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Abstract

Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their

abundance fractions. Sparse unmixing is actually `0 problem which is NP-hard, and a relaxation is

often used. In this paper, we attempt to deal with `0 problem directly via a multi-objective based

method, which is a non-convex manner. The characteristics of hyperspectral images are integrated

into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing

method (SMoSU). In order to solve the `0 norm optimization problem, the spectral library is

encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the

evolution process. However, a multi-objective method usually produces a number of non-dominated

solutions, while sparse unmixing requires a single solution. How to make the final decision for

sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of

hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data,

we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This

regularization item is able to enforce the individual divergence in the evolution process of SMoSU.

In this way, the diversity and convergence of population is further balanced, which is beneficial to

the concentration of individuals. In the experiments part, three synthetic datasets and one real-

world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing

algorithms are compared.
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1. Introduction

Benefit from the development of remote sensing technique, imagery spectral resolution has been

improved significantly and hyperspectral observation capability is formed. Hyperspectral images

usually contain hundreds of spectrum bands, covering visible to thermal-infrared regions (Ma et al.

2014; Zhong et al. 2018). The abundant spectral information of hyperspectral image contributes to

many practical applications, such as environmental monitoring and geological exploration (Ruiten-

beek et al. 2006; Pan et al. 2017a). However, the spatial resolution of hyperspectral images is

usually low and different features are always homogeneously mixed (Willett et al. 2014; Wang et al.

2017). Thus a single pixel always contains more than one land cover types, resulting in mixed

pixels. The complex mixing of different features brings great challenge to hyperpsectral image

processing (Pan et al. 2016; Wang et al. 2016; Zhou and Wei 2016; Pan et al. 2017b). Unmixing

aims at recovering pure materials spectra (endmembers) of a hyperspectral image, as well as their

corresponding fractions (abundances). The abundance values are proportions representing the per-

centage of endmembers in a pixel region (Keshava and Mustard 2002). Accordingly, hyperspectral

unmixing is generally processed under two steps: (i) identifying the endmembers, (ii) quantifying

the abundance fractions (Bioucas-Dias et al. 2012; Zhong et al. 2016).

Sparse regression based unmixing is a hot topic in recent years, which does not need to assume

pure materials in hyperspectral images. Due to the simplicity and flexibility, linear mixing model

(LMM) is the most widely used (Bioucas-Dias et al. 2012; Heylen et al. 2014; Zhu et al. 2014b).

LMM characterizes the mixture without considering the effects of multiple scattering and intimate

mixture. In sparse unmixing, the mixed image data is represented by pure signatures from a spectral

library which is known in advance (Iordache et al. 2011). In this way the estimation of abundances

is no longer dependent on the presence of pure pixels. Sparse unmixing aims at determining an

optimal subset of the pure materials, which may be a very small proportion relative to the library.

Mathematically speaking, it is a `0 norm-based combinational problem, which is non-convex and

NP-hard. The most commonly used approach to solve this problem is approximating it to a convex

`1 norm regularized optimization problem (Bioucas-Dias and Figueiredo 2010; Iordache et al. 2014a).

To further approximate the `0 norm, `p(0 < p < 1) norm based methods are developed (Qian et al.

2011; Zhu et al. 2014a). In order to obtain a better unmixing performance, quite a few studies
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consider exploring the characteristics of hyperspectral image and the spectral library, such as the

contextual information among pixels (Feng et al. 2014, 2016), the signature differences between

hyperspectral image and spectral library (Shi and Wang 2014; Zare and Ho 2014). However, `1 or

`p norm is only a relaxation of the original `0 problem. Using such a relaxation may lead to errors

in the unmixing results. Another type of works try to deal with the `0 norm problem directly using

greedy algorithms. In (Shi et al. 2014), a subspace matching pursuit sparse unmixing method was

proposed. Considering the high correlation of spectral library, the greedy selection is conducted

based on the whole hyperspectral image data. In (Tang et al. 2014), the forward greedy step and

the backward greedy step was combined to provide a more stable selection and less probabilities

of local optima. Although greedy-based methods need no approximation, there are many sensitive

parameters which have to adjust manually. Moreover, these methods usually encounter problems

of endmember missing and redundancy (Shi et al. 2014).

Recently, multi-objective optimization (MO) has been proposed to solve `0 norm-based problems

directly without any smoothing (Deb and Jain 2014; Jain and Deb 2014; Ma et al. 2015; Sun

et al. 2016; Zhang and Tao 2017; Ma et al. 2018). The major target of MO is to find a non-

dominated solution set which provides a good trade-off for objective functions (Miettinen 1999;

Deb and Kalyanmoy 2001). MO has made great progress in combinatorial optimization (Li et al.

2014)(Xue et al. 2016). Researchers have verified that MO can provide good solutions for many NP-

hard problems, where it can recover the best-so-far guaranteed approximate solution within limited

iterations. In Yu et al. (2013), an isolation-based MO framework was proposed, which could achieve

the best-achievable result on minimum k-set cover problem with an Hk-approximation ratio. In the

next few years, Qian et al. further explored the evolutionary problem and provided many theoretical

supports on some NP-hard problems. In Qian et al. (2015a), Pareto optimization, penalty function

method and greedy algorithms were compared theoretically on the minimum cost coverage problem.

Pareto optimization was proved more efficient than penalty function method. It was also found to

be positive on a special case of the problem, when compared with greedy algorithm. In Qian et al.

(2015b), Pareto optimization based subset selection (POSS) was found that it was able to achieve

the best-so-far approximation guarantee obtained by greedy algorithms on sparse regression. Later,

POSS is sped up through paralleling (Qian et al. 2016).

For sparse unmixing, the balance of reconstruction error and endmember sparsity is precisely

in line with the goal of MO. However, different from single-objective optimization, a number of
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conflicting objective functions need to be optimized simultaneously in MO (Deb and Kalyanmoy

2001). In other words, it is difficult to select a specific solution that is optimal to the two objective

functions. Therefore, MO is expected to determine a set of non-dominated solutions as close as

the Pareto-optimal front to give a trade-off among objectives (Zhou et al. 2011). In practical

applications such as sparse unmixing, there must be a specific strategy to determine the unique

solution.

