldom contains such wrong segmenta-
tion. It is noticeable that Figure 4(c) contains large area of trees which has similar
grayscale with sea area. The corresponding results indicate that traditional meth-
ods misjudge this area as sea at varying degrees, but the proposed method classify
this area as land correctly.

Then three more complicated Google-Earth images are used to test further per-
formance of the proposed method. As shown in Figure 5(a), the existence of shoal
makes segmentation of near coastline-regions difficult. In Figure 5(d, g, j), coast-
lines near shoal is blurred and their adjacent regions contain lots of misjudgments.
Besides, large stretch of trees can hardly be classified correctly via traditional
methods. For Figure 5(b), widespread forests and lame light intensity increase the
difficulty of sea-land segmentation. The corresponding traditional segmentation
images contain numerous misjudgments, especially for ME based result in this sit-
uation. In Figure 5(c), the grayscale of inner harbor is darker than that of open
sea. Besides, farmland has similar grayscale to that of open sea. Traditional seg-
mentation images shown in Figure 5(f, i, l) roughly classify both inner harbor and
open sea correctly, yet misjudge farmland as sea area. On the contrary, as shown in
Figure 5(m, n, o), the proposed method show more accurate sea-land segmentation
results .

In short, results obtained from traditional segmentation methods (shown in Fig-
ure 5) have more misjudgments compared with that in Figure 3. However, the
proposed method could still obtain good sea-land segmentation results in complex
scenario, which indicates its self-adaptivity and robustness.
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Figure 4. Visual comparison of sea-land segmentation results based on simple Google-Earth images: (a-c)

Original testing images, segmentation results based on (d-f) OTSU, (g-i) LBP, (j-l) ME, and (m-o) the
proposed method.
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Figure 5. Visual comparison of sea-land segmentation results based on complex Google-Earth images.

(a-c) Original testing images; segmentation results based on (d-f) OTSU, (g-i) LBP, (j-l) ME, and (m-o)
the proposed method.
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Table 1. The right rate of four sea-land segmentation methods on six Google-Earth images

No.1 No.2 No.3 No.4 No.5 No.6 Ave
OTSU 0.9094 0.6292 0.6611 0.4085 0.6565 0.6396 0.6507
LBP 0.7615 0.4699 0.5157 0.2543 0.5137 0.4825 0.4996
ME 0.5450 0.1864 0.0291 0.2360 0.1220 0.2825 0.2335
Ours 0.9989 0.9686 0.9913 0.9882 0.9966 0.9977 0.9902

Table 2. The error rate of four sea-land segmentation methods on six Google-Earth images

No.1 No.2 No.3 No.4 No.5 No.6 Ave
OTSU 0.0700 0.1667 0.2167 0.3045 0.2041 0.2079 0.1950
LBP 0.1832 0.2352 0.3094 0.3788 0.2889 0.2971 0.2821
ME 0.3493 0.3565 0.6199 0.3858 0.5215 0.4100 0.4405
Ours 0.0029 0.0207 0.0072 0.0209 0.0025 0.0041 0.0097

3.1.2. Quantitative analysis

Two quantitative estimations, namely, LR and ER, are applied to evaluate four
different methods. Here, we provided two Tables indicating LR and ER of four sea-
land segmentation methods on six Google-Earth images. Indices with bold types
represent the best ones in four sea-land segmentation methods.

Table 1 shows the whole LR values and the average value of each segmentation
method on six Google-Earth images. Table 2 shows the whole ER values and the
average value of each segmentation method on six Google-Earth images. It can be
seen from Table 1 and Table 2 that the proposed sea-land segmentation method
achieves the highest LR of 0.9902 and the lowest ER of 0.0097, outperforming
traditional methods by large margins. These results are in accordance with visual
comparison (Figures 4 and 5) where plenty of land regions in testing images are
misjudged as sea in traditional methods while classified efficiently in the proposed
method. Since the proposed segmentation approach based on supervised learning
could self-adaptively learn more robust sea-land segmentation rules from multi-
feature training data, the results of our proposed method perform better than
traditional methods.

3.2. Experiments based on VRSS-1 and Gaofen-1 images

3.2.1. Visual analysis

Here, two panchromatic images (one VRSS-1 image, one Gaofen-1 image) are used
to train multi-feature sea-land classifier, and the rest three images are applied as
testing images. In the experiments, all of VRSS-1 and Gaofen-1 images are first
downsampled by a factor of 2/5 and then used in different sea-land segmenta-
tion methods. The ground truth of VRSS-1 and Gaofen-1 images are obtained by
manual annotation and shown in Figure 6.