There are few works that try to handle the sparse unmixing problem by MO. In Xu and Shi

(2017), sparse unmixing was transformed into a bi-objective optimization problem using POSS and

non-dominated sorting genetic algorithm-II (NSGA-II). This method was a semi-automatic manner

which requires selecting an individual from the final solution set manually. In Gong et al. (2017),

considering the large scale of spectral library and heavy computing load caused by high dimensional

problem, the spectral library was grouped and a cooperation strategy was designed among the

groups. This algorithm optimized the abundance matrices and used the knee point in the Pareto

front as the final solution. However, although these methods have presented good performance,

how to determine the final solution from the obtained non-dominated front is still challenging

for sparse unmixing. If suboptimal point is picked as the final solution, the endmember missing

or redundancy is likely to happen. In this case, the unmixing accuracy is suffered significantly.

Furthermore, endmember sparsity in most existing methods relies heavily on the parameter settings

of the mutation and crossover operator, which may result in an inadequate sparsity.

In this paper, a new multi-objective optimization based sparse unmixing method is proposed,

which takes full advantage of the spectral characteristic in hyperspectral images. We term the

proposed work as integrating spectra and multi-objective for `0 sparse unmixing (SMoSU). SMoSU

is developed under the framework of the multi-objective evolutionary algorithm based on decom-

position (MOEA/D) (Zhang and Li 2007). MOEA/D could provide a non-Pareto criterion, which

leads to a fast evolutionary speed and low computational complexity. In SMoSU, sparse unmixing

is transformed to a bi-objective discrete optimization problem, where reconstruction error and end-

member sparsity error are taken as the two conflicting objectives. Inspired by the binary coding

of minimum k-set cover problem in (Yu et al. 2013), we encode the spectral library in a binary

vector and use a bit-wise flipping strategy for individual generation. Each bit of the binary repre-

sentation indicates the corresponding spectrum. The probability-based bit-wise flipping is verified

to be effective in global search and does not need to adjust many parameters (Yu et al. 2013; Qian
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et al. 2015b). However, as is discussed above, a set of non-dominated solutions are generated by

MOEA/D, which is hard to select a final solution. In this paper, we improve the Tchebycheff

decomposition approach in MOEA/D by integrating the spectral characteristic of hyperspectral

data. The improved decomposition function takes spectral correlations among individuals into ac-

count. A regularization item that enforces the individual divergence is included in SMoSU. By this

means the diversity and convergence of population are further balanced, which is beneficial to the

concentration of individuals. The major contributions of SMoSU can be summarized as follows:

• We introduce a new multi-objective based sparse unmixing method which could solve the `0

non-convex optimization without any relaxation. The reconstruction error and endmember

sparsity error are considered as two objectives in SMoSU.

• We use a binary code strategy for spectral signatures in the library and proposed a bit-wise

flipping approach for individual generation based on the framework of MOEA/D. In this case,

the optimal subset selection of spectral library is transformed to finding an optimal binary

vector.

• To overcome the difficulty of selecting the final solution, we integrate the spectral characteristic

of hyperspectral images into the multi-objective framework. The Tchebycheff decomposition

approach is regularized by the spectral correlations among different individuals, so as to

further balance the population divergence and convergence.

The rest of this paper is organized as follows. Section 2 introduces the background about

sparse unmixing and MOEA/D. In Section 3, detailed description about SMoSU is presented.

Experimental results and analysis are shown in Section 4. We conclude this paper in Section 5.

2. Backgrounds

In this section, we first give a brief introduction about the model and optimization problem of

linear sparse unmixing, then some basic concepts about multi-objective optimization is presented.

2.1. Linear sparse unmixing

In LMM, the spectra of mixed pixel is weighted linearly by several pure spectra in the library.

Let y ∈ RL×1 be the measured spectrum of a mixed pixel with L bands and A ∈ RL×m be the
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spectral library with m pure materials. The linear model of each pixel can be written as

y = Ax + n (1)

where x ∈ Rm×1 is the abundance fractions of the mixed pixel, xi ∈ x stands for the proportion of

the ith endmember, n ∈ RL×1 is the error term. Considering the abundance fractions geometrically,

the following constrains need to be considered

ANC : xi ≥ 0

ASC :

m∑
i=1

xi = 1
(2)

where ANC is short for the abundance nonnegativity constraint and constrains nonnegative areal

presences to every endmember; ASC is short for the abundance sum constraint and expects a com-

plete decomposition to the observed spectral signature of each pixel. For the whole hyperspectral

image with n pixels, the linear model can be written as

Y = AX + N (3)

where Y = [y1, ...,yn] ∈ RL×n is the image data matrix, X = [x1, ...,xn] ∈ Rm×n is the abundance

matrix of all the n pixels, N = [n1, ...,nn] ∈ RL×n is the corresponding error term.

In view of the fact that all pixels in a hyperspectral image share a small number of pure materials

relative to the scale of spectral library, there should be only a few nonzero lines for the abundance

matrix X (Iordache et al. 2014a). Thus the sparse unmixing problem can be described as

(P0) : min
X
‖X‖row−0

s.t. ‖Y −AX‖F ≤ δ,X ≥ 0

(4)

where ‖X‖row−0 is the number of nonzero rows in ‖X‖, indicating the estimated number of end-

members, ‖Y − AX‖F is the Frobenius norm of Y − AX, δ is the error tolerance. It has been

studied that ANC gives an automatic imposition to a generalized ASC (Iordache et al. 2011), so

the ASC is not added in Eq. (4).
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2.2. Mathematical description of MO

MOs need to optimize several conflicting objectives simultaneously in practice. Suppose there

exist N objectives and m decision variables. MO can be described mathematically as

minF (u) = [f1(u), f2(u), ..., fN (u)]T

s.t. hi(u) ≤ 0, i = 1, ..., v1

hj(u) = 0, j = v1 + 1, ..., v2

u ∈ Ω ⊆ Rm

(5)

where u = (u1, ..., um) denotes the m decision variables, Ω is the decision space, F : Ω → RN

contains the objective functions, hi(u) and hj(u) are inequality and equality constrains of the MO

problem, v1 and v2 are their numbers respectively. On this basis, the following main definitions are

given (Deb and Kalyanmoy 2001):

Definition 1 (Pareto Dominance): Suppose u1 and u2 are two feasible solutions, u1 dominates

u2 (u1 ≺ u2) if and only if

∀i ∈ {1, 2, ..., N} : fi(u
1) ≤ fi(u2) ∧ ∃j ∈ {1, 2, ..., N} : fj(u

1) < fj(u
2) (6)

Definition 2 (Pareto Optimality): A decision vector u∗ ∈ Ω is a Pareto optimal solution of (5)

if and only if @u ∈ Ω, u ≺ u∗.

Definition 3 (Pareto Set): Pareto set is the collection of all the Pareto optimal solutions: {u∗ |

@u ∈ Ω, u ≺ u∗}.

Definition 4 (Pareto Front): Pareto front is the corresponding objective values of Pareto Set:

{F (u∗) | u∗ ∈ Pareto Set}.

Some other definitions of multi-objective optimization are shown in Table 1.

Table 1: Some related definitions of multi-objective optimization.

individual a solution which corresponds to a series of selected spectra from the library

population a solution set that contains several individuals

population size the number of individuals in a population

Pareto criterion Pareto Dominance based evaluation criteria to judge the better individuals

The objective functions in MO are conflicting, which means that the reduction of an objective

function value is at the expense of other’s increases. It is hard to find a solution optimal to all
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the objectives simultaneously. Thus MOs are expected to find a Pareto Set to bring a balance to

all the objectives. Originally, MOs were solved by transforming to single-objective optimization

problems. Recently, multi-objective evolutionary algorithms (MOEA) were proposed, followed by

Pareto criterion based methods. MOEAs use a population based optimization mechanism. In each

iteration, a number of candidate solutions are updated in parallel by a serial of operations such as

crossover, mutation, selection, and elite-conservation.

In Zhang and Li (2007), Zhang et al. proposed an MOEA/D framework, which has been verified

effective in several fields. Unlike traditional Pareto criterion based algorithms, MOEA/D is a math-

ematical programming based method that decomposes the MO problem to a set of single-objective

optimization subproblems. These subproblems could provide a non-Pareto criterion without com-

plex non-dominated sorting operations, which leads to a faster evolutionary speed for MOEA/D.

Moreover, the computational complexity is low in MOEA/D, because it does not need complex

methods to maintain population diversity (such as crowded distance methods).

3. SMoSU for sparse unmixing

Due to the non-convex and NP-hard of the original `0 norm problem, few works target at the

(P0) directly. Usually, penalty functions are used in most sparse unmixing studies. For example,

using `q(0 < q ≤ 1) norm for relaxation:

(P1) : min
X≥0
‖Y −AX‖F + λ1‖X‖q + G(Y,X, λi, i = 2, ..., r) (7)

where ‖X‖q is the relaxation of ‖X‖row−0, G(Y,X, λi, i = 2, ..., r) is a collection of the consid-

ered hyperspectral image characteristics, such as the spatial-contextual and low-rank constrains

of abundances, and λi(i = 1, ..., r) are regularization coefficients of the constrains and r is their

number. If the optimization problem (P1) is convex, it could be well solved based on alternating

direction method of multipliers (Bioucas-Dias et al. 2012) or iterative thresholding method (Gong

et al. 2013), but these regularization coefficients are sensitive and have an great effect on unmixing

results. Greedy algorithms could avoid the approximation of `0 norm, but they are also sensitive to

a number of parameters. Additionally, greedy methods are likely to face the problem of endmember

missing or redundancy especially when the number of actual endmembers is large and the noise is

strong (Shi et al. 2014).
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Here, we consider the sparse unmixing problem as two conflicting subproblems: minimizing the

reconstruction error ‖Y−AX‖F and adjusting the endmember sparsity ‖X‖row−0. These functions

are regarded as two objectives in MOEA. The obtained optimization problem is

min
X

F (X) = [f1(X), f2(X)]T

f1(X) =

 +∞, ‖X‖row−0 = 0 or ≥ 2k

‖Y −AX‖F, otherwise

f2(X) =
∣∣‖X‖row−0 − k∣∣

(8)

where k is the real endmember number. Because f2(·) considered as an objective function rather

than a regularizer, here we use the sparsity error instead the `0 sparsity to represent f2(·). By this

means the optimal value of f2(·) is forced to be 0. A possible problem for Eq. (8) is that its solution

space is relatively large. If it is directly handled, it is difficult to find the real optimal solution. In

SMoSU we use a two-step approach to handle the problem of sparse unmixing: endmember selection

and abundance estimation. We considered transforming the endmember selection to a binary code

({0, 1}) based optimization problem and inverse the abundance matrix X by using nonnegative

least squares. In this case, the solution set would be shrunken a lot, and it may be more likely to

find the real optimal solution. The optimization problem for endmember selection is:

min
s
F (s) = [f1(s), f2(s)]T

f1(s) =

 +∞, ‖X‖row−0 = 0 or ≥ 2k

‖Y − (ASm)X‖F, otherwise

f2(s) =
∣∣‖Sm‖1 − k

∣∣,Sm = diag(s)

(9)

f1(s) is the reconstruction error function, f2(s) is the endmember sparsity error, s ∈ Rm denotes

a binary solution vector where the locations corresponding to the selected endmembers are set as

“1” and “0” otherwise, as shown in Fig. 1. We transform Eq. (9) to the following form which is

more conveniently to solve:

(Pmo) : min
s∈{0,1}m

F (s) = [f1(s), f2(s)]T

f1(s) =

 +∞, ‖s‖1 = 0 or ≥ 2k

‖Y −AsXs‖F, otherwise

f2(s) =
∣∣‖s‖1 − k∣∣

(10)
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‖s‖1 denotes the endmember number represented by a certain individual and As is the corresponding

subset of spectral library, Xs is the abundances of endmembers. s and X are calculated alternatingly,

but only s is the variable required optimized. When s is determined, Xs could be directly calculated

by nonnegative least squares algorithm, i.e.,

X̂s = arg min ‖Y −AsXs‖F , s.t. Xs ≥ 0. (11)

This constrained minimization problem can be simply solved by the Matlab function lsqnonneg.