Figure 7 presents one original VRSS-1 testing image, two original Gaofen-1 test-
ing images and their corresponding sea-land segmentation images obtained from
four methods. From traditional segmentation results, one can observe that land
regions as dark as sea are wrong classified as sea area. With similar grayscale
value to sea area, large forest regions (Figure 7(a)) and broad farmlands (Figure
7(b, c)) are misjudged as sea in traditional methods. For traditional segmentation
results shown in Figure 7(d-l), these misjudgments make land area interfered by
distributed black holes to different extents, and it is difficult to recognize sea-land
boundaries. In contrast, the above problems barely exist in segmentation images
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Figure 6. The ground truth data of VRSS-1 and Gaofen-1 images. (a) Original VRSS-1 testing image,

(b-c) original Gaofen-1 testing images.

Table 3. The right rate and average value of four sea-land segmentation methods on VRSS-1 and Gaofen-1

images

No.1 No.2 No.3 Ave
OTSU 0.7529 0.6766 0.7997 0.7431
LBP 0.6774 0.6430 0.7828 0.7011
ME 0.8689 0.6995 0.9079 0.8254
Ours 0.9893 0.9860 0.9934 0.9896

Table 4. The error rate and average value of four sea-land segmentation methods on VRSS-1 and Gaofen-1
images

No.1 No.2 No.3 Ave
OTSU 0.0573 0.1671 0.0714 0.0986
LBP 0.0746 0.1824 0.0775 0.1115
ME 0.0331 0.1569 0.0334 0.0745
Ours 0.0075 0.0141 0.0033 0.0083

obtained from our proposed method.

3.2.2. Quantitative analysis

Same quantitative estimations, LR and ER, are applied to evaluate four different
methods. Here, we provided two tables indicating LR and ER of four sea-land
segmentation methods on VRSS-1 and Gaofen-1 images. Indices with bold types
represent the best ones in four sea-land segmentation methods. Table 3 shows the
whole LR values and the average value of each segmentation method on VRSS-1
and Gaofen-1 images. Table 4 shows the whole ER values and the average value
of each segmentation method on VRSS-1 and Gaofen-1 images.

Table 3 and Table 4 show that the proposed sea-land segmentation method out-
performs traditional segmentation methods in large degrees, with the highest LR
of 0.9896 and the lowest ER of 0.0083. These results are in accordance with visual
comparison (Figure 7) where many land regions in testing images are misjudged
as sea in traditional methods while identified correctly in the proposed method.

From the above experiments on Google-Earth, VRSS-1 and Gaofen-1 images, one
can observe the efficiency of the proposed method compared with traditional sea-
land segmentation methods. In land area, large-scale vegetation (forests, farmlands)
is difficult to segment because it usually involves similar feature information with
sea area. Land regions like residential area and industrial zone, contain complex
feature information and thus become a difficult area for sea-land segmentation. It
is usually hard to solve these problems by traditional segmentation methods based
on single feature and prior model. In contrast, good performances in the above
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Figure 7. Visual comparison of sea-land segmentation results based on VRSS-1 and Gaofen-1 images.

(a) Original VRSS-1 testing images, (b-c) original Gaofen-1 testing images; segmentation results based on
(d-f) OTSU, (g-i) LBP, (j-l) ME, and (m-o) the proposed method.
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testing images illustrates that our multi-feature sea-land segmentation approach is
more self-adaptive and robust.

4. Conclusions

In this paper, sea-land segmentation issue is converted into a pixel-wise binary clas-
sification problem based on our proposed supervised learning based method. We
then designed a multi-feature sea-land classifier with superior adaptability and ro-
bustness. The proposed multi-feature sea-land classifier is trained through each
pixel in images instead of traditional rectangular patch because nearly no ap-
propriate patch size could match amorphous boundaries between sea and land.
Meanwhile, multi-feature sea-land segmentation algorithm is proposed based on
the approximation of Newton method to design sea-land classifier. Experimental
results and discussion on Google-Earth, VRSS-1 and Gaofen-1 images demonstrate
that our proposed sea-land segmentation method yields more robust and accurate
sea-land segmentation results.
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