Put the obtained Xs into Eq. (10), the As could be further updated. Continue iterating until

meet the stopping criterion. It is worth noting that k is usually unknown in practical, so we give

it an estimation by HySime (Bioucas-Dias and Nascimento 2008) in this paper. HySime is just an

available choice, and other similar algorithms such as Virtual Dimensionality (Chang and Du 2004)

could also be used.

Fig. 1: Binary coding of spectral library. Here we simply suppose the spectral library contains m=15 spectra. The

binary vector s = [s1, ..., sm] is the individuals. White points denote that this endmember is selected, and vice versa

in black ones.

In this paper, we propose a new sparse unmixing method based on the MOEA/D framework.

Firstly, we directly conduct MOEA/D for sparse unmixing (termed as MOEA/D-SU) in Section

3.1. Under this circumstance, a set of non-dominated solutions could be obtained to balance the
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reconstruction error and sparsity error. However, we must determine a unique solution for Pmo.

Thus in Section 3.2, we propose a new algorithm SMoSU by integrating the spectral characteristic

of hyperspectral image into Pte. SMoSU takes the spectral correlation information among different

individuals as a regularizer of the decomposition function. So the diversity and convergence of

the population could be well balanced, which is beneficial to the concentration of individuals. In

SMoSU, neither priori nor posterior operations about the solution set is required. The decision

making problem is solved in the evolution process.

3.1. MOEA/D-SU

MOEA/D transforms the bi-objective optimization based sparse unmixing problem (Pmo) to a

number of scalar single-objective optimization subproblems by using aggregate function. Then the

subproblems are solved simultaneously to update the population in the evolution process iteration

by iteration. In detail, a weight vector is assigned to each individual at the beginning, which is

used to control the trajectory and searching direction of individuals. During evolution, the popula-

tion is updated by the optimal solutions of current subproblems, where each subproblem is closely

correlative to its neighboring subproblems. The neighbors of each subproblem are composed of indi-

viduals whose Euclidean distances of aggregate coefficient are similar. Tchebycheff approach is used

here, which is based on Tchebycheff formula and is one of the most commonly used decomposition

methods. Suppose the population size is p. The ith subproblem of (Pmo) is

(Pte) : min
si

gtei (si|λi, z
∗), s.t. 0 < ‖si‖1 < 2k

where gtei (si|λi, z
∗) = max

1≤j≤2
{λji |fj(si)− z

∗
j |}

(12)

z∗ = [z∗1 , z
∗
2 ]T is the ideal point in current iteration with z∗j = min{fj(s1), ..., fj(sp)}, λi = [λ1i , λ

2
i ]T

is the weight vector with λi ≥ 0 and λT
i 1 = 1, λji is the weight of the jth objective, gtei (si|λi, z

∗)

is the weighted Tchebycheff distance of individual si to the ideal point z∗. The neighbors of the

ith subproblem are subproblems whose weight vector is close to λi. This approach could solve

problems with any Pareto front shapes. The gap among individuals and the ideal point is reduced

by (Pte) to achieve the convergence of (Pmo). And the optimal solution of the scalar problem (Pte)

is one Pareto optimal solution of (Pmo). Although the non-Pareto based MOEA/D could bring

high-efficiency to (Pmo), the large search space and computation load brought by over-complete

spectral library are still serious. In fact, MOEAs are likely to trap into local optimum on high-
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dimensional problems. Thus in this paper, the spectral library is pruned to a relatively small scale

using RMUSIC (Fu et al. 2015).

Based on Eq. (10) and Eq (12) the MOEA/D-SU method could be constructed. Please find

more detailed description about MOEA/D from (Zhang and Li 2007).

3.2. SMoSU

In the above original MOEA/D framework based sparse unmixing algorithm MOEA/D-SU, a set

of non-dominated solutions could be obtained until the stopping criteria is satisfied. However, the

decision of final solution is a serious problem of MOEA/D-SU. Therefore, in this paper, we consider

integrating the spectral characteristics of hyperspectral images into the MOEA/D framework to

solve the problem well and try to make the SMoSU concentrates to a single solution to avoid the

decision making problem. We propose an improved Tchebycheff decomposition approach (Pst) by

introducing an spectral information divergence (SID) based regularization term to (Pte). Then the

ith subproblem of (Pmo) is

(Pst) : min
si

gsti (si|λi, z
∗, s∗), s.t. 0 < ‖si‖1 < 2k

where gsti (si|λi, z
∗, s∗) = max

1≤j≤2
{λji |fj(si)− z

∗
j |}+ µ · SID(Asi ,As∗)

(13)

z∗ is the ideal point that is closest to the origin, s∗ is the binary vector of z∗, Asi and As∗ are the

corresponding spectra of individual si and s∗, SID(Asi ,As∗) is the spectral information divergence

of Asi and As∗ , µ is the regularization parameter. The whole process of SMoSU is shown in

Algorithm 1.

3.2.1. SID of As and As∗

Let s = [s1, ..., s|s|], s∗ = [s∗1, ..., s
∗
|s∗|] and s1 ∈ s, s2 ∈ s∗, the relative entropy of As1 and As2

are

D(As1‖As2) =

L∑
i=1

pilog(
pi
qi

)

D(As2‖As1) =

L∑
i=1

qilog(
qi
pi

)

(14)

where

pi =
Ai

s1∑L
i=1 Ai

s1

, qi =
Ai

s2∑L
i=1 Ai

s2

(15)
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Algorithm 1: SMoSU

Input: hyperspectral image data Y, spectral library A.

Output: abundance fractions X.

1 Preprocessing:

2 Estimate the number of active endmembers as k̂ of the hyperspectral image using HySime;

3 Prune the spectral library A to a size m using RMUSIC.

4 Initialization:

5 population size p, neighborhood size ns, maximum iteration number T , regularization

parameter µ, a population S = {s1, ..., sp}, a set of weight vector Λ = {λ1, ...,λp}, indexes of

each subproblem’s neighbors {B1, ..., Bp}, the ideal point z∗ = [z∗1 , z
∗
2 ]T, an population

archive EP .

6 Endmember Selection:

7 while t < T do

8 t = t+ 1;

9 if t > 0.9 ∗ T then

10 Set µ = 0

11 for i = 1, ..., p do

12 Generate a new individual s
′

i from si based on bit-wise flipping strategy, where each

bit is flipped with a probability 1/m;

13 if ‖F (s∗)‖2 > ‖F (s
′

j)‖2 then

14 Set z∗ = F (s
′

i)

15 for j ∈ Bi do

16 if gsti (s
′

i|λi, z
∗, s∗) ≤ gstj (sj |λj , z

∗, s∗) then

17 Set sj = s
′

i and F (sj) = F (s
′

i)

18 Update the population archive EP .

19 Return the solution in EP as s? and record the corresponding spectral signatures.

20 Abundance Estimation:

21 Compute the abundances for the whole hyperspectral image based on nonnegative least

squares algorithm: X = arg minX≥0 ‖Y −As?X‖F
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Then the SID of Asi and As∗i
is

sid(As1 ,As2) = D(As1‖As2) +D(As2‖As1) (16)

Based on sid(As1 ,As2), a matrix S̃ID(As,As∗) for all spectra of As and As∗ can be obtained as

S̃ID(As,As∗) =
sid(As1 ,As∗1

) · · · sid(As1 ,As∗‖s∗‖1
)

...
. . .

...

sid(As‖s‖1
,As∗1

) · · · sid(As‖s‖1
,As∗‖s∗‖1

)


‖s‖1×‖s∗‖1

(17)

In this paper, we define the SID of As and As∗ as

SID(As,As∗) =
1

2

(∑‖s‖1
i=1 ‖S̃IDi,:‖∞
‖s‖1

+

∑‖s∗‖1
i=1 ‖S̃ID:,i‖∞
‖s∗‖1

)
(18)

where ‖ · ‖∞ is the infinite norm of a vector. It is used to measure the information divergence of

spectra corresponding to two individuals.

3.2.2. Ideal point

In the original MOEA/D, the ideal point is virtual (we mark it as z∗M here to distinguish it from

the ideal point of SMoSU), defined by the following equation:

z∗M = [z∗1 , z
∗
2 ]T, z∗i = min{fi(sj), i = {1, 2}, j = {1, ..., p}} (19)

z∗M is located in the position where both f1 and f2 achieve minimums simultaneously, and all the

individuals tend to get close to this virtual point.

However, in the problem of hyperspectral unmixing, the solution corresponds to a series of

spectra. An immediate idea is that besides the weighted Tchebycheff distance, the spectral similarity

between individuals and ideal point should also be considered. Individuals whose spectra are less

similar to the ideal point are more likely to be replaced. If we still use virtual point as the ideal

one, it may not even exist spectra, and this situation is certainly true if the Pareto front has come

close to the edge of the range. If the ideal point does not contain real spectra, it is impossible

and meaningless to compare the SID. Therefore, in SMoSU, the ideal point z∗ is selected from the

solution set in current iteration, which is defined by:

z∗ = F (si∗), s.t. i∗ = arg min
i
{‖F (si)‖, i = 1, ..., p} (20)
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In this case, the obtained z∗ is a real point in the range which corresponds to real spectra.

In Fig. 2, we display an illustration about the difference between SMoSU and the original

MOEA/D in the evolution process for ideal point determination. For the convenience of analysis,

the range is illustrated as a continuous region. In Fig. 2, the blue region is a part of the range. All

the solid points (eight yellow points and one red points) represents the population distribution in

current iteration. In MOEA/D, the ideal point is determined as a virtual point, denoted by z∗M in

Fig. 2. In SMoSU, the ideal point is determined as an specific individual in the current population,

denoted by z∗ in Fig. 2.

Fig. 2: An illustration about the difference of ideal points in the original MOEA/D (problem (Pte)) and SMoSU

((Pst)). z∗M is the ideal point in (Pte). z∗ is the ideal point in (Pst). The blue region is a part of the range. All the

solid points (eight yellow points and one red points) represents the population distribution in current iteration. z∗M

and z∗ are the ideal points in MOEA/D and SMoSU respectively.

3.2.3. Concentration of individuals

After sufficient iterations, the final optimization results are shown in Fig. 3. Each rectangular-

box corresponds to a certain weighted Tchebycheff problem. Each point (solution) in curve
_

AB

corresponds to a particular weight vector (λ), and has minimum weighted Tchebycheff distance to

the virtual ideal point. Curve
_

AB is just the Pareto optimal front in MOEA/D, which means all the

points in
_

AB are Pareto optimal. By comparison, in SMoSU the ideal point actually exists in the

range, denoted by “C”. OC is perpendicular to the tangent of “C”. Because “C” is located in the

Pareto front, its effectiveness could be guaranteed. In SMoSU, for all individuals in the population,

the minimum distance gst to the ideal point is itself. Thus more and more individuals are replaced
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by the ideal point, and the whole population are concentrated to a single solution gradually. In this

way the decision making problem in hyperspectral unmixing is solved to some extent.

Fig. 3: An illustration about the difference between SMoSU and the original MOEA/D in the final optimization for

ideal point determination. The blue region is a part of the range. Yellow points are some of the optimal solutions.
_

AB is the Pareto optimal front for MOEA/D. “C” is the ideal point in SMoSU.

3.2.4. Bit-wise flipping strategy

Bit-wise flipping is a mutation method, which is used to generate new individuals. Multi-

objective optimization is a multiple variable based method, so a set of binary variables S =

{s1, ..., sp} are initialized at the beginning (as shown in Algorithm 1). In each iteration, p new

individuals {s′1, ..., s′p} are generated. Each s′i(i = 1, ..., p) is produced by the individual si based

on the bit-wise flipping strategy. This strategy flips each bit (location) in si to its opposition with

a probability 1/m.

4. Experiments

In this section, synthetic and real-world experiments are designed to validate the performance

of SMoSU respectively. The spectral library is Chapter 1 of the United States Geological Survey

(USGS) digital spectral library (splib06a)1, which contains 498 spectra under 224 bands distributed

evenly in 0.4 − 2.5µm. Firstly, the performance analysis of SMoSU is presented, including the

effect of the regularization parameter µ, SRE results under different k with k̂ ranging from 3

1Available online: http://speclab.cr.usgs.gov/spectral-lib.html
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to 10, the concentration process of SMoSU. Secondly, SMoSU is compared with five state-of-art

algorithms: SUnSAL (Bioucas-Dias and Figueiredo 2010), SUnSAL-TV (Iordache et al. 2012),

SMP (Shi et al. 2014), RSFoBa-2, RSFoBa-Inf (Tang et al. 2014) on three synthetic data sets and

one real-world data. The signal-to-reconstruction error (SRE ≡ 10log10

(
E[‖X‖2F]/E[‖X− X̂‖2F]

)
)

is used to evaluate the performance of algorithms, where X is the true abundances and X̂ is the

estimated ones. Generally, larger SRE values correspond to better accuracy. Because SMoSU

actually works as a subset selection method, as long as the exact endmembers are found, their

SREs should be the same. For parameters setting, the default values in MOEA/D are taken for

population size p and neighborhood size ns, because SMoSU is not sensitive to these parameters.

The maximum iteration number T is set as 100 both in synthetic and real-world experiments based

on the results in Table 2, and the library size m after prunning is 40 according to (Iordache et al.

2014b).

Readers can directly use the above default parameters to handle other preferred test data, and

the Matlab code of SMoSU is published online2.

4.1. Performance analysis of SMoSU

4.1.1. Effect of the regularization parameter µ

It has been known that the `q (0 < q ≤ 1) norm relaxed sparse unmixing algorithms are sensitive

to regularization parameters in (P1). Thus it is necessary to analyse the effect of µ in (Pst). We

test µ on a synthetic data generated by 10 spectra selected from the USGS library. The abundance

fractions are generated based on Dirichlet distribution and forced to be smaller that 0.7 to avoid

pure pixels. Because the real noise form is unavailable, here we add relatively complex correlated

noise for better simulation with 20/30/40dB signal-to-noise ratios (SNR ≡ 10log10
(
‖Y‖2F/‖N‖2F

)
).

The correlated noise is generated by conducting low pass filtering on i.i.d. Gaussian noise with

a normalized cutoff frequency of 5π/L (Iordache et al. 2011). Table 2 presents the SRE results,

processing-times and maximum iterations T of SMoSU with µ ranging from 0 to 1. If the maximum

iteration number is larger than 100, the results are not taken into account. In fact, SMoSU usually

can still converge in these situations. The values of SRE present a little fluctuation when T < 100.

It can be observed from Table 2 that the added term mainly works in the high-noise conditions.

2http://levir.buaa.edu.cn/Code.htm
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When the noise is not strong (30/40dB), it is relatively easy for SMoSU to find the optimal solution.

So it is not necessary to further integrating the SID term. However, the time cost varies in different

µ. SMoSU can obtain the best results when µ = 0.2 in the 20dB noise cases, and µ = 0.6/µ = 0.8

for 30/40dB noise cases respectively. Therefore, considering greater effect of µ in 20dB cases, µ is

set to 0.2 in all the following experiments.

Table 2: SRE results, processing-times, and maximum iterations T of SMoSU with µ ranging from 0 to 1 under

20/30/40dB noise level. The best results are in bold.

SNR µ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20dB

SRE 4.63 5.56 5.56 3.63 5.60 4.63 4.63 4.63 4.63 4.63 4.63

Time(s) 366.7 382.2 357.3 456.6 458.3 493.8 473.1 502.3 545.6 627.3 936.7

T 73 76 69 90 89 110 107 111 123 138 217

30dB

SRE 18.35 18.35 18.35 18.35 18.35 18.35 18.35 18.35 18.35 18.35 18.35

Time(s) 245.1 221.9 212.0 181.9 185.6 194.6 180.9 211.9 220.3 256.3 364.8

T 66 61 59 49 49 49 48 58 60 80 114

40dB

SRE 27.46 27.46 27.46 27.46 27.46 27.46 27.46 27.46 27.46 27.46 27.46

Time(s) 169.2 230.5 232.6 199.9 164.5 162.3 166.5 162.1 157.2 166.4 207.4

T 45 61 65 50 40 40 40 40 40 40 51

4.1.2. Effect of k̂

According to Eq. (10), the performance of SMoSU is highly correlated to the estimated end-

member number k̂. Here, we test the effect of k̂ on synthetic data sets corrupted by 30dB correlated

noise. The number of actual endmembers k varies from 3 to 10 and k̂ is also assumed to range from

3 to 10, which includes all k < k̂, k = k̂ and k > k̂ cases. Fig. 4 illustrates the relation among k, k̂

and the number of obtained endmembers by SMoSU. The values inside Fig. 4 are the differences

between k and our obtained endmembers number. “0” denotes the obtained endmembers number is

the same as k. However, only using Fig. 4 we cannot determine whether the obtained endmembers

cover the actual ones. Thus Table 3 is presented to show the corresponding SRE for the cases in

Fig. 4. In Table 3, SMoSU performs well when the endmember number is estimated accurately

(i.e. k̂ = k) or a little smaller. Usually, SMoSU could select the exact endmembers in these cases.
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In addition, the results fluctuate slightly when k̂ > k. We may conclude that obtained endmembers

could cover the actual ones in these cases. However, when k̂ is much smaller than k, the unmixing

accuracy presents obvious decline. The results in Table 3 and Fig. 4 indicate that overestimation

has little influence on the accuracy while missing active endmembers should be avoided.

Table 3: The SRE results of SMoSU under different k̂ with the actual endmember number ranging from 3 to 10.

k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

k = 3 18.65 18.37 18.35 18.35 17.37 18.38 16.86 16.87

k = 4 19.42 19.42 18.62 18.09 17.20 17.74 15.80 14.92

k = 5 4.20 17.65 17.65 17.34 16.54 14.52 14.80 14.88

k = 6 5.24 18.01 18.01 18.01 17.91 16.39 17.43 15.92

k = 7 2.73 17.58 17.58 17.58 17.58 17.29 17.08 13.28

k = 8 1.33 6.29 17.60 17.60 17.60 17.60 13.51 12.65

k = 9 -4.43 -3.81 6.77 18.03 18.03 18.03 18.03 14.26

k = 10 -0.55 2.76 7.33 7.33 7.35 18.35 18.35 18.35

4.1.3. Concentration process of SMoSU

SMoSU avoids the decision making problem in MOEA/D-SU by integrating the spectral char-

acteristic of hyperspectral images into the original MOEA/D framework. In order to verify the

effectiveness of this improvement, Fig. 5 and Fig. 6 are presented. In Fig. 5, the objective function

values of individuals after 20/40/60/80 iterations in MOEA/D-SU and SMoSU are compared re-

spectively. These experiments are conducted on synthetic data generated by 10 spectra with 30dB

correlated noise. The first row in Fig. 5 are solutions by MOEA/D-SU. We can see that after

sufficient iterations the shape of Pareto front tends to stable, especially in the left side. However,

there are many solutions in MOEA/D-SU (shown by blue circles) and thus the decision making

problem exists. Results by SMoSU are shown in the second row. It is observed that the solutions

tend to concentrate with the increase of iterations. Similar situation could also be observed in Fig.

6. The first column is our result and the second one corresponds to that of MOEA/D-SU. Take a

sub-figure for example. The x-axis denotes all the 100 individuals, and the y-axis is serial number

of the library. White points denote that this endmember is selected, and vice versa in black ones.

Fig. 6 demonstrates that individuals in SMoSU have presented very consistent results in all the

settings of k. However, individuals in MOEA/D-SU are diverse.
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Fig. 4: Endmember missing and redundancy of SMoSU under different k and k̂. Positive numbers indicate the

redundant endmember numbers and negative number indicate the missing endmember numbers. The ‘0’ cases

indicate the number of selected endmembers are the same with the truth.

Fig. 5: The concentration process of MOEA/D-SU and SMoSU when the actual endmember number is 10 and noise

is 30dB. x-axis and y-axis of subfigures denote the values of f2 and f1, respectively. The first row are the objective

function values of MOEA/D-SU when the t=20/40/60/80. The second row are the objective function values of

SMoSU when the t=20/40/60/80.
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Fig. 6: The binary images of populations for SMoSU and MOEA/D-SU. The left column is populations of SMoSU,

and the right column is populations of MOEA/D-SU. From top to bottom are the obtained populations for k = 3 to

k = 10 respectively. For each subfigure, the x-axis denotes all the 100 individuals, and the y-axis is serial number of

the library. White points denote that this endmember is selected, and vice versa in black ones.21



4.2. Comparing with state-of-art algorithms

4.2.1. Synthetic data 1

Synthetic data 1 contains images of size 64×64, which are generated by 3 to 10 spectral signatures

with 20/30/40dB correlated noise respectively. The abundances follows a Dirichlet distribution

and are forced to be smaller than 0.7 to avoid pure pixels. To increase the unmixing difficulty,

we specially choose 5 similar spectra from the library: Actinolite HS116.3B, Actinolite HS22.3B,

Actinolite HS315.4B, Actinolite NMNH80714 and Actinolite NMNHR16485. Table 4 shows the

results obtained by SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf and SMoSU with different

k and different noise level. Generally speaking, the SRE results of all algorithms are decreased with

the increase of noise strength. The results of SMoSU fluctuates slightly with k varying from 3 to

10. SUnSAL-TV performs worse than SUnSAL in most cases, since the Dirichlet distribution of

abundances may mislead the spatial context constraint of SUnSAL-TV. In the 20dB noise cases,

SMoSU surpasses the five state-of-art algorithms in most cases. It is slightly worse than the best

SRE when the actual endmember number is 3 and 6, but outperforms the others when k is large.

The best results are obtained by SMoSU in all the 30/40dB cases. In fact, all actual endmembers

are exactly selected in theses situations. It is worth mentioning that each of the five state-of-art

algorithms have several parameters to adjust according to different noise level and k, which leads

to a great workload. However, for SMoSU, the parameters are usually robust and do not need to

be adjusted.

4.2.2. Synthetic data 2

Synthetic data 2 is introduced by Iordache et al. (2012), which is generated by 5 spectral

signatures with a 75×75 image size and has a good spatial homogeneity. It is also corrupted

by 20/30/40dB correlated noise respectively. Table 5 and Fig. 7 give quantitative and visual

comparison of the algorithms. In Table 5, the SRE results of the six algorithms on different noise

levels are listed. Fig. 7 presents the abundance maps of these algorithms with 30dB correlated

noise. From left column to right column are abundance maps obtained by SUnSAL, SUnSAL-TV,

SMP, RSFoBa-2, RSFoBa-Inf, SMoSU and the truth respectively. From top row to bottom row are

the maps corresponding to endmembers #1 to #5. It can be observed that SUnSAL-TV presents

better spatial smoothness, but loses some small patches for endmembers #1 to #4. Table 5 is more

convincing since it is not easy to justify which method performs better from visual results. Note that
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Table 4: SRE results of SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf and SMoSU on synthetic data 1.

SNR k SUnSAL SUnSAL-TV SMP RSFoBa-2 RSFoBa-Inf SMoSU

20dB

3 4.5052 5.2438 8.6130 8.4044 8.6130 7.7487

4 3.2859 2.7137 2.5247 7.9220 7.4005 9.3768

5 3.0177 2.3333 3.2845 8.5611 7.4656 8.8596

6 3.3636 2.8785 5.7019 5.1444 7.1982 5.0969

7 3.2529 2.9369 4.0000 3.8065 5.7600 6.1454

8 2.3822 2.2278 3.9736 4.6277 3.9579 5.4857

9 2.7601 2.6670 3.8935 3.8254 4.0621 6.6004

10 3.1040 2.8880 4.7120 3.2561 3.6430 5.5628

30dB

3 11.3329 11.5359 18.5585 18.5585 18.6567 18.6567

4 9.5467 8.6930 3.5312 16.8542 16.1260 19.4240

5 9.0219 7.6637 4.9450 14.2502 15.0515 17.6580

6 9.2247 7.9197 5.5319 13.8184 14.2658 18.0181

7 8.8378 7.8053 6.2037 12.7791 14.2503 17.5835

8 7.9069 7.1904 6.2300 11.5081 12.9609 17.6047

9 8.1637 7.5223 7.2575 12.2967 13.0632 18.0314

10 8.8004 8.0950 7.4321 11.4065 12.9061 18.3527

40dB

3 19.6442 21.9383 28.2405 28.2405 28.2405 28.3241

4 16.0227 16.0821 3.7792 25.6794 25.6794 29.3713

5 15.3377 15.0203 5.0044 23.0806 24.5285 27.2786

6 15.2891 15.0866 6.1201 22.4171 24.2171 27.3813

7 14.7076 14.8440 6.6270 24.0554 23.2697 26.9648

8 14.0966 14.4336 7.2206 22.1368 21.2189 27.0626

9 14.6300 14.8271 7.7812 19.9435 22.0977 27.0128

10 14.7714 15.1587 8.3255 19.4626 20.5550 27.4649
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although it looks like SMoSU has achieved much higher SREs than other, its real advantage is not

very significant. These large gaps are mainly generated due to the characteristic when calculating

SREs.

Table 5: SRE results of SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf and SMoSU on synthetic data 2.

SNR SUnSAL SUnSAL-TV SMP RSFoBa-2 RSFoBa-Inf SMoSU

20dB 2.8740 7.2579 5.2260 4.2532 5.5423 9.2787

30dB 6.1289 15.0983 13.5314 12.3136 13.4010 15.8934

40dB 11.0483 21.4753 23.9048 22.7590 23.9048 26.4514

4.2.3. Synthetic data 3

Synthetic data 3 is also a commonly used dataset (Iordache et al. 2012). It is generated by 9

spectra and contains 100×100 pixels. Table 6 and Fig. 8 present the results of the six algorithms,

which are organized by similar manner as Table 5 and Fig. 7. The advantage of SMoSU mainly

reflects on the 20dB data, according to Table 6. Actually, SMoSU could find the exact endmembers

in 30dB and 40dB data, and thus it present closer results to the truth.

Table 6: SRE results of SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf and SMoSU on synthetic data 3.

SNR SUnSAL SUnSAL-TV SMP RSFoBa-2 RSFoBa-Inf SMoSU

20dB 3.5823 6.8356 11.7575 9.1401 10.4579 12.3412

30dB 8.0323 11.8903 15.2202 16.5553 19.7419 22.2353

40dB 12.9896 17.1311 21.6863 25.0255 27.1758 33.8674
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Fig. 7: Comparison of abundance maps on synthetic data 2 with 30dB correlated noise. From left column to right

column are abundance maps obtained by SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf, SMoSU and the

truth respectively. From top row to bottom row are the maps corresponding to endmembers #1 to #5.
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Fig. 8: Abundance maps of endmember #3 on synthetic data 3 with 20/30/40dB correlated noise. From left column

to right column are abundance maps obtained by SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf, SMoSU and

the truth respectively. From top row to bottom row are the maps corresponding to 20/30/40dB correlated noise.

Fig. 9: Material map of Cuprite dataset obtained by Tricorder 3.3 software.
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Fig. 10: Comparison of abundance maps on Cuprite data. From left column to right column are abundance maps

obtained by SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf and SMoSU respectively. From top row to bottom

row are the maps corresponding to Alunite+Muscovite/Kaolinite, Alunite, Ammonio-Smectite and Chalcedony.
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4.2.4. Real-world data

The real-world data we used here is a 204×151 subscene of the well-known AVIRIS Cuprite

dataset3. This dataset contains 188 spectral bands after a removing of water absorption bands and

some low SNR bands. A material map4 produced by Tricorder 3.3 software is shown in Fig. 9,

where each pixel is labeled pure and classified to a certain material. This is conflicting to the mixing

premise of sparse unmixing. Thus Fig. 9 can only give a qualitative analysis for the unmixing results

of all the six algorithms. We divide the subscene into several blocks in this experiment, since a large

number of materials are contained in the real-world image. Fig. 10 presents a comparison of these

algorithms on the Cuprite dataset. From left column to right column are abundance maps obtained

by SUnSAL, SUnSAL-TV, SMP, RSFoBa-2, RSFoBa-Inf and SMoSU respectively. From top row

to bottom row are the maps corresponding to Alunite+Muscovite/Kaolinite, Alunite, Ammonio-

Smectite and Chalcedony. From Fig. 10, the abundance maps of SMoSU is similar with SUnSAL,

SUnSAL-TV, RSFoBa-2 and RSFoBa-Inf for Alunite+Muscovite/Kaolinite. SMP and RSFoBa-2

fail to find Alunite and SMoSU surpasses all the five state-of-art algorithms for Ammonio-Smectite.

In addition, all algorithms perform well for Chalcedony and obtain similar abundance maps. In

conclusion, SMoSU is effective for real-world images.

5. Conclusion

In this paper, a multi-objective optimization based sparse unmixing (SMoSU) is proposed.

SMoSU is developed based on MOEA/D framework. To solve the `0 norm sparse unmixing problem

directly, spectral library is encoded in binary vectors. Each spectral signature is replaced by a binary

code and thus sparse unmixing is transformed to a bi-objective discrete optimization problem. A

bit-wise randomly flipping strategy is used to generate new individuals in the evolution process of

SMoSU. In order to select the only optimal solution from the non-dominated solutions, we integrate

spectral characteristic of hyperspectral image into SMoSU. A new regularizer which includes spectral

correlation information is added to the Tchebycheff decomposition approach in SMoSU. In this way,

the diversity and convergence of population is further balanced and the concentration of individuals

are ensured. SMoSU do not need priori operations to specify a utility function over all different

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4http://speclab.cr.usgs.gov/PAPERS/tetracorder/
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objective functions nor posterior operations to make a decision from the solution set. It is worth

mentioning that the proposed SMoSU method is a multi-objective based algorithm, rather than a

complete multi-objective optimization one. MO problems try to obtain a solution set as diverse

and uniform as possible, but SMoSU strives to obtain a single optimal solution. In general, our

strategy can be directly used to improve other weighted-metrics based multi-objective methods.

To verify the performance of SMoSU, effectiveness analysis experiments and contrast experi-

ments are conducted. We analyse the concentration process of SMoSU and test the effect of some

key parameters, including the estimated endmember number and regularization parameter. Three

synthetic and one real-world datasets are used to compare SMoSU with several state-of-art algo-

rithms.
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